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Abstract

As the aim of any doping regime is to improve sporting performance, it has been

suggested that analysis of athlete competitive results might be informative in iden-

tifying those at greater risk of doping. This research study aimed to investigate the

utility of a statistical performance model to discriminate between athletes who have

a previous anti-doping rule violation (ADRV) and those who do not. We analysed

performances of male and female 100m and 800m runners obtained from the World
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Athletics database using a Bayesian spline model. Measures of unusual improvement

in performance were quantified by comparing the yearly change in athlete’s perfor-

mance (delta excess performance) to quantiles of performance in their age matched

peers from the database population. The discriminative ability of these measures was

investigated using the area under the ROC curve (AUC) with the 50%, 75% and 90%

quantiles of the population performance. The highest AUC values across age were

identified for the model with a 75% quantile (AUC = 0.78-0.80). The results of this

study demonstrate that delta excess performance was able to discriminate between

athletes with and without ADRVs, and therefore could be used to assist in the risk

stratification of athletes for anti-doping purposes.

Keywords: sports, modelling, biological passport, risk stratification, Bayesian, target

testing, data analytics

1 Introduction

The current level of prevalence of doping in elite sport is unknown. Research studies

involving anonymous athlete self-reports estimate the prevalence of doping within a

12-month period to be between 20% and 62% across a range of elite sports (de Hon

et al., 2015; Ulrich et al., 2018). A recent study (Faiss et al., 2020) involving analysis

of blood values taken from doping control tests at the Daegu (2011) and Moscow

(2013) World Athletics Championships suggests the point prevalence may have been

between 15 and 18% at the respective events. Nevertheless, despite the number

of blood and urine samples taken from athletes across all sports remaining relatively

consistent, with 241,430 taken in 2021 (267,645 in 2012, 278,047 in 2019) the percent-

age of those samples returning adverse analytical findings is falling (1.76% in 2012,

0.82% in 2020, 0.77% in 2021) (WADA, 2023). Therefore, given the aforementioned

prevalence, questions can be raised about the efficiency of the current anti-doping

policy and testing strategies of anti-doping organizations (ADOs) in identifying the

right athletes, and testing them at the right time. As a consequence, there is a need

to gather additional information on athletes to provide a forensic style intelligence

led approach to anti-doping (Vernec, 2014). Such an approach would allow ADOs

to make more informed decisions about assigning athletes to registered testing pools,

better targeting of individual athlete tests, and ultimately more efficient distribution

of their anti-doping resources. Indeed, anti-doping authorities such as the World

Anti-Doping Agency and the Athletics Integrity Unit highlight the importance of an

intelligence-led approach to anti-doping involving risk stratification of athletes based

upon their athlete biological passport profile and performance (AIU, 2021; WADA,
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2021).

Many factors can affect performance such as maturation (Allem and Hopkins,

2015), improved training (Haugen et al., 2018) and technological advances (Hébert-

Losier, 2023). However, as the primary reasons for an athlete to dope is to artificially

enhance their performance, it is intuitive to consider the analysis of their sporting

performance as important information for ADOs to inform their anti-doping activi-

ties. To this effect, the most recent version of the International Standard for Testing

and Investigations (WADA, 2021) highlights the use of sport performance history, in-

cluding sudden major improvements and/or sustained periods of high performance as

relevant factors indicating possible doping/increased risk of doping. Indeed, athletic

performance has been shown to be sensitive to new anti-doping practices, such as the

introduction of the ABP and out of competition doping tests in a range of sporting

disciplines (Schumacher and Pottgiesser, 2009; Berthelot et al., 2010; Iljukov et al.,

2020), suggesting that longitudinal monitoring of athlete performance is a viable

method to inform anti-doping practice.

The main objective of what we have previously termed “the athlete performance

passport” (APP) (Montagna and Hopker, 2018), is to distinguish between expected

changes in sporting performance and disproportionate improvements which may be

indicative of doping. We have previously developed a Bayesian hierarchical model

to investigate both population and individual level longitudinal performance trajec-

tories over time adjusted for age related changes (Griffin et al., 2022). Our work

illustrated how individual performance progression could be modelled whilst allowing

for confounders, such as atmospheric conditions, and could be fitted using Markov

chain Monte Carlo. We calculate a term called excess performance by subtracting

the population performance trajectory from the individual performance trajectory to

show whether an athlete is performing better or worse than their age matched coun-

terparts. Therefore as suggested above, sudden or unexpected changes in an athlete’s

level of excess performance might therefore be indicative of doping. Indeed, using

this logic we have previously demonstrated the potential for distinguishing between

the career performance trajectories of clean and doped athletes (Hopker et al., 2020).

However, for use in targeted anti-doping efforts, it is necessary to identify athletes

using a probability risk stratification approach. The objective of this study was there-

fore to validate the use of performance data to discriminate between athletes with

and without previous anti-doping rule violations (ADRV). First, competitive perfor-

mance results over 11-years were used to construct longitudinal profiles for individual

athletes with and without ADRVs during this period, then the performance of our

Bayesian model was tested using these profiles.
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2 Methods

2.1 Data

We extracted 100 m and 800 m results for both male and female athletes from publicly

available results databases of World Athletics including: athlete ID number, date of

birth, sex, country of birth, country of representation, event details, performance

result (time [s]), and finishing position. The 100 m data contained results from both

male and female sprinters who had at least 5 competition results between 8th January

2011 and 28th August 2021. The database contained 2834 male athletes who have a

personal best below 10.5 s and 1297 female athletes who have a personal best below

11.6 s. The male data set had 95,376 observed performances, with the female data set

having 48,999 observations. The ages for males athletes ranged from 12 to 47 years,

whereas females ranged from 12 and 42 years. The 800m data set contained results

from both male and female middle distance runners who had at least 5 competition

results between 1st January 2011 and 10th April 2022. The database contained

4382 male athletes (104,594 performance results) and 3760 female athletes (92,606

performance results). We also accessed publicly available sanction data to identify

athletes with a previous anti-doping rule violation. This data comprised of the date

and reason for the sanction. Only sanctions imposed for substance use that have been

shown to have a performance enhancing effect in the concerned discipline (i.e. 100 m

or 800 m) were included within the subsequent analysis.

2.2 Modelling Performance

Our methodology for modelling performance has been developed over several years

(see (Montagna and Hopker, 2018; Griffin et al., 2022; Hopker et al., 2020, 2018)). We

use the specification of a Bayesian spline model documented in Griffin et al. (2022)

to construct performance trajectories for individual athletes. In brief, our model

assumes individual performances can be represented as the sum of an individual

performance trajectory, the effects of sport/discipline specific confounders and an

observation error. The model is summarised by the equation below for M athletes,

with yi,j indicating the j-th performance for athlete i at age ti,j (measured in years)

and xi,j representing any observed confounders (e.g. atmospheric conditions) for that

performance. We use ni to denote the number of performances for individual i. The

model is

yi,j = hi(t) + xi,j ζ + ϵi,j , j = 1, . . . , ni, i = 1, . . . ,M
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where hi is the individual performance trajectory for the i-th individual, ζ are popula-

tion level regression coefficients for the effects of confounders, and ϵi,j are observation

errors which are assumed to follow a standard skew-t distribution (Azzalini and Capi-

tanio, 2003). This error distribution, rather than the usual normal distribution, allows

for the skewness and heavy tails observed in sporting performance data (i.e. poor

performances lie much further from the median performance than exceptionally good

performances). We express the individual performance trajectory hi(t) as the sum

of two parts: the population performance trajectory g(t) and the excess performance

trajectory of the i-th athlete so that hi(t) = g(t) + fi(t). The excess performance

trajectory represents individual performances adjusted for the average performance of

athletes within the population at the same age as well as any confounders and forms

the basis of our risk stratification measure. The population performance trajectory

g(t) is modelled as a fourth-degree polynomial, which Griffin et al. (2022) find is suf-

ficiently flexible for sporting performance, and fi(t) is flexibly modelled by separate

Bayesian linear spline model for each athlete. The model is identified by assuming

that the prior mean of fi(a) is 0, where a is the smallest integer age in the database.

2.3 Athlete Risk Stratification

We develop an athlete risk stratification measure using changes in excess performance,

which adjusts individual performance for the expected effects of age and confounders,

and therefore does not depend on absolute level of performance (which will be heavily

influenced by physiological factors). To understand risk, we assume that an athlete

who increases their level of competitive performance more rapidly than seen in the

comparator population is likely to be at greater risk of doping and therefore warrant

closer scrutiny by anti-doping organisations.

To make these ideas more precise, we define delta excess performance to be the

change in excess performance for an athlete over a fixed period (we will use 1 year –

although other values could be considered). For the delta excess performance between

ages j − 1 and j, we define ∆i,j = fi(j) − fi(j − 1) to be the one-year delta excess

performance for athlete i observed at age j. If delta excess performance was observed,

we could define a risk measure by considering how an athlete’s level of delta excess

performance at a given age compares to a fixed percentile of population distribution

of delta excess performance across athletes at the same age. However, since the delta

excess is not observed, we must use estimates to define our risk stratification measure.

Our Bayesian analysis allows us to estimate delta excess performance for an individ-

ual at particular age by its posterior median and to quantify estimation error using its

posterior distribution. Firstly, we estimate the population distribution of delta excess
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performance at a particular age by the population distribution of the corresponding

posterior median estimates. Secondly, rather than comparing an individual posterior

median of excess performance to the population, we allow for estimation error by cal-

culating the posterior probability that an athlete’s delta excess performance exceeds

a fixed percentile of the estimated population distribution. Specifically, we consider

the 55th, 75th and 90th percentiles in our analysis and denote the corresponding risk

scores as M1
i (j), M2

i (j) and M3
i (j) for athlete i at age j. Further details of this

calculation using output from a Markov chain Monte Carlo algorithm are given in

Appendix A.1. Under these risk scores, athletes with larger values will have a greater

risk of doping.

ROC analysis was used to evaluate the ability of the risk scores to discriminate

performance profiles as either leading to an ADRV or not ADRV in the next d years.

We treat this as a binary classification problem for each integer age j and use the

standard area under the ROC curve (AUC) as our metric of classification ability.

This metric takes values between 0 and 1 with larger values associated with better

discrimination. A value of 1 implies perfect discrimination and 0.5 is the same as

guessing at random.

The use of ADRVs rather than the (unobserved) true doping statuses of athletes

has some important implications. We can only consider whether an athlete receives

an ADRV over a period of d years and so we will also define the doping status of

an athlete over the same period. We define the “doping” group to contain athletes

who are, at some time during the period, involved with a doping regime that is

designed to increase their performance over time, rather than those involved ”one-

off” instances of doping. We will refer to all athletes not in this doping group as

“clean”. The period doping prevalence levels discussed in the introduction imply

that many doping athletes will never receive an ADRV and so the group without

an ADRV will contain both doping and clean athletes. As a consequence, if our

risk stratification measure was successful at discriminating between doping and clean

athletes, we could still achieve a low AUC measure since many doping athletes do

not receive an ADRV in the corresponding period. For example, if the risk measure

could perfectly discriminate between doping and clean athletes, then athletes who are

doping but have not received an ADRV will be recorded as misclassified. This will

lead to an AUC value below 1 (potentially far below 1). We quantify how the level

of the mislabelling of doping athletes as without an ADRV affects the AUC metric in

section 2.4 with further details provided in Appendix A.2.

The difference between the group of athletes with ADRVs and the group of dop-

ing athletes (without ADRVs) also leads to the following trade-off in the choice of d.
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Firstly, the doping group contains athletes who are not doping at age j but subse-

quently start doping. For these athletes, our risk stratification measures will be small

since the performance before age j will not be affected by doping. As d increase, the

number of such athletes will tend to increase and so increasingly affect our estimate

of the AUC implying a smaller value of d is preferable. Secondly, since the number

of athletes with ADRVs will be small relative to the total number of athletes, the

accuracy of the ROC (and the AUC measure) deteriorates as d become smaller im-

plying that a larger value of d will be preferable to avoid a very small doped group.

We consider d = 3, d = 5 and d = 8 to investigate this trade-off. In order to max-

imise the number of ADRVs recorded for a given value of d, we combined data across

combinations of discipline and sex (i.e. 100m males and females & 800m males and

females). Table 1 shows the number of “doped” athletes under this definition for

different values of d at a range of ages. To summarize, we compared the ability of the

risk measures M1
i (j), M

2
i (j) or M

3
i (j) to discriminate between athletes with a anti-

doping rule violation (ADRV) over the following d years and the wider population of

athletes without an ADRV over the following d years under the AUC metric.

Age ADRV cases

(3 years)

ADRV cases

(5 years)

ADRV cases

(8 years)

18 3 4 7

19 4 5 11

20 5 10 12

21 3 8 12

22 13 18 22

23 17 20 26

24 14 18 23

25 13 19 22

26 12 16 16

27 9 13 13

28 11 11

29 6 9

30 7 7

Table 1: The number of identified ADRV cases across age intervals.
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2.4 The effects on the AUC of the ROC curve of doping

athletes without an ADRV

As we discussed in the section 2.3, some doping athletes will not receive an ADRV

which will effect estimation of the AUC of the ROC curve. To investigate this effect

further, we will distinguish between the true status of an athlete (which we will call

either truly clean or truly doping) and the observed status of an athlete determined

by ADRVs (which we will call either observed clean or observed doping). The true

doping status could correspond to the one described in the previous section, but the

analysis can be used with any definition of doping over a period. The approach makes

several assumptions

• There are no false positives and so a truly clean athlete will never have an

ADRV.

• The probability that a truly doped athlete has an ADRV (the prevalence of

ADRV’s in the truly doping group) is q and is the same for all doped athletes.

We refer to q as the doping detection rate.

• The prevalence of doping is w.

Under these assumptions, the prevalence of ADRVs is w q and so depends on the

doping detection rate and the prevalence of doping and has the value. To understand

these two values consider the following example. Suppose that the prevalence over a

period of one year is 21.2% Petróczi et al. (2022). If all doping athletes only take part

in a doping regime for four weeks randomly distributed throughout the year, every

athlete was tested once at random throughout the year, and the test was perfectly

accurate (i.e. the test result was positive if the athlete was doping), then the doping

detection rate would be 4/52 = 1/13 and the probability of an athlete receiving an

ADRV would be 1/13 × 21.2% = 1.6%. This is just an example and, in practice,

there are several potential confounders, such as the presence of false negatives at the

testing stage, variation in doping regimes, time between doping and anti-doping test,

variations in testing times etc. As a consequence, it is difficult to identify the size of

the athlete population sub-group who are doping but don’t have an ADRV. Therefore,

within our model, we assume both the prevalence and proportion of doping athletes

within the sub-group to be relatively stable over time, and therefore the probability

of detection to increase over the observation time period (i.e. 3, 5 or 8 years) as more

athletes will test positive. This approach therefore allows us to accommodate for the

aforementioned uncertainties in identification of truly doping athletes. Therefore, the

probability of an athlete receiving an ADRV (if doping) would simply be calculated

by dividing the number of athletes with ADRVs by the number of athletes who are
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defined as doping but without ADRVs, i.e., having established the size of the ADRV

group, the choice of prevalence can be used to establish the rate of doping detection

(i.e. the probability of an athlete receiving an ADRV if doping).

We distinguish between the AUC calculated using the true labels (either truly

clean and truly doped) which we will call AUCtrue and the AUC calculated using

the observed labels (either observed clean and observed doped) which we will call

AUCobserved. Under the assumptions above, we can relate these two metrics by:

AUCobserved = (1− r)
1

2
+ rAUCtrue

where r = 1−w
1−wq is the prevalence of truly clean athletes in the observed clean group.

This shows that AUCobserved is always smaller than AUCtrue and that the difference

is controlled by the value of r. This implies that we need to be careful about how we

interpret AUC metrics for the risk classification if the proportion of observed clean

athletes who are truly doping is large.

AUCobserved AUCtrue
(w = 0.212, q = 0.5)

AUCtrue
(w = 0.212, q = 0.3)

AUCtrue
(w = 0.212, q = 0.1)

0.78 0.82 0.83 0.85

0.75 0.78 0.80 0.81

0.70 0.73 0.74 0.75

0.68 0.70 0.71 0.72

0.65 0.67 0.68 0.69

0.60 0.61 0.62 0.62

0.55 0.56 0.56 0.56

0.50 0.50 0.50 0.50

Table 2: The effect of mislabelling of doping status on AUC values for a doping prevalence

(w) of 21.2% Petróczi et al. (2022) with high to low doping detection rates (q).

To illustrate the effect of doping athletes without an ADRV on the value of the

AUC metric we used estimates of doping prevalence from the work of Petróczi et al.

(2022). These researchers used a randomised response technique to estimate a doping

probability in the previous 12-month period of 21.2% from athletes participating at

the World Athletics Championship in Daegu, South Korea. In Table 2 we demonstrate

the impact of changes in doping detection on the ability of our performance model

to discriminate between doped and non-doped athletes considering Petróczi et al’s
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probability of doping. Given the WADA 2021 Testing Figures Report (WADA, 2023)

the total percentage of adverse findings (0.65%) suggests detection is low assuming

the prevalence is as high as documented in research analysing both point prevalence

from abnormal blood profiles (15-18%: Faiss et al., 2020) and period prevalence from

anonymous athlete self-reports (21.2%: Petróczi et al., 2022). As such, assuming

a period prevalence of 21.2% and a low detection rate (q = 0.1) an AUCobserved
of 0.75 equates to an AUC without mislabelling, AUCtrue, of 0.81. Although this

difference seems quite small, the AUC metric will usually only take values between

0.5 and 1 and so if interpreted in this context, the observed change from 0.75 to 0.81

is relatively large, with values close to 0.80 suggesting very good performance.

3 Results and Discussion

We considered the ability of the risk measures described in subsection 2.3 to correctly

classify performance profiles as receiving or not receiving an ADRV over a d years.

Figure 1 shows how the discriminatory performance of the risk measures (as measured

by the AUC metric) changes depending upon whether we consider athletes receiving

an ADRV in the following 3, 5 or 8 years.

For example, when considering the model performance over a 3-year period, the

AUC value for age 19 quantifies the ability of the risk measures to classify an athlete

who is 19 years of age as either having or not having an ADRV in the subsequent

3 years (i.e. between ages 20 and 22). If we consider a 5-year period, we consider

between the ages of 20 and 24, and an 8-year period, between the ages of 20 and

27 years. As can be seen from Figure 1, the AUC values are fairly stable for the

different measures and whether the 3-, 5- or 8-year observation period is used. The

risk measure M2 (which uses a threshold of 75%) and the 5- and 8-year periods give

slightly higher AUC values on average than other choices. Therefore, we recommend

the use of this risk measure. All risk measures perform better for the ages 19 to 23

than 24 to 29. For ages 19 to 23, the AUC metric is between 0.65 and 0.70, which

suggests that the risk measures can discriminate between athletes with and without

an ADRV. Particularly since, as discussed in subsection 2.4, this is an underestimate

of the AUC if we had access to the true doping status of athletes. For ages 24 to 29,

the AUC metric is stable between 0.55 and 0.65 which suggests that the risk metrics

are not able to consistently discriminate between ADRV and non-ADRV athletes for

these ages. However, as shown in Table 1, it is important to acknowledge that there

are a much greater numbers of ADRVs for ages 19 to 23 compared to ages 24 to 29.

This may also reflect that the detection probability is lower between ages 24 to 29
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Figure 1: AUC values for model performance at different ages over periods of 3 years (a), 5

years (b) and 8 years (c) at thresholds of 55% (M1 = x), 75% (M2 = △) and 90% (M3 =

▽) using delta excess performance in 100m and 800m athletes. Only age points that have

more than 5 ADRV athletes are considered within the AUC analysis.

and so the underestimation of the AUC is larger for these ages.

ROC analysis allows us to consider the overall ability of a risk measure to dis-

criminate between doped and clean athletes. It is also interesting to consider how we

can choose a threshold for a given risk measure above which an athlete is considered

particularly high risk of doping based upon their delta excess performance. To pro-

vide an example, we will concentrate on risk measure M2 for the 100 m. We want

to choose a threshold for the posterior probability that the delta excess performance

falls outside (greater than) the 75% quantile risk measure across all athletes, and are
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therefore at greater risk of doping. We used False Positive and True Positive rates

to identify the posterior probability level which minimised false positives and max-

imised identification of athletes with ADRVs. In order to assess the specificity of the

model using the 75% quantile at different age points, we assessed the False Positive

rate across different probability levels for delta excess performance. The true positive

rate ranges between 0.20 and 0.67 across the ages due to the changes in the number

of observed true positives (i.e. ADRVs) recorded at each age, and athletes within

the database. As an example, at the age of 21 years using a period of 3 years and

a false positive rate of 0.1, a posterior probability threshold of 0.8 results in a true

positive rate of 0.57. Incorporating all athlete’s performance profiles in our sample

(across years 2011 to 2022) would result in approximately 10% of 100m sprinters

being flagged per year for delta excess performance. This level of prevalence is based

upon our observation of athletes who receive an ADRV over a fixed number of years,

which will be an under-estimate of the true doping prevalence, and is lower than has

been reported by previous self-report and randomised response studies (de Hon et al.,

2015; Ulrich et al., 2018)), due to the assumed high rate of false negatives.

3.1 Application to the individual athlete

The output from our model is in the form of individual performance trajectories

(adjusted for covariates such as seasonality and wind effects), and is presented across

four different sets of analysis. Figure 2 illustrates the performance trajectories for

two 100m athletes, one with and one without an ADRV. The data points in the

first column represent the raw performance times of each individual adjusted for

covariates. The second column represents the data adjusted by the posterior mean

population performance trajectory, month and wind effects. The third column shows

the delta excess performance and the fourth column is the probability that the delta

excess performance exceeds the 75% quantile of the population distribution.

As can be seen from Figure 2 the athlete with ADRV (top row) demonstrates a

negative excess performance (panel b), suggesting that their performance is better

than anticipated given the performance level of age-matched peers. Similarly, the

delta excess performance in this example is greater than the 75% quantile (panel

d), suggesting that their performance is evolving at a faster rate than anticipated

at the time of their ADRV, and appears to be unabated, even after returning to

competition following their doping ban. The athlete’s level of excess performance

continues to increase as they age, reaching 0.6s by the age of 34 years i.e. their

performance decline with age is much slower compared to their age matched peers.

Linked with this, there is a high probability that the athletes have exceeded the
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75% quantile for delta excess performance at the time of their ADRV, acknowledging

the uncertainty within the model estimates. Specifically, setting the probability of

delta excess at 0.9 would flag Athlete A’s performances at the ages of 21-23 and

26-27 years. By comparison, the athlete without the ADRV (Figure 2 bottom row)

who has a similar absolute performance level, still demonstrates excess performance

suggesting that their performance is consistently about 0.3s better than their age

matched counterparts, but their delta excess performance is 0s, which indicates that

their career evolves at the anticipate rate for their age. As a consequence, there is

a very low probability that the athlete would exceed the 75% quantile delta excess

performance. Therefore, we would conclude that the athlete is a high level sprinter

that is performing better than their age matched counterparts, but at a low risk of

doping.

Our retrospective analysis of competitive performance data in athletes with and

without ADRVs provides an indication that longitudinal monitoring of competition

results has a valuable role to play in the fight against doping in sports. Specifically,

by combining this type of performance monitoring with other sources of data (e.g.

biological, whereabouts, social networks etc...), there is the potential to improve the

effectiveness and efficiency of anti-doping programs and bring greater certainty to the

process of athlete risk stratification. In turn, athletes with a higher probability of

doping risk would therefore be subject to closer scrutiny by anti-doping organisations.

Moreover, given the longitudinal nature of our modelling approach and comparison

to the age-matched population performance trajectory, even though an athlete may

have been ”clean” for many years, it is possible to ”detect” an abnormal change in

excess performance when doping occurs at the latter part of a career to sustain a given

performance level. However, it is important to acknowledge that our model currently

only considers athletic competition results in isolated disciplines. As a consequence,

there is potential to miss important performance related information where an athlete

competes over multiple events (e.g. 100m & 200m or 800 & 1500m). Future research is

needed to consider how performance related information can be shared across different

events to construct a complete performance profile for individual athletes.

4 Conclusions

This study demonstrates the utility of performance monitoring to discriminate be-

tween athletes with historical ADRVs and those without. Specifically, we demonstrate

how our model could be utilised to identify athletes who are at greater risk of doping.

However, it is important to recognise that high levels of delta excess performance are
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Figure 2: Illustrative performance model plots from a male sprinter with an ADRV (top

row) and a male sprinter without an ADRV (bottom row). Plot a) Athlete raw performance

with median (solid line) and confidence intervals (dashed lines), b) Athlete excess perfor-

mance with median (solid line) and 95% credible interval (dashed lines), c) Yearly delta

excess performance, d) Probability of yearly delta excess performance to exceed 75th per-

centile of the population. Dashed vertical line illustrates the timing of athlete A’s ADRV.

not sufficient to prove an athlete is doping, and that information obtained from this

type of analysis should be integrated with other data as part of a wider intelligence

gathering approach to anti-doping.
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A Appendix

A.1 Calculating the risk measure from Markov chain

Monte Carlo output

Run the Markov chain Monte Carlo algorithm in Griffin et al. (2022), we will use

θ(s) to represent the s-th posterior sample of a parameter θ and assume that there

are S samples. We define a and b to be smallest and largest integer ages in database

respectively. We can calculate the risk measures in the following way:

1. For i = 1, . . . ,M and j = a, . . . , b, calculate a posterior sample for ∆i,j by

∆
(s)
i,j = f

(s)
i (j)− f

(s)
i (j − 1) for s = 1, . . . , S.

2. For i = 1, . . . ,M and j = a, . . . , b, calculate the posterior median of ∆i,j ,

denoted med (∆i,j), by taking the sample median of ∆
(1)
i,j , . . . ,∆

(S)
i,j .

3. We calculate the percentile of the med (∆i,j) restricted to athletes with perfor-

mances in the period from j to j+1. Let i1, . . . , ij be the indices of the athletes

with a performance in that period and calculate the given percentile (50% for

M1
i,j , 75% for M2

i,j and 90% for M3
i,j) of med (∆i1,j) , . . . ,med

(
∆ij ,j

)
which is

written qj

4. For i = 1, . . . ,M and j = a, . . . , b, calculate, the risk measure for i-th athlete in

period j as the posterior probability that ∆1
i,j is greater than qj which can be

calculated by

1

S

S∑
s=1

I
(
∆

(s)
i,j > qj

)
where I(x) = 1 if x is true and 0 otherwise.

A.2 The effects on the AUC of the ROC curve of doping

athletes without an ADRV

In this appendix, we provide more details on understanding the effect of doping ath-

letes without ADRVs on the ROC curve and the AUC metric including mathematical

details.

For a randomly chosen athlete, we define the random variables O to represent the

observed status of that athlete (clean/doped) and Y to represent the true status of

that athlete (clean/doped). We define O = 1 if the athlete is observed doped and

O = 0 if the athlete is observed clean (and similarly for Y ). The assumption in

subsection 2.4 can be expressed as
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• There are no false positives and so a truly clean athlete will never have an ADRY

implying that Pr(O = 0|Y = 0) = 1.

• The probability that a doped athlete has an ADRVs is q and is the same for all

doped athletes. This implies that Pr(O = 1|Y = 1) = q and so Pr(O = 0|Y = 1) =

1− q

• The prevalence of doping is w which implies that Pr(Y = 1) = w or Pr(Y = 0) =

1− w.

Gneiting and Vogel (2022) show how the theoretical ROC curve can be written

in terms of the probability distributions of the risk measure for the clean and doped

groups. If we consider the truly clean and doped groups, the distribution of the risk

measure for the truly clean and truly doped groups are denoted Ftrue and Gtrue.

The ROC curve for these true groupings can be written as

Rtrue(p) = 1−Gtrue

(
F−1
true(1− p)

)
, 0 < p < 1.

Similarly, we can define a theoretical ROC curve under the observed groupings. This

involves the distribution of the risk measure for the observed clean and observed doped

groups which are denoted Fobserved and Gobserved. We can link these distributions

to Ftrue and Gtrue. Firstly,

Pr(O = 0) = Pr(O = 0|Y = 1)Pr(Y = 1) + Pr(O = 0|Y = 0)Pr(Y = 0)︸ ︷︷ ︸
1−w

= (1− q)w + 1− w = 1− q w

Pr(O = 1) = Pr(O = 1|Y = 1)Pr(Y = 1) + Pr(O = 1|Y = 0)Pr(Y = 0)︸ ︷︷ ︸
0

= q w

Pr(X ≤ x,O = 0)

=Pr(X ≤ x|O = 0, Y = 0) Pr(O = 0|Y = 0)Pr(Y = 0)

+ Pr(X ≤ x|O = 0, Y = 1) Pr(O = 0|Y = 1)Pr(Y = 1)

=Ftrue(x) (1− w) +Gtrue(x) (1− q)w

and

Pr(X ≤ x,O = 1)

=Pr(X ≤ x|O = 1, Y = 0) Pr(O = 1|Y = 0)Pr(Y = 0)︸ ︷︷ ︸
0

+ Pr(X ≤ x|O = 1, Y = 1) Pr(O = 1|Y = 1)Pr(Y = 1)

=Gtrue(x) q w.
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This allows to calculate Fobserved and Gobserved as

Fobserved(x) = Pr(X ≤ x|O = 0) =
Pr(X ≤ x,O = 0)

Pr(O = 0)
(1)

=
Ftrue(x) (1− w) +Gtrue(x) (1− q)w

1− q w

= r Ftrue(x) + (1− r)Gtrue(x) (2)

Gobserved(x) = Pr(X ≤ x|Ø = 1) =
Pr(X ≤ x,O = 1)

Pr(O = 1)
= Gtrue(x) (3)

where r =
1− w

1− w q
. This could be used to express the theoretical ROC curve for the

observed groups, which is

Robserved(p) = 1−Gobserved

(
F−1

observed
(1− p)

)
, 0 < p < 1,

in terms of Fobserved and Gobserved (although, this does not lead to a simple ex-

pression).

We now consider how AUCobserved is related to AUCtrue. Firstly, we can show

that, AUCobserved can be expressed as

AUCobserved =

∫ 1

0
Robserved(p) dp = 1−

∫ 1

0
Gobserved

(
F−1

observed
(1− p)

)
dp

=

∫ 1

0
Fobserved

(
G−1

observed
(p)

)
dp .

A proof of this result is given in Appendix B. Using (2) and (3), we get

AUCobserved =

∫ 1

0
Fobserved

(
G−1

observed
(p)

)
dp

=

∫ 1

0
(1− r)Gtrue

(
G−1
true(p)

)
+ r Ftrue

(
G−1
true(p)

)
dp

=

∫ 1

0
(1− r) p dp+ r

∫ 1

0
Ftrue(G

−1
true(p)) dp

= (1− r)
1

2
+ rAUCtrue.

B Proof of expression for AUCobserved
Consider

AUCobserved = 1−
∫ 1

0
Gobserved

(
F−1

observed
(1− p)

)
.

Making the change of variable (1− p) → p leads to

AUCobserved = 1−
∫ 1

0
Gobserved

(
F−1

observed
(p)

)
dp.
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Assuming that Fobserved and Gobserved are continuous implies that the composition

of the functions Gobserved and F−1

observed
is continuous and invertible. Furthermore,

Gobserved

(
F−1

observed
(0)

)
= 0 and Gobserved

(
F−1

observed
(1)

)
= 1 since Fobserved

and Gobserved are distribution functions. We can apply Laisant’s integral formula

for inverse functions (Laisant, 1905) to derive the result∫ 1

0

(
Gobserved

(
F−1

observed

))
(p) dp+

∫ 1

0

(
Gobserved ◦ F−1

observed

)−1
(p) dp = 1·1−0·0 = 1

or, due to the properties of the inverse of a function composition,∫ 1

0
Gobserved

(
F−1

observed
(p)

)
dp+

∫ 1

0
Fobserved

(
G−1

observed
(p)

)
dp = 1.

This final equation implies that

AUCobserved = 1−
∫ 1

0
Gobserved

(
F−1

observed
(p)

)
dp =

∫ 1

0
Fobserved

(
G−1

observed
(p)

)
dp.
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