
 

 
 

 Part of the Society for Transparency, 
Openness and Replication in 
Kinesiology (STORK) 

Preprint 
not peer reviewed 

  

 

 

All authors have read and approved this version of the 
manuscript. This article was last modified on Month October, 
2023. 

 

 

 

Optimizing 
Research 
Methodology for the 
Detection of 
Individual Response 
Variation in 
Resistance Training 

  
For correspondence: 

zrobinson2019@fau.edu  

 

 

Zac P. Robinson1, Eric R. Helms1,2, Eric T. Trexler1,3, James Steele1,4,  

Michael E. Hall1, Chun-Jung Huang1, Michael C. Zourdos1 

 
1 Department of Exercise Science and Health Promotion, Muscle Physiology Laboratory, Florida Atlantic 
University 
2 Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, 
Auckland, New Zealand 
3 Department of Evolutionary Anthropology, Duke University, Durham, NC, USA 
4 Faculty of Sport, Health, and Social Sciences, Solent University, Southampton, UK 

 

Please cite as: Robinson ZP, Helms ER, Trexler ET, Steele J, Hall ME, Huang CJ, and Zourdos MC, (2023). 
Optimizing Research Methodology for the Detection of Individual Response Variation in Resistance 
Training 



 

   

                    1 

 

 

ABSTRACT 
Most resistance training research focuses on group-level outcomes (i.e., group A versus group 
B). However, many practitioners are more interested in training responses on the individual 
level (i.e., intervention A versus intervention B for individual X). In order to properly examine 
individual response variation, multiple confounding sources of variation (e.g., random sampling 
variation, measurement error, biological variation) must be addressed. Novel study designs 
where participants complete both interventions and at least one intervention twice can be 
leveraged to account for these sources of variation. Specifically, the appropriate statistical 
methods can separate variability into the signal (i.e., participant-by-training interaction) versus 
the noise (i.e., within-participant variance). This distinction can allow researchers to detect 
evidence of individual response variation. If evidence of individual response variation exists, 
researchers can explore potential predictors of the more favorable intervention, thereby 
improving exercise prescription. This review outlines the methodology necessary to explore 
individual response variation to resistance training, predict favorable interventions, and the 
limitations thereof. 
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INTRODUCTION 
It is well established that, on the group-level, resistance training (RT) leads to robust increases 
in muscle size and strength [1]. These neuromuscular adaptations are thought to be 
influenced, in part, by training variables such as volume (number of sets per week for a muscle 
group) and load (percentage of one-repetition maximum; %1RM). Indeed, meta-analyses 
establish general training recommendations for volume [2,3] and load [4,5] based on group-
level data. However, some argue that uniform training recommendations derived from such 
data may be inappropriate for some individuals due to the variability observed in RT 
outcomes1 
 
The variability in training outcomes following a standardized RT intervention is well illustrated 
in widely cited studies from Hubal et al. [6] and Erskine et al. [7]. Specifically, Hubal et al. 
reported large mean increases in elbow flexor muscle cross-sectional area (CSA) (3.2 ± 0.1 cm2; 
+18.9%), maximal elbow flexion isometric force (7.5 ± 0.3 kg; +19.5%) and 1RM preacher curl 
(+3.9 ± 0.1 kg; +54.1%) among 585 untrained men and women following a 12-week training 
program. However, the individual observations for cross-sectional area, isometric force, and 
1RM strength ranged from -2.5% to 59.3%, -31.5% to +148.5%, and 0% to +250%, respectively. 
Similarly, in untrained individuals, Erskine et al. [7] observed mean changes of +33.9 kg and 
+14 cm2 for knee extension 1RM and quadriceps CSA accompanied by a wide range of 
individual outcomes 18% to 113% (1RM) and +0% to +16% (CSA). Further, this outcome 
heterogeneity seems to extend to trained participants. To illustrate, Figure 1 displays the 
individual observations of four similarly designed longitudinal studies from our lab [8–11] 
(Figure 1). 
 

 
1 There is a critical distinction between individual-level variability in RT outcomes and responses. The former purely describes the 
result of the training intervention but fails to contextualize the data relative to crucial confounding variables (e.g., random sampling 
variation, measurement error, biological variation, etc). Individual “responses”, and variation thereof, can only be determined in the 
latter case. 
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Figure 1: Visual summary of response heterogeneity from four similarly designed longitudinal training studies [8–11]. Data are absolute 
change in outcome with each bar representing a single participant. 𝑥‾= the mean ± the standard deviation of the outcome. A) n = 84; 𝑥‾ = 
+9.06 kg ± 5.36; range = -5.0 to +23.5 kg B) n = 82; 𝑥‾ = +15.73 kg ± 8.63; range = -5.0 to 50.0 kg C) n = 80; 𝑥‾ = 2.56 mm ± 4.33; range = -
13.2 to 11.3 mm D) n = 78; 𝑥‾ = 0.88 mm ± 3.22; range = -7.0 to 8.5 mm E) n = 78; 𝑥‾ = 2.48 mm ± 4.75; range = -4.0 to 22.1 mm 

 
Despite this observed outcome heterogeneity, targeted methods are necessary to confirm the 
causal link between a training intervention and the observed variation in outcomes, rather than 
other potential sources of variation (e.g., random sampling variation, measurement error, 
biologiclar variation, etc.). Indeed, Hecksteden et al. [12] described that various factors that can 
interfere with the investigation of individual response heterogeneity in typical study designs 
and outlined potential modifications for researchers to appropriately explore this phenomena. 
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Moreover, the authors discuss methods to predict individual response variation (if there is 
sufficient evidence to suggest it may exist) and the limitations thereof. In a novel approach that 
integrates some of these modifications within the field of exercise science, Steele et al. found 
conflicting evidence of individual response heterogeneity upon comparing the observed 
variances in groups completing a RT intervention versus untrained controls [13]; however, the 
analysis is incapable of delineating within-participant variance from the participant-by-training 
interaction. Moreover, whether these findings apply to the comparisons between different 
interventions (e.g., high versus low volumes), unexplored intervention duration (e.g., years 
rather than months or weeks), and in trained individuals remains unclear. 
 
RT research that utilizes the appropriate methodology is needed to investigate individual 
response heterogeneity. With sufficient data, recommendations based on individual-level 
outcomes could be created. Therefore, the purpose of this review is to describe the limitations 
of typical RT study designs for examining individual response variation and suggest potential 
solutions. Additionally, we will explore methods to identify any predictors of individual 
response variation. To facilitate the application of these concepts, we will use examples that 
investigate individual responses in strength and hypertrophy to different RT volumes; although 
the concepts may apply to all training variables (e.g., frequency, load, proximity to failure, etc.) 
and outcomes (e.g., power, speed, etc.). Finally, although the existence of meaningful individual 
response variation remains unclear, this review will focus on strategies of examining it if 
sufficient evidence is observed. 
 

EPISTEMOLOGY OF TRAINING RESPONSE: ASKING THE RIGHT 
QUESTION 
To effectively investigate individual response variation, the research question of interest must 
be clearly defined due to implications for study design. Most RT studies are designed to answer 
questions related to group-level outcomes (i.e, average treatment effect). For example, a typical 
parallel-group study may randomize participants into one of two groups: low volume (e.g., 8 
sets/wk) or high volume (e.g., 16 sets/wk). Muscle size and strength will be measured before 
and after the 12-week training intervention and the mean change scores of each condition will 
be compared. This study is designed to answer: 
 
What training volume will produce the best average outcome when performed by many individuals? 
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That question may be appropriate when uniform program design is logistically necessary, such 
as strength and conditioning coaches managing many athletes simultaneously. However, the 
potentially more useful question for many RT practitioners would be: 
 
What training volume will produce the best outcome when performed by a specific individual? 
 
In a parallel-group design comparing low volumes (e.g., 8 sets per week) to high volumes (e.g., 
16 sets per week), between group analyses may suggest that one condition leads to superior 
outcomes, on average. However, that finding would not imply that the same condition would 
optimize outcomes for every individual. In order to answer the question related to individual-
level outcomes, two additional sub-components must be evaluated; i) Is there sufficient evidence 
of individual response variation? (i.e., does the variance associated with the training intervention 
exceed that of within-participant variance?) ii) Can individual response variation be predicted? (i.e., if 
there is sufficient evidence of response variation, can practical characteristics identify when a given 
individual will likely respond better to one intervention versus another) To effectively evaluate these 
sub-components, appropriate study design is necessary. 
 

STUDY DESIGNS TO EXAMINE INDIVIDUAL RESPONSE VARIATION 
When researchers intend to investigate a specific question, they should choose the study 
design best fit to answer that question. As described earlier, traditional parallel-group designs, 
which randomize or counterbalance participants to only one intervention group (e.g., high or 
low volumes), are limited in investigating individual response variation. However, modifications 
can be made to a parallel-group design to improve its ability to investigate individual response 
variation, and other study designs can be utilized to examine this topic (Table 1). 
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Table 1: Features of potential study designs to investigate the individual response to resistance training. [14–17] 

 
Parallel-Group Design with Non-Training Control 
Although parallel-group designs typically offer extremely limited information pertaining to 
individual response variation, modifications can be made to give researchers increased access 
to individual-level information. In most RT studies, researchers do not include a non-training 
control group. However, inclusion of a non-training control would allow researchers to, in part, 
evaluate the first sub-component (i.e., is there sufficient evidence of individual response 
variation?) Specifically, by comparing the variance of the change scores between the RT group 
and non-training control, it can be determined if there is evidence for individual response 
variation. Most sources of variability (e.g., measurement error, random sampling variation, 
biological variation, etc.) would be shared by both groups, with additional variability attributed 
to the RT intervention if individual response variation does exist. This approach was 
demonstrated meta-analytically in the previously mentioned paper by Steele et al. [13]. Despite 
a non-training control improving a parallel-group design, it still cannot fully address the first 
sub-component due to the inability of this study design to delineate between different sources 
of training associated variance (i.e., within-participant variance versus the participant-by-
training interaction). It merely demonstrates whether or not the introduction of the 
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intervention has introduced additional variance over and above the test-retest variation over 
the period of observation. 
 
Further, the inclusion of a control group also comes with the logistical limitation of trained 
participants consenting to not exercise for the duration of the study (which in this population 
also represents an ‘intervention’ albeit one of de-training). Moreover, a parallel-group design 
with a non-training control cannot evaluate the response variation between different RT 
interventions; thus, it is incapable of addressing the second sub component to improve 
individual-level RT prescription (i.e., can we predict individual response variation?) To rectify 
these limitations, study designs in which participants complete multiple training interventions 
must be leveraged. 
 
Crossover Designs 
A longitudinal crossover design offers multiple advantages over a parallel-group design when 
investigating the individual response to training. In a crossover design, participants complete 
one training condition (i.e., period), enter a washout period intended to remove any residual 
effects from the first condition, and then complete the other condition. Further, the order in 
which conditions are completed is randomized to control for the order effect, which stipulates 
that an individual’s response throughout the second condition may be impacted by effects 
from the first condition (i.e., potentiation or inhibition). In a crossover design, participants 
complete both training conditions and serve as their own control, which allows researchers to 
compare individual outcomes between conditions. For example, consider a study in which 
participants are initially randomized to complete either a low (i.e., 8 sets per week) or high 
volume (i.e., 16 sets per week) 8-week training program. Following the initial 8 weeks, each 
participant would enter a washout period to revert the adaptations back to baseline, then 
complete the opposite condition. 
 
Despite the benefits of crossover designs, their limitations also prevent addressing the first 
sub-component (i.e., is there sufficient evidence of individual response variation?). Specifically, 
following a washout period, it is ideal if increases in muscle size and strength return to 
baseline. However, gains in muscle size and strength are resilient following ~30 weeks of 
training cessation [18], and also exhibit variability in outcomes [19]. Thus, the return to 
baseline within a washout period may be unrealistic in the context of RT due to the lack of 
predictable trends in these outcomes. Further, trained individuals may not participate in 



 

   

                    8 

 

studies requiring such washout periods. Additionally, while the aforementioned order effect 
can be controlled via randomization on the group-level, the response of a given individual to 
the second training period could be impacted by second-order effects (i.e., potentiation or 
inhibition) of the first training period. For example, adaptations (or lack thereof) from the first 
training period (e.g., hypertrophy) could result in more (or less) robust responses in the second 
training period (e.g., strength gain) that could confound comparisons between conditions. 
 
Additionally, crossover designs cannot fully account for the influence of external variables (e.g., 
sleep, nutrition, stress, etc.). For example, a participant who is a University student may have a 
more difficult semester during training period B than during period A; thus, may have higher 
anxiety and less sleep during period B which could impair performance [20]. Finally, while 
crossover designs may require fewer total participants than parallel-group designs, a 
longitudinal crossover design is more time-intensive for both the researchers and participants. 
Therefore, longitudinal crossover designs may not always be feasible. 
 
Within-Participant Unilateral Designs 
A within-participant unilateral design offers some advantages over both parallel-group and 
crossover designs for investigating the individual response to RT. First, a within-participant 
unilateral design, unlike a parallel-groups design, randomizes an individual’s limbs (often while 
accounting for limb dominance) to different training conditions; thus, each participant 
performs both training protocols. Since, similar to a crossover design, each participant 
performs both protocols serving as their own control, researchers can compare individual 
outcomes from both training conditions (e.g., high versus low volumes). Second, performing 
both protocols at the same time rectifies the influence of external factors (sleep, stress, 
nutrition, etc.) that limit a crossover design. Third, a within-participants unilateral design likely 
increases the ability to detect a given effect size of interest (i.e, statistical power) compared to 
both a parallel-group and crossover designs, assuming an equivalent correlation of the 
outcome. Specifically, because each participant completes each protocol simultaneously, each 
person is effectively serving as two (i.e., one in each protocol); thereby, increasing recruitment 
efficiency. 
 
Nonetheless, within-participant unilateral designs have limitations. Due to the nature of 
training each limb independently, these designs inherently exclude bilateral exercises (e.g., 
barbell bench press) from being experimentally manipulated, limiting the ecological validity of 
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the RT intervention. Another limitation is the cross-education effect, where strength increases 
in the limb opposite to the one being trained; however, this phenomenon does not seem to 
extend to muscle hypertrophy [21]. Due to the cross education effect, it would be difficult to 
determine the exact magnitude of difference in strength increases between protocols on the 
individual-level using a within-participants unilateral design. That said, if the limb with the 
superior training effect also results in a larger cross-education effect, any differences between 
limbs could be even larger than the observations indicate. 
 
Introducing Replication: Establishing the Participant-By-Training Interaction 
While crossover and within-participant unilateral designs improve upon typical parallel-group 
designs, they are still not fully capable of addressing both sub-components of interest with 
respect to individual response variation. Because both conditions completed by participants in 
crossover and within-participant unilateral designs feature a training intervention, any 
observed variance in the outcomes cannot be causally linked to a training intervention rather 
than other sources of variance (e.g., random sampling variation, measurement error, etc.). 
However, the introduction of replication into crossover and within-participant unilateral 
designs can overcome this limitation and effectively investigate individual response variation. 
 
To conceptually explain why replication is necessary to evaluate individual-level response 
variation to RT, let’s revisit an example of a crossover design in which a participant is initially 
randomized to a low volume training program, followed by a washout period, and then a high 
volume training program. Upon completing the crossover design, each participant will have 
change scores for outcome measures in both study phases. While an individual’s change 
scores can be directly compared to evaluate which training period leads to more favorable 
outcomes, the cause of these outcomes cannot be fully justified. For example, if a participant 
increases their bench press 1RM by 10kg during a low volume training program and by 5kg 
during the high volume training program, it would be inappropriate to assign causality to the 
change in training intervention. 
 
However, if the same participant repeated the same low-volume training intervention multiple 
times, the expected change score variance - completely unrelated to the training intervention 
(i.e., within-participant variance) - could be quantified. If the difference between change scores 
of the two conditions (i.e., high and low volumes) does not exceed that which is expected via 
within-participant variance, it is unjustified to claim that true individual response variation is 
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present. This concept, when comparing the variance of groups performing a training 
intervention versus a non-training control, has been coined the participant-by-training 
interaction [12] (Figure 2). 
 

 
Figure 2: Visualization of variance components derived from a linear mixed effects model with random intercepts introduced for each 
participant and random slopes for the participant-by-training interaction. This analysis is for a theoretical within-participant unilateral 
design with replication and the data of only 6 participants is shown for simplicity. The dashed black line represents the mean slope of 
condition in each panel. The dark red line represents the slope of condition for each participant. The dotted red lines going from each dot 
to the dark red line represents the remaining within-participant (i.e., residual variance) after accounting for other sources of variance. The 
vertical distance of each participant’s intercept from the mean response represents the between-participant variance. Finally, the variation 
between participants in the slopes of condition represents the participant-by-training interaction. 

 
Thus, in order to establish the within-participant variance of a sample necessary to compare 
against the participant-by-training interaction, a training intervention must be completed at 
least twice (i.e., replication). Indeed, replication is advocated for in the biomedical literature to 
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investigate individual response variation. For example, Senn et al. [22] discussed a replicated 
crossover design, in which each participant completes one of the conditions twice. One 
obvious limitation of study designs that include replication is that it can substantially increase 
study duration, making it more challenging to obtain a desired sample size. However, 
compared to biomedical interventions that often elicit systemic effects, one advantage of RT is 
that the outcomes of interest are largely localized to the limb trained. Thus, by utilizing a 
within-participants unilateral design where each limb completes a training condition 
simultaneously, study duration can be decreased in comparison to a crossover design where 
conditions must be completed independently. 
 
If it is not feasible to replicate the training intervention as a part of study design, more frequent 
measurements of the outcome variable (e.g., muscle size) can be taken to approximate 
response heterogeneity. For example, if a participant completes a 12-week training 
intervention and their muscle size is assessed every 2 weeks (i.e., 6 occasions), each 2-week 
interval could be considered an “intervention” that is replicated; thereby, allowing for the 
quantification of the participant-by-training interaction. However, this approach is not without 
limitations as there are multiple potential confounders introduced due to the accumulation of 
testing in a relatively short period of time [12]. 
 

STATISTICAL METHODS TO INVESTIGATE INDIVIDUAL RESPONSE 
VARIATION 
In tandem with using an appropriate experimental design, it is crucial to consider the 
appropriate statistical analyses to examine individual response variation and its potential 
predictors. While a comprehensive discussion of the necessary statistical methods to 
investigate individual response variation in RT is outside the scope of this review, the following 
sections conceptually describe the appropriate methods and highlight useful resources. 
 
Quantifying Evidence of Individual Response Variation 
As previously mentioned, evidence for individual response variation can be quantified by the 
participant-by-training interaction and its comparison to within-participant variance. While 
there are likely multiple approaches that give researchers access to the estimands of interest, 
Heckstenden et al. [12] and Senn et al. [22] suggest that linear mixed effect models fit with 
random intercepts per participant and either random intercepts or slopes for the participant-
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by-training interaction are the best fit approach when replication is utilized. Conceptually, this 
modeling strategy is comparable to ordinary least squares regression; however, variance of the 
estimates obtained for the independent variables included in the model (e.g., training 
condition) are partitioned across multiple sources (i.e., residual, participant, and participant-by-
training interaction). Upon fitting these models, variance estimates can be obtained and 
consequently compared in order to quantify evidence of individual response variation. If the 
variance associated with the participant by training interaction exceeds that of within-
participant variance, there is evidence of individual response variation, on average. 
 
Taken a step further, the likelihood of individual response variation for a given participant 
could then be evaluated. Specifically, researchers could calculate a “sufficient variance 
threshold” by taking into account the smallest effect size of interest (SEOSI). While the SESOI is 
ultimately subjective, a reasonable suggestion may be to divide the standard deviation of the 
within participant variance by √2, similar to a standard error of measurement [23,24]. Then, by 
comparing each the point estimate and uncertainty interval, or the posterior distribution in a 
Bayesian framework, of each participants’ marginal effect to this threshold [24,25], one could 
determine if a given participant exhibits meaningful response variation, probabilistically. 
 

 

A) High Probability of Favorable 
Response to Condition A 

C) High Probability of Favorable 
Response to Condition B

B) High Probability of Similar 
Responses to Both Conditions
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Figure 3: Visualization of participant-level marginal effects derived from a linear mixed effects model with random intercepts introduced 
for each participant and random slopes the participant-by-training interaction. This analysis is for a theoretical within-participant 
unilateral design with replication and the data of only 5 participants is shown for simplicity. The red dots and intervals show the mean and 
50% quantile interval for each participant. The lighter shade density plots visualize the draws from the posterior distribution. The dashed 
thresholds represent the sufficient variance threshold that can be calculated by diving the standard deviation of the within-participant 
variance by the square root of 2. AC) Examples where a participant exhibits a high probability of a favorable response to one of the two 
conditions B) Examples where the participants exhibit a low probability of a favorable response to one of the two conditions. 

 
Predicting Individual Response Variation 
Evaluating the presence of individual response variation is only the first step to improve 
individual-level RT prescription and should be followed by attempting to identify predictors of 
individual-level outcomes. For example, Hammarstrom et al. [26] observed that individuals who 
benefited from higher training volumes demonstrated higher total RNA levels at week 2 of the 
training intervention, indicating greater rates of ribosomal biogenesis. However, since this 
information is not available at baseline and requires invasive techniques (i.e., muscle biopsies 
and biochemical assays), it is not available to most practitioners. Ideally, RT practitioners would 
be able to use widely available assessments (Table 2) to individualize training prescriptions. 
Specifically, characteristics that could be obtained apriori could help identify participants that 
would respond favorably to a given training intervention. For example, if the number of 
repetitions performed at a given percentage of 1RM is predictive of the volume dose-response 
relationship, then volume could be prescribed depending on how many repetitions someone 
performed at 80% of 1RM in a set to momentary failure. 
 

 
Table 2: Categorized list of potential predictors of the individual response to resistance training. 

 
To examine predictors in each of the aforementioned study designs, researchers could collect 
a variety of potential predictive tools at baseline and, if there is sufficient evidence of individual 
response variation, their predictive capacity could be explored further. In the pursuit of 
potential tools that may aid individual-level training prescription, the distinction between goals 
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of prediction versus explanation [27] become important. While potentially counterintuitive, a 
more explanatory model (i.e., a model that accurately reflects causality observed in nature) 
may actually result in less accurate predictions and vice versa. Practitioners are most likely 
willing to favor making accurate predictions even if it means slight error in the explanation of 
the phenomenon; thus, this review will focus on prediction, rather than explanation. 
 
The first step in exploring potential predictors of individual response variation is defining the 
dependent variable of interest. To quantify the difference in longitudinal outcomes between 
conditions on the individual-level, the “individual difference” can described as: 
 

individual difference = $𝑝𝑜𝑠𝑡# − 𝑝𝑟𝑒#, − (𝑝𝑜𝑠𝑡$ − 𝑝𝑟𝑒$)
𝑝𝑟𝑒$ = pre-test value from the training condition A
𝑝𝑜𝑠𝑡$ = post-test value from the training condition A
𝑝𝑟𝑒# = pre-test value from the training condition B
𝑝𝑜𝑠𝑡# = post-test value from the training condition B

Note: Model-adjusted estimates (e.g., participant-level marginal effects in Figure 3)
 could be used rather than calculating the individual differnce from raw data.

 

 
In the event that an individual difference exceeds typical measurement error and/or within-
participant variance (as in Figure 3AC), we can cautiously conclude the participant experienced 
a more favorable response from one of the training conditions. If sufficient evidence is present 
to suggest there is meaningful individual response variation on average or in a subset of 
participants, prediction can be further explored. 
 
With the combination of the individual difference and baseline participant characteristics from 
a variety of potentially predictive tools, the predictive capacity can be statistically assessed. 
Ultimately, while there are many ways one could go about analyzing these data, fitting general 
linear models with the individual difference as the outcome variable and data from the 
predictive tools of interest as fixed effects (e.g., number of repetitions performed in a set to 
momentary failure with 80% of 1RM) may be the simplest approach: 
 

𝑌%&'%(%')$*	'%,,-.-&/- = 𝛽0 + 𝛽1.-'%/23.!𝑋1.-'%/23.!+. . . +𝛽1.-'%/23."𝑋1.-'%/23." + 𝜀 
 
This method of analysis could help identify promising candidate predictor variables for follow-
up study, potentially confirming the predictive nature of these associations. A mock example of 
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a visualization of the relationship between leg press repetitions performed to failure at 80% of 
1RM (predictor) with the individual difference (dependent variable) can be seen in Figure 3. 
 

 
Figure 4: Example analysis of the relationship between a predictor (i.e., repetitions performed in a set to momentary failure) and the 
individual difference. 

 
Countless potential predictors could be analyzed as the example in Figure 4. However, when 
examining numerous predictors in this fashion there is an increased risk of type-I error; thus, 
we urge authors to be transparent and explicitly delineate between exploratory versus 
confirmatory analyses [28]. 

A NOTE OF CAUTION 
This papers aims to provide resistance training researchers with a simplified overview of the 
necessary methods to appropriately investigate individual response variation. However, it 
needs to be understood that these methods are not to be undertaken lightly. Exercise science 
is already riddled with under-powered/poor-precision, small sample research [29]. Compared 
to investigating group-level effects, studying individual response variation with a reasonable 
amount of statistical power/precision requires much larger sample sizes[13,30]. Thus, 
researchers interested in this topic might consider creative methods to improve the feasibility 
of larger sample sizes (e.g., multi-year data collection periods, multi-site data collection, less 
supervised training interventions, more frequent measurements, etc.). Otherwise, it may be the 
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best use of resources to better answer group-level research questions that will likely generalize 
to a majority of the target population anyway [31]. 
 

SUMMARY 
In conclusion, modifications to common experimental designs may be needed to optimize 
individual-level RT recommendations. Presently, much of the current literature is limited in its 
ability to inform individual-level prescription, which is of paramount concern to practitioners. 
The proposed research designs are not without limitations; however, implementing replication 
alongside study designs in which participants complete both conditions (i.e., crossover and 
within-participant unilateral) will allow for a more complete investigation of individual response 
variation. Overall, it is essential for researchers to carefully consider the research question of 
interest, then design, carry out, and analyze their experiments accordingly. 
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