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Abstract

This study aimed to investigate the acute effects of instructional video on kicking perfor-
mance in young football players. 26 participants were divided into a control group (CG) and an
instructional video group (IG). Kicking kinematic variables, including the length of the last step
(LLS), distance between the support foot and the ball (DSB), speed of the kicking foot at ball
contact (SKF), ball speed (BS), and BS/SKF ratio, were assessed before and after video presen-
tation. The OpenPose was used for marker less pose estimation and data analysis. Statistical
analysis revealed a significant increase in LLS in the IG after video presentation (p=0.044), while
no significant differences were observed in other variables for both CG and IG. These findings
suggest that video demonstrations with instructions can acutely improve the length of the last
step in young football players. However, no immediate effects were observed on other analyzed
variables. Further studies are warranted to explore the long-term effects of video-based training
and assess kinematic variables in a more ecological setting. Overall, video-based instructions can
be a valuable tool for enhancing kicking performance and optimizing training in young football
players.
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1 Introduction

The action that often determines the outcome of a soccer match is the kick. The lower limbs kinematics
are closely related to kicking success, particularly regarding the transfer of speed to the ball [1]. To
increase the chances of scoring a goal, players need to achieve the highest possible ball speed, which
depends on various variables such as foot speed at impact and the quality of ball striking at foot
contact [2, 3, 4, 5]. Furthermore, if the kick is faster, it is less likely for the goalkeeper or opposing
player to have enough time to react [6, 7, 8]. Determine indicators that help achieving success in
this skill is one of the most important issues when it comes to applied bio-mechanics in soccer [9].
Some of these indicators are related to the lower limb kinematics, which are closely associated with
kicking success, especially regarding the transfer of high speed to the ball [1]. The energy transfer is
associated, among other things, with the length of the final stride in the kick [10], the distance between
the support foot and the ball [11], and the foot speed [12].

Kinematic analysis is usually performed in a laboratory using optical cameras in combination with
retro-reflective markers, but this setup was not primarily designed for outdoor use. With the advent of
deep neural networks, it is now possible to estimate joint angles needless retro-reflective markers [13].
Thus, marker less motion estimation algorithms publicly available, such as OpenPose [14], appears
to be a potential solution in video data analysis and extraction of kicking kinematics in a likely less
time-consuming, more cost-effective, and non-invasive manner.

A factor that can affects kicking performance is the set of instructions given to the practitioners.
Among the many ways to instruct learners to perform the most proficient movement for the task they
are performing is through video demonstration. According to Newell [15], motor learning is a process
of exploration under the possibilities of perception-action, those that will best help you to reach the
objective of the movement that is being performed. In other words, the novice in kicking task, search
the best information’s that help to achieve the most proficient kicking.

However, in some cases, the novice does not explore the perception-action possibilities and tends to
present the same initial coordination pattern [16]. Instructions (including video instructions) can con-
straint the available information, directing the beginner to explore new information and, consequently,
altering his coordination [17]. For example, Lafe and Newell [18] observed that verbal instruction alters
the exploration of coordination patterns in a bi-manual strength task. Therefore, video instruction
could present similar results, guiding the individual to another coordination pattern.

Different approaches can be used during video instruction, such as directing attention through
video-based information [19], such as, simply show video of a proficient individual performing the task
(e.g., Al-Abood [20]) highlighting some specific aspect of the video by a point of light (e.g., Horn [21]),
or guiding the individual to attend to different visual information in the video (e.g. the trajectory of
the ball in a video of the kick) (e.g., Hodges [22]). A review performed by Pacheco et al. [23] showed
that in some cases, only the demonstration video was not enough for the individual to learn a new
movement patter, being necessary to add some other variables (e.g. verbal cue, visual cue or feedback).

One way to assess the effect of video instruction on kick coordination is kinematic analysis. Kine-
matic analysis is usually performed in a laboratory using optical cameras in combination with retro
reflective markers, but this setup was not primarily designed for outdoor use. With the advent of deep
neural networks, it is now possible to estimate joint angles markreless (e.g., Vieira [24]).

The development of computational sciences such as computer vision and image processing has im-
proved the analysis techniques and measurement systems used in human movement research. These
advancements have allowed for a greater understanding of the three-dimensional (3D) kinematic and
kinetic characteristics of kicking in soccer [1]. Among the available tools for examining kicking move-
ment performance, video analysis is capable of producing the most objective and sensitive kinematic
metrics, which are not always captured solely through visual assessments [25].
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Figure 1: Setup for collecting the kick. Where we have the penalty mark, the two cameras (C1 and
C2) and where the videos were displayed.

Based on this, the present study aimed to evaluate, ,with in field data collection, if the display of
an instructional video can acutely increase ball speed and the length of the final stride, decrease the
distance between the support foot and the ball, as well as increase kicking foot speed at the moment
of ball contact.

2 Methods

2.1 Participants

26 young football playersfrom 10 to 15 years old participated in the study. The participants were
randomly assigned by an online platform Research Randomizer [26] to which video they would watch,
with one group as the control group (CG) (n=13; age=12 ± 0.92 years old; mass = 41.2 ± 8.09 kg;
height = 1.53 ± 0.11 m; training experience = 6.31 ± 2.74 years) and one group as the instruction
group (IG) (n=13; age=13 ± 1.47 years old; mass = 52.69 ± 12.95 kg; height = 1.59 ± 0.11 m; training
experience = 6.62 ± 1.65 years). Only one participant among was left-footed for kicking and he was
in the CG group. The remaining participants were all right-footed for kicking. The School of Physical
Education and Sport of Ribeirão Preto Ethics Committee approved all the experimental procedures
(CAAE: 26288119.8.0000.5659). Written consent was obtained from the participants and their legal
guardian(s).

2.2 Instruments

The kick and ball kinematics data were collected using two GoPro Hero 10 Black Edition cameras
(GoPro® GmbH, Munich, Germany), mounted on tripods, with a resolution of 2720×1530 pixels and
a frequency of 120Hz. The cameras were synchronized using the remote control of the GoPro Hero 10
and positioned 2 meters away from the penalty mark, with a distance of 7 meters between them. The
lenses were directed towards the penalty mark, forming a 45° angle and providing a diagonal view of
the kick. The balls used varied according to age. For individuals aged 10 and 11 years, a ball with a
circumference between 63.5 and 66 cm was used. For individuals aged from 12 to 15 years, a ball with
a circumference between 68.5 and 69.5 cm was used.
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2.3 Videos presented

The participants were randomized into two groups, and each would watch a specified video. The
participants in the IG group watched a 30-second video containing four instructions presented in the
form of verbal cues with animations created in Unity software (version 2019.4.16f1, USA). The four
instructions were (1) The last step is longer; (2) The foot stays beside the ball; (3) Contact with the
”instep” of the foot; (4) Don’t stop until you kick. The participants in the CG group watched a 30-
second video containing information about the importance of physical activity, anatomy, and health,
without any specific relation to tips or instructions regarding the kicking technique.

2.4 Experimental procedures

The experimental protocol was conducted on an official field with natural grass (FIFA standard, 100 m
× 70 m; goal dimensions, 7.32 m × 2.44 m) located at the Physical Education, Sports, and Recreation
Center (CEFER) of the University of São Paulo. Participants were provided with instructions on the
procedures and started with a warm-up in which they were instructed to perform five sub-maximal
penalty kicks to better understand the task and adapt to the ball. Afterward, participants performed
five penalty kicks with instructions to kick as forcefully as they could, aiming to score a goal, with
acceleration individualized for each participant, without limitations on running patterns or approach
angles. Subsequently, the participants were randomized to determine which video they would watch,
either the one from the IG or the CG. The designated video was displayed on a 15-inch monitor of a
Eurocom notebook. Immediately after watching the video, each participant performed a new series of
five penalty kicks, which were compared to the previous situation.

2.5 Data processing

Each kicking attempt was recorded and considered valid only if it resulted in a goal, while shots hitting
the goalpost or going wide were disregarded. To assist in the validation of the kicks during the analysis,
a camera was positioned on the edge of the penalty area, with lenses aimed at the goal line. The videos
were edited, with the start of the participant’s first movement and the end of the evaluation defined
as ten frames after the participant’s contact with the ball.

To evaluate the kinematic variables of the kick, the video of each kicking attempt was analyzed
using the OpenPose artificial intelligence neural network [14]. This network allows for the identification
of joints and anatomical points in videos, providing screen coordinates of the recognized points through
a skeleton detection algorithm like in Figure 2. In cases where the screen coordinate data obtained by
OpenPose were incorrect for the lower limb of the participant, they were manually corrected using the
Dvideow software (v. 1.0.0.1) [27, 28].

To evaluate the ball variables, the DeepLabCut toolbox [29, 30] was used. It allows for the utiliza-
tion of an artificial neural network to estimate marker-less pose of animals performing various tasks.
In this case, the network was trained to provide screen coordinates of the estimated center of the
ball through a detection algorithm. Similar to the kicking kinematics, if the screen coordinates were
incorrect, manual correction was performed by identifying the screen coordinates and estimating the
center of the ball.

A total of 230 kicks were evaluated, with each participant performing the same number of kicks
divided into 5 kicks before watching the video presentation and 5 kicks after watching the video
presentation. The following dependent variables were calculated for each validate kicking attempt:

• Length of the last step (LLS) [11, 10]: defined as the Euclidean distance between the location
where the kicking foot’s hallux lost contact with the ground and the heel of the support foot
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Figure 2: A: OpenPose detection demonstration. B: OpenPose applied to kicking task.

when it landed on the ground during the last step;

• Distance between the support foot and the ball (DSB) [11, 31, 32]: defined as the Euclidean
distance between the centroid of the support foot and the estimated center of the ball at the
moment of foot-ball contact;

• Speed of the kicking foot at ball contact (SKF) [33, 34]: defined as the instantaneous speed of
the dominant foot’s centroid at the moment of ball contact;

• Ball speed (BS) [35, 36]: defined as the instantaneous speed of the estimated center of the ball
ten frames after foot-ball contact;

• BS / SKF ratio: calculated as a dependent measure [37] and used as an indirect indicator of foot
and ball impact quality [38];

The kicking and ball kinematic data were pre-processed, processed, and analyzed using custom
routines created in the Python programming language. The screen coordinates from the two cameras
were smoothed using the LOWESS method with a delta of 0.1 and alpha of 0.1, and then transformed
into 3D global coordinates using the Direct Linear Transformation (DLT) method [39]. Known 3D
coordinates of the calibration rigid object were used as a reference for the DLT method.

Subsequently, a Python routine was used to calculate the LLS, DSB, SKF, BS, and BS/SKF
kinematic variables for each participant’s attempt. The DeepLabCut [29, 30] was used to assist in
calculating the error of the DLT method. For this purpose, the detection algorithm was configured
to provide screen coordinates for the base and the highest point of a topographic pole. In Figure 3,
a detection is shown where ten screen coordinates were marked, with the top of the pole marked in
purple and the base of the pole marked in yellow.

The video used to assess the error consisted of recording the topographic pole traversing the entire
data collection area. Subsequently, 3D reconstruction was performed using the same DLT method and
calibration setup. To measure the measurement error, the Euclidean distance between the top and the
base of a topographic pole was calculated. The real distance between the ends of the pole was 1.925
m, and the average of the Euclidean distance between the top and the base of a topographic pole after
reconstruction was 1.94 m, demonstrating an average error of approximately 2 cm.
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Figure 3: Difference in Euclidean distance of pole length after 3D reconstruction over time.

Table 1: Mean (±Standard Deviation) and p-value (power) of the kicking variables for the Control
group in the before and after watching the video moments.

Variables CG
Before After p-value (power)

LLS (m) 1.31 (± 0.23) 1.32 (± 0.23) 0.22 (0.06)
DSB (m) 0.32 (± 0.06) 0.32 (± 0.07) 0.69 (0.05)
SKF (m/s) 10.37 (± 1.67) 10.18 (± 1.58) 0.14 (0.08)
BS (m/s) 17.64 (± 4.56) 17.29 (± 4.63) 0.25 (0.08)
BS/SKF 1.69 (± 0.31) 1.69 (± 0.3) 0.83 (0.05)

2.6 Statistical analysis

Statistical analysis was performed using routines developed in the Python language. Mean and stan-
dard deviation values were calculated, and to assess the normality of the sample, the Kolmogorov-
Smirnov and Shapiro-Wilk tests were applied.

Subsequently, based on the data distribution, the performance in each kicking variable in both
groups were compared before and after watching the video kicking variable in the control and instruc-
tional video groups were compared. Tests with a p-value less than 0.05 were considered statistically
significant. Dependent t-tests and Wilcoxon tests were performed according to the normality of the
data. To calculate the sample power was used the G*power software (version 3.1.9.7) [40].

3 Results

The mean (± standard deviation) and p-value (power) of the kicking variables for the CG are present
in Table 1, and for the IG are present in Table 2. In Figure 4, a radar plot representation is presented
for the mean values of kinematic variables for both groups at before and after moments.
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Table 2: Mean (±Standard Deviation) and p-value (power) of the kicking variables for the Intervention
group in the before and after watching the video moments.

Variables IG
Before After p-value (power)

LLS (m) 1.27 (± 0.26) 1.31 (± 0.21) 0.04* (0.14)
DSB (m) 0.32 (± 0.05) 0.31 (± 0.05) 0.13 (0.09)
SKF (m/s) 10.84 (± 1.36) 10.77 (± 1.38) 0.51 (0.06)
BS (m/s) 18.13 (± 3.30) 18.34 (± 3.34) 0.47 (0.06)
BS/SKF 1.68 (± 0.26) 1.71 (± 0.27) 0.84 (0.06)
* p < 0,05

Regarding the comparison tests of the kicking variables between the before and after moments,
a statistically significant difference was found only in the comparison between the before and after
moments of the IG for LLS, with a p-value of less than 0.05 (p=0.044). For the other variable
comparisons, no statistically significant difference was found when comparing the before and after
moments in both groups. However, the sample power found in all comparisons of the kick variables
was low, with the highest value equal to 0.14 in the comparison between the before and after moments
of the IG of the LLS.

4 Discussion

Considering the importance of kicking in football, the study aimed to evaluate whether the display of a
video with instructions could acutely increase ball speed, increase the length of the final stride, decrease
the distance between the support foot and the ball, and increase kicking foot speed at the moment of
ball contact. A statistically significant difference was found in the variation of LLS between the before
and after video presentation moments only in the IG (p=0.044), but the power of this analysis was
low. However, no statistically significant differences were observed in the before and after video for
both CG and IG for the other variables. No studies were found in the literature that have evaluated
the kinematic changes in response to video instruction presentation to improve performance in young
soccer players.Nevertheless, there are studies in soccer that use video training focus on game situation
perception and decision-making [41, 42, 43, 44, 45].

Considering the method of delivering instructions through videos, Souissi et al. [46] argued that
providing only verbal feedback to a participant, without video feedback or video feedback without
additional cues, has little effect on skill acquisition. For example, in the study carried out by Nunes
et al. [47]. Simple video feedback was not enough for elderly individuals to improve golf putting
kinematics performance, however, the group who received video feedback as well as verbal instruction
had an improvement in movement kinematics. Therefore, the effects of video and verbal feedback
appear to be additive.

Research in motor learning has shown that active participation of the participant in the learning
process improves performance [48, 49]. Other studies have focused on strategies for using educational
videos for teaching and their effects on participants’ understanding of the presented content. These
strategies include segmenting the video into smaller units [50] and controlling the pace of the presenta-
tion [51]. These strategies seem to have a positive impact on learning compared to continuous viewing
of educational videos. They also appear to contribute to a reduction in cognitive load during video
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Figure 4: Radar plot with normalized average values of kinematic variables for CG and IG. Before
values are shown in blue and after values in red.

viewing [52, 53] and to smoother cognitive processing [51].
To make a comparison with the kinematic variables, a literature search was conducted for results

found in similar analyses to those performed in the present study. Regarding BS, the majority of
studies evaluated players over 15 years old [38, 34, 54, 55, 32]. The increase in practice time as these
young players age is a factor that may contribute to BS improvement [56]. On the other hand, LLS
[11, 10, 37] and DSB [11, 54, 32, 37] have been little explored in young players so far.

When analyzing the mean values of the variables, the data for LLS, DSB, and BS in the CG and
IG are similar to the values found in the study by Vieira et al. [37], which compared players of over
13 years old, which is the average age of the present study. However, they present lower BS values
compared to the studies by Rodŕıguez-Lorenzo et al. [57], which evaluated players in the U-14 category
or younger, and the study by Cerrah et al. [58], which evaluated players with 12 and 13 years old.
Additionally, they have lower DAB values compared to those found in the study by Kapidvzic et al.
[11].

The values of SKF and the BS/SKF ratio were different from those found in the study by Vieira
et al. [37], with lower values for SKF and consequently higher values for the BS/SKF ratio observed
in the present study. This difference can be explained by the fact that in the study by Vieira et al.
[37], participants were required to have started regular practice at 6 years old, which was not adopted
as a criterion in the present study. However, it is still possible to observe similarity in some of the
kinematic data between groups within the same age range.

The study of Cronin [59] showed that there are some critical distinctions between pose estimation
and kinematic analysis. Firstly, strictly speaking pose estimation only involves the detection of body
landmarks, which are then used in combination with geometry to compute the angle between any two
body segments. Secondly, the accuracy requirements of pose estimation are less strict than those of
kinematic analysis. Also the camera settings are another issue relevant to the collection of data, like
the frame rate and shutter speed with which the videos are sampled [60], and also image resolution,
because very low-resolution images result in pixelated closeup views that can make it difficult to
accurately estimate a body part [59]. Given that the current gold standard optical systems and
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manual digitisation also include inherent limitations (e.g.movement of skin and markers relative to
the underlying anatomical landmark), if we reach a state where marker-based and markreless methods
yield results within a few millimeters of each other, markreless motion analysis could truly be a feasible
option for human movement scientists, both in and outside of the lab [59]. It is important to remember
that neural networks do not perform magic tricks, they identify mathematical patterns in data [59].

The present study limitantions are: the data analysis was conducted acutely, which may have min-
imized the effects of improvement and learning of the task by the participants. Also, four instructions
for executing the kick were provided, which may have influenced the results. The amount of infor-
mation presented can make it difficult for the individual which information to explore. To verify the
effect of video instruction on motion kinematics, it may be necessary to extend the training period.

In football, the most important action is the kick, and studies with a more ecological approach to
assess kinetic and kinematic variables in the kicking task are of great importance to improve under-
standing of the task and enhance the performance of young football players. These assessments allow
physical education professionals and coaches to better monitor the progress and specific demands of
each individual, and the application of video-based instructions and training allows for optimized use
of time, reserving part of the training to be conducted at another time.

Therefore, it is suggested that further studies evaluate the long-term effects of this video-based
training model with kinematic assessments in the kicking task. Additionally, new studies using Open-
Pose or other neural networks for human pose detection, with the use of a greater number of cameras
to capture images, may be necessary to reduce measurement error and maintaining a more ecological
approach to the kicking task.

5 Conclusion

The study concluded that although the demonstration of instructional videos acutely improves the
last stride length of young soccer players, it is not possible to modify the ball speed, foot speed and
the distance of the foot supporting the ball at the moment. kick sharply. Furthermore, the power of
the sample is not sufficient to extrapolate the results to the population.
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[2] T Asai, MJ Carré, T Akatsuka, and SJ Haake. The curve kick of a football i: impact with the
foot. Sports Engineering, 5(4):183–192, 2002. doi: 10.1046/j.1460-2687.2002.00108.x.

[3] T Bull Andersen. Collisions in soccer kicking. Sports Engineering, 2(2):121–125, 1999. doi:
10.1046/j.1460-2687.1999.00015.x.

[4] Adrian Lees and Lee Nolan. The biomechanics of soccer: a review. Journal of sports sciences, 16
(3):211–234, 1998. doi: 10.1080/026404198366740.
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