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Abstract 
 Many sports medicine and sports science researchers use Null Hypothesis 
Significance Testing despite it being criticized for being an amalgam of two 
irreconcilable methodologies. Hopkins and Batterham proposed Magnitude-based 
Inference as an alternative to Null Hypothesis Significance Testing. However, its 
validity and utility have also been questioned. Recently, it was suggested that the 
critics of Magnitude-based Inference lacked vision and that their objections should be 
ignored. However, a re-examination of Hopkins and Batterham’s claims about their 
method indicates that they use profoundly different approaches in ways that are at 
odds with their theoretical foundations and intended purposes. If Hopkins and 
Batterham were to provide a full and explicit account of how Magnitude-based 
Inference is implemented, it could be comprehensively assessed. Until then, sports 
medicine and sports science researchers should use other theoretically valid methods 
that have had their utility confirmed. Key Words: MEDICINE, SCIENCE, SPORTS, 
STATISTICS, METHODS 

Introduction 
 

The credibility of scientific research has been questioned because an inadequate 
understanding of statistics has led many researchers to use flawed methods [1, 2]. 
Hopkins and colleagues [3-5] have expressed particular concern about the use of Null 
Hypothesis Significance Testing (NHST) in sports medicine and sports science 
research and have proposed MBI as an alternative. However, several statisticians have 
criticized the method for being theoretically unjustifiable and lacking real utility [6-8]. 
Hopkins and Batterham’s [9, 10] response to the criticism lacked convincing evidence 
to support their claims. Nevertheless, prominent sports scientist Martin Buchheit [11] 
has argued that researchers should ignore the critics of MBI because they are overly 
constrained by their training and lack imagination when thinking about statistical 
inference. Buchheit’s plea for researchers to embrace MBI invites a re-examination of 
Hopkins and colleagues’ claims about their method.  
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MBI  
 
MBI [3-5] is predicated on the belief that the size of an effect is what researchers are 
really interested in when analysing data. It uses confidence limits to define the range 
of values that would be likely to include the true value of a parameter. Then the 
proportion of the interval that overlaps specified effect sizes is converted into 
probability statements about the effect sizes. Qualitative descriptors are used to 
indicate the importance of the effect. Batterham and Hopkins [9] claim that MBI is 
probably the perfect synthesis of frequentist and Bayesian methods of statistical 
inference. 

Frequentist Statistics  
 
Hopkins and Batterham [4] describe Fisher’s [12] and Neyman and Pearson’s [13] 
methodologies as frequentist. However, there are appreciable differences between the 
two approaches. Fisher’s methodology is informed by fiducial probability. From this 
perspective, a parameter is a random variable that has a fiducial distribution, which is 
a measure of the faith that can be placed in different values of the parameter [14]. 
Fisher’s methodology is inductive, drawing inferences from the particular to the 
general. On the other hand, the Neyman-Pearson methodology is based on Bernoulli's 
Theorem, which states that if a random process is infinitely repeated, over the long 
run the obtained values and the predicted values will converge [15]. From the 
Neyman-Pearson perspective, parameters are unknown quantities that have fixed 
values. The approach is deductive, drawing inferences from the general to the specific 
[16]. Consequently, the Neyman-Pearson methodology really defines the frequentist 
approach to statistical inference. 

 
NHST is a hybrid approach to inference that combines Fisher’s [12] and 

Neyman and Pearson’s [13] methodologies. Typically, researchers use Neyman-
Pearson procedures but provide a Fisherian interpretation [17]. However, it has been 
argued that the two methodologies are fundamentally incompatible [16]. Hopkins and 
Batterham [3, 4] ignore this important issue. Instead, they focus on their 
dissatisfaction with Fisher’s significance test and Neyman’s hypothesis test.  
 

Fisher’s Significance Test  
Fisher’s significance test assesses theories by comparing observed values against a 
null hypothesis. The test does not consider alternative hypotheses and while its 
properties stem from a hypothetical infinite population, it only applies to data in hand 
[17]. The metric used in Fisher’s hypothesis test is the p-value. It is the conditional 
probability of obtaining a value at least as extreme as the one obtained, assuming that 
the complete statistical model is true and that chance was operating independently 
when the probability was calculated [18].  P-values equal to or smaller than the 
threshold value that was set by the researcher would be surprising if the statistical 
model were true, whereas p-values larger than the threshold value would be 
unsurprising. Following on from this, a p-value equal to or smaller than the threshold 
value is interpreted as providing evidence against the null hypothesis [19].  
 

Batterham and Hopkins [3] correctly state that the use of the p-value threshold 
as a decision rule for rejecting or accepting the null hypothesis in NHST, is not 
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compatible with Fisher’s  approach to inference. A p-value neither proves nor 
disproves the null; it simply indicates how compatible the data are with the complete 
statistical model [18]. Batterham and Hopkins also say that regardless of how the p-
value is interpreted, the null hypothesis must always be false because there are no 
zero effects in nature. This statement is misleading as Fisher’s significance test can 
legitimately be used to assess whether an effect is zero, some other specified value, or 
values within specified limits [18].  
 

Assessing the Magnitude of an Effect 
Batterham and Hopkins [3] dismiss the p-value as it does not provide information 
about the magnitude of an effect. In doing so, they neglect to acknowledge that Fisher 
recommended that in addition to reporting a p-value, researchers should report an 
estimate of the magnitude of an effect [20]. MBI uses the standardized mean 
difference, which is commonly known as Cohen’s d, for that purpose. Although 
standardised effect size measures allow effects that have been measured on different 
scales to be compared [21], they still require interpretation [22]. Notably, Cohen [23] 
was reluctant to provide guidelines for interpreting Cohen’s d. Instead, he encouraged 
researchers to use relevant theory and to look at the empirical evidence from the 
appropriate research domain.  
 

When theory and the empirical evidence do not provide adequate guidance, 
Cohen [23] proposed using default effect size conventions. However, they were not 
intended to be universal; Cohen developed the conventions to aid calculating 
statistical power in the behavioural sciences when the effect size distribution is 
unknown. He acknowledged that selection of the values was somewhat arbitrary and 
recent findings indicate that they are not consistent with known effect size 
distributions [24].   
 

Hopkins and Colleagues [3-5] disregard Cohen’s [23] caveats on using the 
conventions. Instead, they propose their own elaboration as a general means of 
determining whether an effect is meaningful. However, when they increased the 
number of effect size categories, Hopkins and Colleagues were tacitly acknowledging 
that the conventions are arbitrary points on a continuum. Similarly, when they 
adopted different conventions for clinical and non-clinical research, they were 
accepting the need to consider the research area. So relying on effect size conventions 
remains a poor substitute for using theory and empirical evidence that is relevant to 
the study in question.  

 
Furthermore, even if relevant theory and empirical evidence are used to 

interpret Cohen’s d, it only provides an accurate estimate of the magnitude of the 
effect if data are normally distributed, there is homogeneity of variance, groups have 
equal numbers, sample base rates1 are equal across groups, and there is acceptable 
measurements reliability [21, 25]. Additionally, Cohen’s d is sensitive to outliers, 
range restriction, and it is positively biased when the sample is small [21, 25]. 
Although corrections are available for some of the problems, they are not widely 

																																																								
1	The base rate is the proportion of a population that has a particular characteristic. 
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used. Notably, Hopkins does provide a formula for correcting the positive bias affect 
on his website (http://www.sportsci.org/resource/stats/ssmean.html). Notwithstanding 
the corrections that are available, it has been argued that simple effect sizes such as 
the raw difference between mean values are a more robust alternative to standardized 
effect sizes [21]. 
 

Neyman’s Hypothesis Test 
Neyman’s [13] hypothesis test is a confidence procedure. That is, it is a way of 
limiting errors over the long run when deciding whether to reject a null hypothesis in 
favour of an alternative hypothesis [16, 26].When conducting a hypothesis test, 
statistical power and alpha are set by the researcher before data are collected.  
Statistical power is the capacity of a test to identify a true alternative hypothesis. 
More specifically, it is the long run probability that the null hypothesis will be 
rejected [18]. Alpha is the critical value that indicates the acceptable long-run error 
rate for mistakenly rejecting the null hypothesis, when the null and all of the 
assumptions associated with it are true [18]. After data are collected, if the obtained 
test value is within the critical region defined by alpha, the risk of rejecting the null 
hypothesis when it is true would be acceptable over the long run [16, 17]. Hence, 
alpha can be used as a decision rule. 
 

 Neyman’s [27] confidence interval (CI) is another component of the 
hypothesis test. It assesses a confidence procedure’s ability to exclude false parameter 
values [18]. Generally, shorter intervals are better than longer ones because they 
exclude false values more often [26]. CIs are based on the premise that if an infinite 
number of samples were taken and CIs were calculated for them, the proportion that 
contains the true parameter value would match the specified confidence level [26]. 
However, which particular confidence intervals contain the true parameter value 
cannot be determined. Furthermore, either the parameter is within a particular CI or it 
is not, chance plays no role [18, 26].  
 
Despite criticising the hypothesis test, Hopkins and Batterham [3, 4] appropriate CIs 
for their own purposes.  They say that in MBI a CI indicates the level of confidence a 
researcher should have that the true magnitude of an effect is within the range defined 
by the upper and lower bounds of the interval. Hopkins and Batterham acknowledge 
that this is at odds with the theoretical foundations and intended purpose of the CI, but 
justify their position by claiming to use an (intuitive) Bayesian approach to inference. 

Bayesian Statistics 
Whereas the frequentist approach to inference attempts to define the probability of 
getting the data given that a particular statistical hypothesis is true, the Bayesian 
approach attempts to determine the probability that a statistical hypothesis is true 
given the data [22]. The Bayesian approach requires researchers to state what they 
know about a statistical hypothesis before examining data [28]. As parameter values 
are unknown, knowledge about them is modelled as random [29]. This enables 
probability statements to be made about parameter values. Prior knowledge can then 
be modelled with a probability distribution. The probability distribution for prior 
knowledge (the prior) models the uncertainty about parameter values before 
examining data [28].  Once prior knowledge has been specified and data collected, the 
posterior probability distribution (the posterior) is calculated using Bayes Theorem. 



 

	 5	

The posterior models the researcher’s uncertainty about the parameters after 
examining data [28].  
 

Different types of probability distributions can be assigned to the prior. 
Consequently, critics of Bayesian analysis argue that the process of selecting a prior is 
subjective and therefore unscientific. Batterham and Hopkins [3, 4] claim that meta-
analysis is a more objective way of utilizing prior knowledge. Notwithstanding that 
meta-analyses can be conducted using a Bayesian approach [30], Batterham and 
Hopkins’ argument is flawed because subjective decisions are an inescapable part of 
research [31]. Meta-analyses are not immune to the subjective decisions that were 
made about what to include and exclude in the published reports that are used in a 
meta-analysis [32]. Furthermore, it is difficult to reconcile Batterham and Hopkins’ 
argument in favour of conventional meta-analysis with their claim about using an 
(intuitive) Bayesian approach to inference.  
 

Objective Bayes and the Reference Prior Method 
There are different approaches to assigning priors. Subjective Bayes, which draws on 
expert knowledge to obtain an informative prior, maximizes what can be achieved 
with Bayesian analysis. However, it can be challenging when there is little existing 
knowledge [33]. Objective Bayes has been proposed as a less onerous approach that 
looks for structural rules to select a minimally informative prior [34]. This is the 
approach that Hopkins and Batterham [3, 4] say they use. Specifically, they claim to 
use a reference prior that is uniform (i.e. all possible parameter values have the same 
probability of occurring) [9], which results in the posterior having the same shape as 
the likelihood function2. Therefore, in MBI a CI is equivalent to a Bayesian credible 
interval that has a specified probability of containing the true parameter value. This 
results from the Bernstein-von Mises theorem. However, the theorem only holds 
when the sample is large, the statistical model can be specified with a finite number of 
parameters, the data share the same probability distribution, and the data are mutually 
independent (e.g. a standard normal distribution) [35]. Consequently, in MBI a CI will 
only be equivalent to a Bayesian credible interval when these conditions are met. 
 

The use of a uniform prior is problematic because the parameter space is 
generally infinite. This means that the prior usually does not integrate to one and 
therefore it is not a probability distribution. Accordingly, the posterior may not 
integrate to one and so not be a probability distribution. Additionally, uniform priors 
are not invariant when parameters are transformed [34]. Hopkins and Batterham [4] 
argue that these issues are of little practical concern provided the sample size is fairly 
large.  Whilst this claim may be justified if all of the conditions are met for the 
Bernstein-von Mises theorem to hold, a search of Google Scholar for studies that have 
used MBI was revealing.  

 
The search found twenty-five studies (Appendix 1) with sample sizes ranging 

from eight to 99 participants. Five studies recruited 10 or fewer participants. Twelve 
studies had participants withdraw from data collection. Data were transformed in 13 
studies. All studies used a repeated measures design for data analysis. Collectively, 

																																																								
2	The likelihood function assesses how well a hypothesized parameter value predicts 
data.	
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this shows that the use of a uniform prior in MBI is actually of considerable practical 
concern. 
 

There are also theoretical concerns about Hopkins and Batterham’s [3, 4] 
approach, as it is not consistent with the reference prior method. The method aims to 
overcome the problems associated with a uniform prior by using information theory to 
identify a prior that is minimally informative and is appropriate given the proposed 
statistical model and the inference problem. The reference prior provides a baseline to 
which other priors can be compared in order to gauge the sensitivity of the posterior 
to changes in the prior [36]. As this is not the process that Hopkins and Batterham 
use, their claim about using a reference prior is not justified. 
 
Best Practice   
One of the studies [37] identified in the Google Scholar search was re-analysed using 
a genuine Bayesian approach [7]. The study examined the effect of a live-high-train-
low training protocol versus an intermittent hypoxic exposure protocol on blood 
characteristics and running performance. Although the results were broadly similar to 
the MBI analysis, the Bayesian analysis was more conclusive and it afforded a direct 
probabilistic interpretation of effects, whereas the MBI analysis did not. In keeping 
with best practice [38, 39], the published report of the Bayesian analysis provided 
supplementary files containing data and statistical software code and used standard 
mathematical notation to give a full and explicit account of how the statistical models 
were implemented. In contrast, Hopkins and colleagues are yet to do this. 
 

Hopkins and Batterham [4] generally use Microsoft Excel spreadsheet 
software [5, 40] to implement MBI. Various spreadsheets are available on Hopkins 
website (http://sportsci.org/). The use of Excel is questionable because it lacks the 
precision and stability necessary to accurately compute even the most basic statistics. 
Moreover, Microsoft does not provide information about the algorithms used by 
Excel’s functions. Aspects of data analysis that are adversely affected include 
simulation, statistical distributions, and parameter estimation [41-43]. It is unclear 
why MBI is implemented using Excel when more accurate, stable, and widely used 
data science software is readily available for free.  

Conclusion 
Hopkins and colleagues [3-5] have restricted publishing their exposition of MBI to 
sports medicine and sports physiology journals. For the method to be properly vetted, 
a detailed account that includes data, statistical software code, and standard 
mathematical notation, needs to be published in a recognised statistics journal. 
Nevertheless, the available evidence shows that MBI uses aspects of fundamentally 
different statistical approaches [12, 13, 23, 44] in ways that are inconsistent with their 
theoretical foundations and the purpose(s) for which they were intended. 
Consequently, researchers should ignore Buchheit’s [11] plea for them to use MBI 
and instead use theoretically justified methods that have established utility. All other 
things being equal, this will make it more likely that the researchers’ findings will be 
credible.  
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Appendix	1	

MBI	Studies	2008-2016	

Study	 Sample		 Participant	
Attrition		

Incomplete	
	Data	

Groups	 Analysis	
Design	

Transform	

Antonio J, Ciccone V. 
The effects of pre 
versus post workout 
supplementation of 
creatine 
monohydrate on 
body composition and 
strength. Journal of 
the International 
Society of Sports 
Nutrition. 
2013;10(1):1.  

22	 3	  2	 Repeated	
measures	

 

Brocherie F, Girard O, 
Faiss R, Millet GP. 
High-intensity 
intermittent training 
in hypoxia: a double-
blinded, placebo-
controlled field study 
in youth football 
players. The Journal 
of Strength & 
Conditioning 
Research. 
2015;29(1):226-37.  

16	   2	 Repeated	
measures	

 

Buchheit M, Haydar 
B, Ahmaidi S. 
Repeated sprints with 
directional changes: 
do angles matter? 
Journal of sports 
sciences. 
2012;30(6):555-62.  

12	   1	 Repeated	
measures	

Log	

Buchheit M, Racinais 
S, Bilsborough J, 
Hocking J, Mendez-
Villanueva A, Bourdon 
P et al. Adding heat to 
the live-high train-low 
altitude model: a 
practical insight from 
professional football. 
British Journal of 
Sports Medicine. 
2013;47(Suppl 1):i59-
i69.  

19	 2	  2	 Repeated	
measures	

Log	
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Chesterton P, Weston 
M, Butler M. The 
effect of mobilising 
the lumbar 4/5 
zygapophyseal joint 
on hamstring 
extensibility in elite 
soccer players. 
International Journal 
of Physiotherapy and 
Rehabilitation. 
2016;April:1-13.  

25	   2	 Repeated	
measures	

Log	

Cockburn E, 
Stevenson E, Hayes 
PR, Robson-Ansley P, 
Howatson G. Effect of 
milk-based 
carbohydrate-protein 
supplement timing on 
the attenuation of 
exercise-induced 
muscle damage. 
Applied Physiology, 
Nutrition and 
Metabolism. 
2010;35(10):270-7.  

32	   4	 Repeated	
measures	

Log	

Gonzalez AM, 
Hoffman JR, Rogowski 
JP, Burgos w, Manalo 
e, Weise K et al. 
Performance changes 
in NBA basketball 
players vary in 
starters vs. 
nonstarters over a 
competitive season. 
Journal of Strength & 
Conditioning 
Research. 
2013;27(3):611-5.  

12	 5	  2	 Repeated	
measures	

 

Humberstone-Gough 
CE, Saunders PU, 
Bonetti DL, Stephens 
S, Bullock N, Anson 
JM et al. Comparison 
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