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Abstract 

Researchers are increasingly exploring contexts where training causes meaningful differences in the 

changes experienced by participants across interventions. Where this occurs, the phenomenon is referred 

to as individual response or trainability and provides scope for personalising training to maximise 

improvements based on participant characteristics. The potential for training to cause individual response 

in a given population is commonly assessed by comparing the variability in observed change between an 

intervention and control group. Similarly, the most common statistic used to quantify the difference is 

the standard deviation of individual response (𝑆𝐷𝐼𝑅). It has been recommended that preliminary studies 

estimate the 𝑆𝐷𝐼𝑅 to identify areas where personalising training may provide substantive improvements 

over prescribing the same, usually standardised, training to all participants. The purpose of this review 

was to provide a detailed examination of the 𝑆𝐷𝐼𝑅 including conceptual and statistical overviews. A series 

of different plausible data generating models were used to highlight where the 𝑆𝐷𝐼𝑅 appropriately assesses 

individual response, and where the standard formulation may lead to erroneous conclusions. The review 

highlights the importance of expressing uncertainty in estimates, comparing three different approaches 

to creating confidence intervals. It is recommended that ‘melded’ confidence intervals be used, especially 

for studies investigating relatively small sample sizes. The review also shows how model misspecification 

in terms of different measurement error distributions between intervention and control, and variance 

heterogeneity in external factors may represent the most pressing threats to valid conclusions when 

estimating the 𝑆𝐷𝐼𝑅. It is recommended that future research assess the potential for model 

misspecification and variance heterogeneity. Repeated measurements pre- and post-training can be used 

to better estimate the 𝑆𝐷𝐼𝑅 and account for differences in group measurement error. The existence of 

variance heterogeneity should be relatively simple to identify, however, it will be important for research 

teams to consider the best measures to capture the wide range of external factors that may influence 

observed change in outcomes included pre- and post-training.  
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Introduction 

Concurrent with attempts to identify training interventions that are most effective for different 

populations, there is growing interest in personalised approaches to exercise prescription. The belief that 

personalised approaches will be more effective is based primarily on the assumption that within a specific 

population, there are participant characteristics that interact with the training stimulus causing effect 

modification (Hecksteden et al, 2015; Mills et al, 2021). Where this interaction exists, the related concepts 

of ‘individual response’ and ‘trainability’ are evoked and those participants with positive interactions are 

regarded as more trainable (Hecksteden et al, 2015). Additionally, with meaningful thresholds of 

improvement stated, participants can be identified as responders or non-responders, or potentially more 

appropriately, the expected proportion of response calculated (Bonafiglia et al, 2021; Bonafiglia et al, 

2022). With knowledge of the most relevant participant characteristics and how they interact with 

different training stimuli, the best match could theoretically be selected for each individual. There are, 

however, several challenges in surmounting even the first hurdle in identifying where participant-by-

training interactions occur. Reliable estimates will in general require large sample sizes (Mills et al, 2021), 

greatly exceeding those routinely used in sport and exercise research (Swinton et al, 2023). As a result, it 

is recommended that preliminary investigations be conducted where individual response is likely to be 

large and practically relevant to justify the resources required for subsequent study estimating participant-

by-training interactions (Atkinson and Batterham 2015).  

 

Preliminary investigations of individual response generally focus on analysis of variability in observed 

change across an intervention using a measurement outcome that reflects the domain of interest 

(Bonafiglia et al, 2021). This variability is referred to as gross response variability and is comprised of 

several sources (Ross et al, 2019). The three main sources of variability include measurement error, 

variation due to differences in external factors that affect the measurement outcome independently of 

training (e.g. sleep, nutrition and expectation), and participant-by-training interaction. To parse these 
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three different sources of variation, preliminary studies often include a control group to provide a 

measure of the variability caused by external factors, as those in the control do not engage in the training 

intervention. To illustrate how participant-by-training interactions can influence gross response 

variability, we examine one of the most likely factors creating individual response. It is generally proposed 

that a participant’s baseline value is inversely related to improvements such that those with higher 

baselines experience reduced improvements (Swinton et al, 2023). To capture this and other phenomena 

throughout the review, we introduce the following notation and model framework: Participants unknown 

true values for the outcome of interest are captured by the random variable 𝑌𝑖𝑗𝑘, where 𝑖 is the 𝑖-th person 

in the 𝑗-th group {0=control, 1=intervention}, and 𝑘 is the time point {0=pre-training, 1=post-training}. 

A data generating model for a participant-by-training interaction from baseline value can be expressed 

as:  

𝑌𝑖𝑗1 = 𝑌𝑖𝑗0 + 𝛽0 + 𝛽1𝑋1.𝑗1
+ 𝛽2𝑋2.𝑗1

𝑌𝑖𝑗0 + 𝜁𝐸𝑥𝑡𝑖.1
,                                                                                   𝑒𝑞. 1  

where 𝛽0 is the mean change in the control group, 𝑋1.𝑗1
 and 𝑋2.𝑗1

are indicator variables that take on the 

value 0 for a participant in the control, and 1 for a participant in the intervention, 𝛽1 is required to set 

the expected change of the intervention relative to control, 𝛽2 controls the direction and magnitude of 

the relationship between baseline value and change,  and  𝜁𝐸𝑥𝑡𝑖.1
 is used to describe external factors that 

cause variation but not through interaction with the training stimulus and in this model applies equally 

to both groups. 𝜁𝐸𝑥𝑡𝑖.1
 is modelled as a random error term of the form 𝑁(0, 𝜏𝐸𝑥𝑡

2 ) and is viewed more 

appropriately as a model simplification representing as yet unexplained series of relationships involving 

external factors and post-training outcome variability (Hecksteden 2015). In practice, we cannot obtain 

a participant’s true value and instead when measurements are conducted, we obtain the observed random 

variables 𝑦𝑖𝑗𝑘 = 𝑌𝑖𝑗𝑘 + 𝜖𝑖𝑗𝑘, where 𝜖𝑖𝑗𝑘~𝑁(0, 𝛿2). The measurement error 𝜖𝑖𝑗𝑘 includes 

instrumentation noise and short term biological variability (Swinton et al, 2018). In this initial model, the 

standard deviation of the measurement error (𝛿) is the same across both groups and time points.  
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Where there is as generally posited, a negative participant-by-training interaction such that those with the 

highest baseline values experience lower improvements (𝛽2<0), there is a relative fanning in effect such 

that the post-intervention variation is lower than would be obtained if there was no interaction 

(Supplementary B1). Based on this finding, it may be intuited that the variation in change values across 

the training is reduced for the intervention group. In contrast, the opposite occurs, and the participant-

by-training interaction causes an increase in variation of change values (see Supplementary B1 for 

explanation), such that for the model presented in eq.1, the intervention group exhibits greater gross 

response variability compared with control. It can be shown that the sign of the relationship has no 

influence, only the magnitude of 𝛽2 with greater values causing increased variability in observed change 

of the intervention group (Supplementary B1).  

 

The comparison of variances in change values across training between an intervention and control group 

has commonly been made using what has been referred to as the standard deviation of individual 

response (𝑆𝐷𝐼𝑅) (Hopkins 2015). As the number of studies using the 𝑆𝐷𝐼𝑅 to identify training and 

population combinations that may exhibit participant-by-training interactions has increased, mixed 

findings have been generated with some studies reporting potentially large individual response, and others 

reporting negative 𝑆𝐷𝐼𝑅 values or individual response that is unlikely to be clinically meaningful 

(Bonafiglia et al, 2021). Whilst these mixed findings may reflect the true underlying existence or not of 

participant-by-training interactions across different contexts, it is important to consider the 𝑆𝐷𝐼𝑅 in detail. 

This includes how to estimate and interpret the 𝑆𝐷𝐼𝑅 , and contexts where estimates may lead to faulty 

conclusions. The present review provides a detailed overview of the 𝑆𝐷𝐼𝑅 and three areas of associated 

importance including: 1) expressing uncertainty in 𝑆𝐷𝐼𝑅 estimates; 2) the influence of model 

misspecification; and 3) the influence of variance heterogeneity in external factors.  
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Introduction to the 𝑺𝑫𝑰𝑹 

First, we introduce the canonical model used to conceive the 𝑆𝐷𝐼𝑅 and subsequent potential to identify 

the existence of individual response:  

𝑌𝑖𝑗1 = 𝑌𝑖𝑗0 + 𝛽0 + 𝛽1𝑋1.𝑗1
+ 𝜁𝑇𝑟𝑎𝑖𝑛𝑖11

+ 𝜁𝐸𝑥𝑡𝑖.1
.                                                                                   𝑒𝑞. 2  

Here we follow the same format as eq.1, except we model the interaction of participant baseline values 

(and any other potential participant-by-training interactions) with the random effect 𝜁𝑇𝑟𝑎𝑖𝑛𝑖11
, where 

𝜁𝑇𝑟𝑎𝑖𝑛𝑖11
~𝑁(0, 𝜏𝑇𝑟𝑎𝑖𝑛

2 ). The subscripts denote that participants in both groups are exposed to the same 

distribution of the random effect term 𝜁𝐸𝑥𝑡 describing the influence of factors that act by mechanisms 

external to the training stimulus, but only the intervention group is exposed to 𝜁𝑇𝑟𝑎𝑖𝑛.  Note, with this 

model it is possible that a factor such as age could contribute to 𝜁𝑇𝑟𝑎𝑖𝑛 by interacting with the training 

stimulus, and to 𝜁𝐸𝑥𝑡 through other mechanisms.  

 

The 𝑆𝐷𝐼𝑅 is defined as the standard deviation of the variance in observed change values of the 

intervention group minus the variance in observed change values of the control:  

𝑆𝐷𝐼𝑅 = √Var(𝑦.11 − 𝑦.10) − Var(𝑦.01 − 𝑦.00) = √Var(Δ.1.) − Var(Δ.0.),                                      𝑒𝑞. 3  

where Δ denotes the change in observed values across the training. As shown in Supplementary B2, the 

𝑆𝐷𝐼𝑅 based on the data generating model in eq2 is equal to 𝜏𝑇𝑟𝑎𝑖𝑛, which was the intended target. 

Combining the expected change across the intervention and 𝜏𝑇𝑟𝑎𝑖𝑛 provides a quantitative description 

of individual response through a normal distribution, with the proportion of the curve exceeding a given 

threshold denoting the proportion of response (Figure 1).   
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Figure 1: Schematic illustrating individual and gross response based on pre- to post-training change 
values.  

 
Broader distribution represents the gross response distribution obtained by creating a normal distribution from the 
mean and standard deviation of the observed change values from the intervention group. The narrower distribution 
represents the individual response distribution obtained by creating a normal distribution from the mean observed 

change from the intervention group and the 𝑺𝑫𝑰𝑹 calculated from observed change from both intervention and 
control. Red line represents a simple zero threshold, such that the proportion of the individual response distribution 
that lies beyond the line equals the proportion of response. Alternative thresholds can be selected.  
 

  

Uncertainty in estimating the 𝑺𝑫𝑰𝑹 

In practice, the 𝑆𝐷𝐼𝑅 is unknown and requires estimation with a sample statistic. This estimate is denoted 

𝑆𝐷̂𝐼𝑅 and calculated using sample variances:  

𝑆𝐷̂𝐼𝑅 = √𝑆Δ1

2 − 𝑆Δ0

2 ,                                                                                                                                        𝑒𝑞. 4  

where 𝑆Δ𝑗

2 =
1

𝑛𝑗−1
∑ (Δ𝑟𝑗. − Δ̅.𝑗.)

𝑛𝑗

𝑟=1

2
. The statistic 𝑆𝐷̂𝐼𝑅 comprises sampling variance, potentially with 

an easily described distribution depending on the data generating model. Where the estimate is made with 

relatively small sample sizes, it is plausible that the value calculated will be far from the actual 𝑆𝐷𝐼𝑅. It is 

possible therefore, that when a study does not obtain an 𝑆𝐷̂𝐼𝑅 deemed indicative of meaningful 

participant-by-training interaction (or even positive), that the phenomena does occur (with the opposing 
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argument also a possibility). Within a frequentist framework, the typical approach to express uncertainty 

is to calculate a confidence interval for the parameter of interest. Currently, two popular methods are 

used to calculate confidence intervals for the 𝑆𝐷𝐼𝑅 (Hopkins 2015, Hecksteden et al, 2018). Both methods 

start by creating a confidence interval for 𝑆𝐷𝐼𝑅
2  based on an assumed distribution for the estimate, and 

then square the limits. The first and most common method (Hopkins 2015) assumes a normal distribution 

for 𝑆𝐷̂𝐼𝑅
2  and estimates the standard error (see Supplementary B3) to provide the following (100-𝛼)%  

confidence interval:  

𝑆𝐷̂𝐼𝑅
2 + 𝐹𝑧

−1(𝛼/2)√2 (
𝑆Δ0

4

𝑛0−1
+

𝑆Δ1
4

𝑛1−1
) < 𝑆𝐷𝐼𝑅

2 < 𝑆𝐷̂𝐼𝑅
2 + 𝐹𝑧

−1(1 − 𝛼/2)√2 (
𝑆Δ0

4

𝑛0−1
+

𝑆Δ1
4

𝑛1−1
) ,           𝑒𝑞. 5  

where 𝐹𝑧
−1 is the inverse of the standard normal cumulative distribution function. As show in Figure 2, 

the distribution for 𝑆𝐷̂𝐼𝑅
2  does approach a normal distribution with increasing sample size, but for small 

samples there can be substantial asymmetry.  

 

Figure 2: Sampling variance of estimate 𝑆𝐷̂𝐼𝑅
2  obtained with Monte Carlo simulation across increasing 

sample sizes with 𝑛0 = 𝑛1. 

 
Red line represents true parameter value for 𝑺𝑫𝑰𝑹

𝟐 = 𝝉𝑻𝒓𝒂𝒊𝒏
𝟐 . Values used for simulations: 𝒀𝒊𝒋𝟎~𝑵(𝟏𝟎𝟎, 𝟏𝟓𝟐), 𝜷𝟎 =

𝟓, 𝜷𝟏 = 𝟏𝟓, 𝝉𝑬𝒙𝒕
𝟐 = 𝟑𝟔, 𝜹𝟐 = 𝟒; Number of iterations per simulation = 10,0000. 
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Given the limitation of assuming a normal distribution, Hecksteden et al (2017) suggested the use of a 

chi-squared distribution for 𝑆𝐷̂𝐼𝑅
2  and creating a (100-𝛼)% confidence interval with: 

(𝑛1−1)𝑆𝐷̂𝐼𝑅
2

𝐹
𝜒𝑛1−1

2
−1 (1−𝛼/2)

< 𝑆𝐷𝐼𝑅
2 <

(𝑛1−1)𝑆𝐷̂𝐼𝑅
2

𝐹
𝜒𝑛1−1

2
−1 (𝛼/2)

,                                                                                                            𝑒𝑞. 6  

where 𝐹𝜒𝑛1−1
2

−1  is the inverse of the cumulative distribution function for a chi-squared random variable 

with 𝑛1 − 1 degrees of freedom. Using a specific data set, Hecksteden et al (2017) compared the use of 

a normal versus a chi-squared distribution and showed much shorter intervals with the chi-squared 

approach. However, whilst (𝑛𝑗 − 1)𝑆Δ𝑗

2 /𝜎𝑗
2 for 𝑗 = 0,1 both follow a chi-squared distribution (Cochran 

1934), the difference does not, with the chi-squared distribution defined only for positive values. The 

chi-squared distribution is a special case of the gamma distribution (Supplementary B3), and the 

difference between two chi-squared random variables is described by a VarianceGamma distribution 

when the degrees of freedom are equal (Ferrari 2019), and a gamma difference distribution when they 

are not (Klar 2015) (Supplementary B3). Instead, a relatively simple and elegant method to create a 

confidence interval for 𝑆𝐷𝐼𝑅
2  is to ‘meld’ the sample confidence intervals with 𝑆Δ1

2  and 𝑆Δ0

2  (see 

Supplementary B3). The method presented by Fay et al. (2015) guarantees nominal coverage and the 

melded 100(1 − 𝛼)% lower (𝐿𝑆𝐷𝐼𝑅
2 (𝛼)) and upper (𝑈𝑆𝐷𝐼𝑅

2 (𝛼)) one-sided melded confidence limits for 

𝑆𝐷𝐼𝑅
2  are obtained with: 

𝐿𝑆𝐷𝐼𝑅
2 (𝛼) = the 𝛼-th quantile of (𝑛1 − 1)𝑆Δ1

2 /𝐹𝜒𝑛1−1 
2

−1 (𝐴)  − (𝑛0 − 1)𝑆Δ0

2 /𝐹𝜒𝑛0−1 
2

−1 (𝐵) 

𝑈𝑆𝐷𝐼𝑅
2 (𝛼) = the (1 − 𝛼)-th quantile of (𝑛1 − 1)𝑆Δ1

2 /𝐹𝜒𝑛1−1 
2

−1 (𝐴)  − (𝑛0 − 1)𝑆Δ0

2 /𝐹𝜒𝑛0−1 
2

−1 (𝐵).        𝑒𝑞. 7            

where 𝐴 and 𝐵 are uniform random variables, such that the melded interval can be calculated using 

Monte Carlo simulation or numeric integration (see Supplementary B3 for more detail).  
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In Figure 3 we illustrate the performance of 95% confidence intervals generated using the three different 

approaches (normal distribution, chi-squared distribution, and melded interval) by simulating data for 

different sample sizes and calculating the percentage of times the intervals included the true value. For 

all sample sizes the melded confidence intervals included the true value on 95% of occasions, and as can 

be seen in Figure 3, both upper and lower bounds were close to the true value. Performance improved 

for greater sample sizes when assuming a normal distribution (𝑛=10: 89%; 𝑛=20: 92%; 𝑛=50: 94%; 

𝑛=100: 95%), with the lower bound moving closer to the true value as the sample size increased (Figure 

3). Finally, performance of confidence intervals assuming a chi-squared distribution remained poor as 

sample sizes increased (𝑛=10: 78%; 𝑛=20: 80%; 𝑛=50: 80%; 𝑛=100: 81%), with too much overlap of 

both upper and lower bounds (Figure 3).   

 

Figure 3: Assessment of 95% confidence interval performance using the normal distribution assumption, 

chi-squared distribution assumption, and melded intervals across increasing sample sizes with 𝑛0 = 𝑛1. 

 
Red distributions represent distribution of lower bound limits. Blue distributions represent distribution of upper 

bound limits. Red line represents true parameter value for 𝝉𝑻𝒓𝒂𝒊𝒏
𝟐 . Values used for simulations: 𝒀𝒊𝒋𝟎~𝑵(𝟏𝟎𝟎, 𝟏𝟓𝟐), 

𝜷𝟎 = 𝟓, 𝜷𝟏 = 𝟏𝟓, 𝝉𝑬𝒙𝒕
𝟐 = 𝟑𝟔, 𝜹𝟐 = 𝟒, number of iterations per simulation = 10,0000. Number of uniform random 

variables for melded interval = 1000. 
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Model misspecification 

Previous authors have highlighted that a key assumption in the use of the 𝑆𝐷𝐼𝑅 to assess individual 

response is that measurement errors are normally distributed, and perhaps most importantly, equal for 

both groups across the training (Ross et al, 2019; Mills et al, 2021). Research in sport and exercise shows 

that measurement errors are often heteroscedastic, such that those that produce the highest values exhibit 

greater variability and therefore larger measurement errors (Atkinson and Nevil 1998). As research shows 

that even short training intervention can results in relatively large average improvements (Swinton et al, 

2022), it is possible that measurement errors could increase for the intervention group across training. In 

contrast, in many training interventions measurement outcomes are the same, or similar to, the activities 

performed in training. Additionally, many training interventions are performed in the same laboratory 

setting with the same researchers that conduct the measurement outcomes. The increased familiarity and 

reduced learning effects that these conditions are likely to induce in the intervention group compared 

with the control may result in greater consistency and therefore reduced measurement error following 

training. Model misspecification in terms of different group measurement error distributions post-

training would cause the data generating model in eq.2 to be updated such that 𝜖𝑖𝑗1~𝑁(0, 𝛿2) is replaced 

with  𝜖𝑖𝑗1~𝑁(0, 𝛿.𝑗1
2 ). The potential for this change to alter findings will depend primarily on the relative 

variances caused by measurement error and 𝜁𝑇𝑟𝑎𝑖𝑛𝑖.1
. As shown in Supplementary B4, with this model 

misspecification, the original definition of the 𝑆𝐷𝐼𝑅 leads to 𝑆𝐷𝐼𝑅 = √𝜏𝑇𝑟𝑎𝑖𝑛
2 + 𝛿.11

2 − 𝛿.01
2 , such that 

the quantity will be inflated if measurement error is greater in the intervention compared with control 

post-training, and reduced if measurement error is lower.  

 

To address the model misspecification identified here, additional post-training measurements are required 

to estimate the differences in measurement error caused by the experimental process. We begin with the 

simple case where in addition to the pre- and post-training data, we conduct two separate measurements 
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post-training (𝑦𝑖𝑗1𝐴
, 𝑦𝑖𝑗1𝐵

) to estimate reliability. Under these conditions we update the  𝑆𝐷𝐼𝑅 to 𝑆𝐷̃𝐼𝑅 

and use the difference of these additional post-training values for the intervention (Δ𝑖11𝐴𝐵
) and control 

(Δ𝑖01𝐴𝐵
): 

𝑆𝐷̃𝐼𝑅 = √Var(Δ.1.) − Var(Δ.0.) +
1

2
(Var(Δ𝑖01𝐴𝐵

) − Var(Δ𝑖11𝐴𝐵
)) .                                                    𝑒𝑞. 8  

As shown in Supplementary B4, this updated quantity returns 𝜏𝑇𝑟𝑎𝑖𝑛 under the model misspecification 

identified. As was done previously, we can estimate this quantity ( 𝑆𝐷̂̃𝐼𝑅) and create confidence intervals 

for the estimate. Provided in Supplementary B4 are calculations using sample standard deviations 

including the difference in the additional post-training values to create confidence intervals assuming a 

normal distribution for 𝑆𝐷̂̃𝐼𝑅
2 . Performance of the 95% confidence intervals was improved for the 

updated process (𝑛=10: 92%; 𝑛=20: 94%; 𝑛=50: 95%; 𝑛=100: 95%) compared with the original (𝑛=10: 

89%; 𝑛=20: 91%; 𝑛=50: 90%; 𝑛=100: 89%), highlighting that under model misspecification the original 

process would not converge on the correct proportion for a (100-𝛼)% confidence interval. 

 

In practice, where researchers expect model misspecification and wish to account for differences in 

measurement reliability, it is likely that a research design including two sets of measurements pre- and 

post-training would be implemented. The average of the two pre-and post-training measurements can be 

used to reduce uncertainty and width of confidence intervals (Swinton et al, 2023), and the difference 

between the post-training measurements used to adjust the 𝑆𝐷𝐼𝑅 estimate for changes in measurement 

error. Note, with this design an update is required to both the estimator: 𝑆𝐷̂̃𝐼𝑅 =

√𝑆Δ̅1

2 − 𝑆Δ̅0

2 +
1

4
(𝑆Δ0𝐴𝐵

2 − 𝑆Δ1𝐴𝐵

2 ) and standard error: √2 (
𝑆

Δ̅0
4

𝑛0−1
+

𝑆
Δ̅1
4

𝑛1−1
+

𝑆Δ0𝐴𝐵

4

16(𝑛0−1)
+

𝑆Δ1𝐴𝐵

4

16(𝑛1−1)
), 

(Supplementary B4) to obtain appropriate confidence intervals.  
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Variance heterogeneity in external factors 

Another key assumption in the use of the 𝑆𝐷𝐼𝑅 to assess the potential for individual response is that the 

variance in external factors that influence change remains consistent for both groups across training (Ross 

et al, 2019). One of the most studied outcomes in research investigating individual response is body mass 

(Williamson et al, 2018; Bonafiglia et al, 2022). Here, nutrition plays a key role in influencing change and 

whilst the effect of nutrition may be the same for both intervention and control, it is possible that 

engaging in exercise alters the variation in whichever outcome is used to summarise nutritional factors, 

leading to variance heterogeneity. To explore this potential further, we introduce the final data generating 

model:  

𝑌𝑖𝑗1 = 𝑌𝑖𝑗0 + 𝛽0 + 𝛽1𝑋1.𝑗1
+ 𝛽2𝑋2𝑖𝑗1

+ 𝜁𝑇𝑟𝑎𝑖𝑛𝑖11
+ 𝜁𝐸𝑥𝑡𝑖.1

.                                                                  𝑒𝑞. 9  

where 𝑋2𝑖𝑗1
 is a covariate measuring an external factor such as nutritional intake, that alters the post-

training value. 𝛽2 quantifies the magnitude and direction of the effect and is assumed to be constant 

across individuals and groups. In this variance heterogeneity model, we have 𝑋2𝑖𝑗1
~𝑁 (𝜓2.𝑗1

, 𝜏2.𝑗1
), 

where it is possible that both the mean, but importantly, the variance of the covariate is different across 

groups. Note, that 𝜁𝐸𝑥𝑡𝑖.1
 is different from the quantity expressed in eq.2, as at least some of the influence 

of nutrition has been accounted for in 𝛽2𝑋2𝑖𝑗1
, so we may expect 𝜏𝐸𝑥𝑡

2  to decrease. We may also expect 

that 𝜏2.01
> 𝜏2.11

, such that the 𝑆𝐷𝐼𝑅 from eq.3 would not return 𝜏𝑇𝑟𝑎𝑖𝑛, but instead return 

√𝜏𝑇𝑟𝑎𝑖𝑛
2 + 𝛽2

2(𝜏2
2

.11
− 𝜏2

2
.01

) (Supplementary B5), and so underestimate individual response.  

 

Extensive study is required to systematically investigate different external factors and how they combine 

with participant-by-training interaction terms to explain observed variation across different contexts and 

populations. Extensive study includes development of valid and reliable measurements that can 

summarise the aggregate effects of external factors on individuals across training so that they can be 
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included in models such as that presented in eq.9.  In the meantime, however, there are sufficient 

measurement scales regarding a range of external factors such as sleep quality, nutritional intake, and life 

stress, to assess whether variance heterogeneity is common, and incorporate findings into future study 

of individual response.     

 

Conclusion 

Investigating individual response is a challenging area of research given typical constraints including the 

use of relatively small sample sizes and short training durations (Swinton et al, 2022). Calculation of the 

𝑆𝐷𝐼𝑅 and use of meta-analyses to combine estimates across different contexts in sport and exercise (Steele 

et al, 2022) represent important steps to provide an overall assessment of the scope of individual response 

prior to investing substantial resources focusing on specific areas. The purpose of this review was to 

provide a detailed examination of the 𝑆𝐷𝐼𝑅 dealing with important topics such as expressing uncertainty 

and identifying issues that may cause interpretations to be erroneous. When conducting research with 

relatively small sample sizes, it is recommended that melded confidence intervals be used to express 

uncertainty in the 𝑆𝐷𝐼𝑅. It is also recommended that future research assess the potential for model 

misspecification and variance heterogeneity. Repeated measurements pre- and post-training can be used 

to estimate the 𝑆𝐷𝐼𝑅 and account for model misspecification including differences in group measurement 

error. It is likely that multidisciplinary teams will be required to identify relevant external factors that 

influence chosen outcomes including the most appropriate, valid, and reliable measuring tools. With 

selection of appropriate external factors and measurement tools, variance heterogeneity can easily be 

assessed between those in the intervention and control. Where substantive variance heterogeneity exists, 

this should be accounted for when assessing individual response.  
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Supplementary files:  

The following supplementary file derives the results presented in the main paper and provides R code to illustrate and 

provide checks.  

 

Supplementary A: Properties of statistical models 

In this section basic properties of statistical models are outlined that will be used to derive subsequent results.  

Property 1 (P1): Jointly Normal random variables: Two random variables 𝑋, 𝑌 are said to be jointly normal if they can be 

expressed in the form 𝑋 = 𝑎𝑈 + 𝑏𝑉; 𝑌 = 𝑐𝑈 + 𝑑𝑉 where 𝑈 and 𝑉 are independent normal random variables.  

Property 2 (P2): Population mean 𝐸(𝑋) = 𝜇 and the linearity of expectation: 𝐸(𝑎𝑋 + 𝑏𝑌) = 𝑎𝐸(𝑋) + 𝑏𝐸(𝑌), where 𝑎 

and 𝑏 are constants.  

Property 3 (P3): Expectation of an independent product: if 𝑋 and 𝑌 are independent then 𝐸(𝑋𝑌) = 𝐸(𝑋)𝐸(𝑌). 

Property 4 (P4): Population variance and expectation: Var(𝑋) = 𝐸(𝑋2) − 𝜇2. 

Property 5 (P5): Variance of a linear combination: Var(𝑎𝑋 + 𝑏𝑦) = 𝑎2Var(𝑋) + 2𝑎𝑏Cov(𝑋, 𝑌) + 𝑏2Var(𝑌). 

Property 6 (P6): Covariance and expectation: Cov(𝑋, 𝑌) = 𝐸(𝑋𝑌) − 𝜇𝑋𝜇𝑌. 
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Supplementary B: Results derived in the main paper 

Supplementary B1 – Variances in baseline-by-training interaction model 

The following data generating model was presented in the main paper to describe a participant-by-training interaction based 

on the baseline values of participants in the intervention group: 

𝑌𝑖𝑗1 = 𝑌𝑖𝑗0 + 𝛽0 + 𝛽1𝑋1.𝑗1
+ 𝛽2𝑋2.𝑗1

𝑌𝑖𝑗0 + 𝜁𝐸𝑥𝑡 𝑖.1
,                                                                                                                        𝑒𝑞. 1  

𝑌𝑖𝑗𝑘 , where 𝑖 is the 𝑖-th person in the 𝑗-th group {0=control, 1=intervention}, and 𝑘 is the time point {0=pre-training, 1=post-

training}. We have 𝑌.𝑗0~𝑁(𝜇0, 𝜑2), 𝛽0 is the mean change in the control group, 𝑋1.𝑗1
 and 𝑋2.𝑗1

are binary indicator variables 

that take on the value 0 for a participant in the control, and 1 for a participant in the intervention, 𝛽1 is required to set the 

expected change of the intervention relative to control, 𝛽2 controls the direction and magnitude of the relationship between 

baseline performance and change,  𝜁𝐸𝑥𝑡 𝑖.1
~𝑁(0, 𝜏𝐸𝑥𝑡

2 ) is used to describe external factors that cause variation independent of 

any interaction with the training stimulus. We also have the observed scores 𝑦𝑖𝑗𝑘 = 𝑌𝑖𝑗𝑘 + 𝜖𝑖𝑗𝑘 , where 𝜖𝑖𝑗𝑘~𝑁(0, 𝛿2) and is 

independent of  𝜁𝐸𝑥𝑡 𝑖.1
. For the model presented in eq.1 we have the following variances: 

Var(𝑌.𝑗0) = 𝜑2  

Var(𝑌.01) = 𝜑2 + 𝜏𝐸𝑥𝑡
2   

Var(𝑌.11) = (1 + 𝛽2)2𝜑2 + 𝜏𝐸𝑥𝑡
2 .  

For variances of the observed random variables 𝑦𝑖𝑗𝑘 , we simply add 𝛿2. 

We can see that the variance for the post training scores will be greater for the intervention group compared to control if 

𝛽2 > 0, and will be less if −1 < 𝛽2 < 0. In general, we expect the latter. 

 

We now derive the variances of the change values Δ𝑖𝑗. = 𝑦𝑖𝑗1 − 𝑦𝑖𝑗0. For the control we have: 

Var(Δ.0.)             = Var(𝑦.01) + Var(𝑦.00) − 2Cov(𝑦.01, 𝑦.00)  

   = 𝜑2 + 𝛿2 + 𝜑2 + 𝜏𝐸𝑥𝑡
2 + 𝛿2 − 2Cov(𝑦.01, 𝑦.00),  

Cov(𝑦.01, 𝑦.00) = 𝐸 ((𝑌.00 + 𝜖.00)(𝑌.00 + 𝛽0 + 𝜁𝐸𝑥𝑡 𝑖11
+ 𝜖.01)) − 𝜇𝑦.01

𝜇𝑦.00
  

 = 𝐸(𝑌.00
2 ) + 𝛽0𝐸(𝑌.00) − 𝜇0(𝜇0 + 𝛽0)   

 = Var(𝑌.00) + 𝜇0
2 + 𝛽0𝜇0 − 𝜇0

2 − 𝛽0𝜇0  

 = 𝜑2,  

Hence: 

Var(Δ.0.)           = 𝜏𝐸𝑥𝑡
2 + 2𝛿2.                      Result 1  
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For the intervention we have:  

Var(Δ.1.)                 = Var(𝑦.11) + Var(𝑦.10) − 2Cov(𝑦.11, 𝑦.10)  

        = 𝜑2 + 𝛿2 + (1 + 𝛽2)2𝜑2 + 𝜏𝐸𝑥𝑡
2 + 𝛿2 − 2Cov(𝑦.11, 𝑦.10)  

Cov(𝑦.11, 𝑦.10)     = 𝐸 ((𝑌.10 + 𝜖.10)(𝑌.10 + 𝛽0 + 𝛽1 + 𝛽2𝑌.10 + 𝜁𝐸𝑥𝑡𝑖11
+ 𝜖.11)) − 𝜇𝑦.11

𝜇𝑦.10
  

      = 𝐸(𝑌.10
2 ) + (𝛽0 + 𝛽1)𝐸(𝑌.10) + 𝛽2𝐸(𝑌.10

2 ) − 𝜇0(𝜇0 + 𝛽0 + 𝛽1 + 𝛽2𝜇0)   

      = Var(𝑌.10) + 𝜇0
2 + (𝛽0 + 𝛽1)𝜇0 + 𝛽2(Var(𝑌.10) + 𝜇0

2) − ((𝛽2 + 1)𝜇0
2 + (𝛽0 + 𝛽1)𝜇0)   

      = (1 + 𝛽2)𝜑2.  

Hence: 

Var(Δ.1.)               = (1 + 𝛽2)2𝜑2 − 2(1 + 𝛽2)𝜑2 + 𝜑2 + 𝜏𝐸𝑥𝑡
2 + 2𝛿2  

                      = (𝛽2
2 + 2𝛽2 + 1)𝜑2 − 2𝜑2 − 2𝛽2𝜑2 + 𝜑2 + 𝜏𝐸𝑥𝑡

2 + 2𝛿2  

                      = 𝛽2
2𝜑2 + 𝜏𝐸𝑥𝑡

2 + 2𝛿2.                                                                                   Result 2 

The results above show that for the data generating mechanism presented in eq.1, the variance of the change values for the 

intervention is greater compared to control, and that the relative increase is based on the value of 𝛽2 regardless of sign.  

 

Supplementary B2 – Results of the 𝑆𝐷𝐼𝑅 

The following data generating model was presented in the main paper as the canonical model for the standard deviation of 

individual response (𝑆𝐷𝐼𝑅): 

𝑌𝑖𝑗1 = 𝑌𝑖𝑗0 + 𝛽0 + 𝛽1𝑋1.𝑗1
+ 𝜁𝑇𝑟𝑎𝑖𝑛𝑖11

+ 𝜁𝐸𝑥𝑡 𝑖.1
.                                                                                                                       𝑒𝑞. 2  

where 𝜁𝑇𝑟𝑎𝑖𝑛𝑖11
~𝑁(0, 𝜏𝑇𝑟𝑎𝑖𝑛

2 ) is experienced only by the intervention group and the two random effect terms are 

independent for those in the intervention.  

𝑆𝐷𝐼𝑅    = √Var(Δ.1.) − Var(Δ.0.)                                                                                                                                                 𝑒𝑞. 3  

             = √𝜎Δ1

2 − 𝜎Δ0

2 ,  

where 𝜎Δ𝑗

2  are the population parameters describing the variance of the change values for group 𝑗. 

From the previous section Var(Δ.0.) = 𝜏𝐸𝑥𝑡
2 + 2𝛿2. 

For Δ𝑖1. and the data generating mechanism in eq.2 we have 

Var(Δ.1.)                 = Var(𝑦.11) + Var(𝑦.10) − 2Cov(𝑦.11, 𝑦.10)  

        = 𝜑2 + 𝛿2 + 𝜑2 + 𝜏𝑇𝑟𝑎𝑖𝑛
2 + 𝜏𝐸𝑥𝑡

2 + 𝛿2 − 2Cov(𝑦.11, 𝑦.10)  
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Cov(𝑦.11, 𝑦.10)     = 𝐸 ((𝑌.10 + 𝜖.10)(𝑌.10 + 𝛽0 + 𝛽1 + 𝜁𝑇𝑟𝑎𝑖𝑛 𝑖11
+ 𝜁𝐸𝑥𝑡 𝑖.1

+ 𝜖.11)) − 𝜇𝑦.11
𝜇𝑦.10

  

      = 𝐸(𝑌.10
2 ) + (𝛽0 + 𝛽1)𝐸(𝑌.10) − 𝜇0(𝜇0 + 𝛽0 + 𝛽1)   

      = Var(𝑌.10) + 𝜇0
2 + (𝛽0 + 𝛽1)𝜇0 − 𝜇0

2 − (𝛽0 + 𝛽1)𝜇0  

      = 𝜑2.  

Hence: 

Var(Δ.1.)               = 𝜑2 + 𝛿2 + 𝜑2 + 𝜏𝑇𝑟𝑎𝑖𝑛
2 + 𝜏𝐸𝑥𝑡

2 + 𝛿2 − 2𝜑2  

                      = 𝜏𝑇𝑟𝑎𝑖𝑛
2 + 𝜏𝐸𝑥𝑡

2 + 2𝛿2.  

With the variance in change values for both groups, we show that: 

𝑆𝐷𝐼𝑅    = √Var(Δ.1.) − Var(Δ.0.)                                                                                                                                                        

   = √𝜏𝑇𝑟𝑎𝑖𝑛
2 + 𝜏𝐸𝑥𝑡

2 + 2𝛿2 − 𝜏𝐸𝑥𝑡
2 − 2𝛿2 

            = 𝜏𝑇𝑟𝑎𝑖𝑛.                                                                                                                                                         Result 3 

 

Supplementary B3 – 𝑆𝐷𝐼𝑅  estimate and confidence intervals 

Let 𝑆Δ𝑗

2  be the sampling variance of the change values in group 𝑗, such that: 

𝑆Δ𝑗

2 =
1

𝑛𝑗−1
∑ (Δ𝑟𝑗. − Δ̅.𝑗.)

𝑛𝑗

𝑟=1

2
.  

Our sample statistic to estimate 𝑆𝐷𝐼𝑅 is denoted 𝑆𝐷̂𝐼𝑅, and we have that:  

𝑆𝐷̂𝐼𝑅 = √𝑆Δ1

2 − 𝑆Δ0

2 .                                                                                                                                                                          𝑒𝑞. 4     

The most popular method to calculate confidence intervals for 𝑆𝐷𝐼𝑅 uses the following steps: 1) calculate 𝑆𝐷̂𝐼𝑅
2 ; 2) estimate 

the standard error of 𝑆𝐷̂𝐼𝑅
2 ; 3) assume a normal distribution for 𝑆𝐷̂𝐼𝑅

2 ; 4) calculate a 100(1 − 𝛼)% confidence interval for 

𝑆𝐷𝐼𝑅
2  by adding and subtracting the required multiple of the standard error from 𝑆𝐷̂𝐼𝑅

2  using the inverse function of the 

standard normal cumulative distribution function; and 5) take the square root of the confidence limits to obtain a 

100(1 − 𝛼)% confidence interval for 𝑆𝐷𝐼𝑅 . Note, that if any of the limits for 𝑆𝐷𝐼𝑅
2  are negative, then the square root of the 

absolute value of the limit should be used and then the negative reintroduced.  

Given 𝑆𝐷̂𝐼𝑅
2 = 𝑆Δ1

2 − 𝑆Δ0

2 , the standard error is expressed as √Var(𝑆Δ1

2 − 𝑆Δ0

2 ). Since 𝑆Δ1

2  and 𝑆Δ0

2  are independent, we have 

that√Var(𝑆Δ1

2 − 𝑆Δ0

2 ) = √Var(𝑆Δ1

2 ) + Var(𝑆Δ0

2 )  Using Cochran’s theorem (1934) we have that (𝑛𝑗 − 1)𝑆Δ𝑗

2 ~𝜎Δ𝑗

2 𝜒𝑛𝑗−1
2 . 

Since the chi-squared distribution with 𝑛𝑗 − 1 degrees of freedom has variance 2(𝑛𝑗 − 1) we note that: 
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Var (𝑆Δ𝑗

2 )   = Var (
𝜎Δ𝑗

2

𝑛𝑗−1
𝜒𝑛𝑗−1

2 )  

= (
𝜎Δ𝑗

2

𝑛𝑗−1
)

2

Var (𝜒𝑛𝑗−1
2 )   

= (
𝜎Δ𝑗

2

𝑛𝑗−1
)

2

2(𝑛𝑗 − 1)    

=
2𝜎Δ𝑗

4

𝑛𝑗−1
.   

This quantity is then estimated by replacing 𝜎Δ𝑗

4  with 𝑆Δ𝑗

4 to give Var (𝑆Δ𝑗

2 ) ≈ 
2𝑆Δ𝑗

4

𝑛𝑗−1
 .  Therefore, we estimate the standard 

error of 𝑆𝐷̂𝐼𝑅
2  with: 

√Var(𝑆Δ1

2 ) + Var(𝑆Δ0

2 ) ≈ √2 (
𝑆Δ0

4

𝑛0−1
+

𝑆Δ1
4

𝑛1−1
) .  

Given the assumption of a normal distribution, a realisation of a 100(1 − 𝛼)% confidence interval can then be created with: 

𝑆𝐷̂𝐼𝑅
2 + 𝐹𝑧

−1(𝛼/2)√2 (
𝑆Δ0

4

𝑛0−1
+

𝑆Δ1
4

𝑛1−1
) < 𝑆𝐷𝐼𝑅

2 < 𝑆𝐷̂𝐼𝑅
2 + 𝐹𝑧

−1(1 − 𝛼/2)√2 (
𝑆Δ0

4

𝑛0−1
+

𝑆Δ1
4

𝑛1−1
) .                                                𝑒𝑞. 5  

where 𝐹𝑧
−1 is the inverse of the standard normal cumulative distribution function. 

 

A second method proposed by Hecksteden et al, 2018 is to use a chi-squared distribution for 𝑆𝐷̂𝐼𝑅
2  and then create a 

100(1 − 𝛼)% confidence interval with: 

(𝑛1 − 1)𝑆𝐷̂𝐼𝑅
2

𝐹
𝜒𝑛1−1

2
−1 (1 − 𝛼/2)

< 𝑆𝐷𝐼𝑅
2 <

(𝑛1 − 1)𝑆𝐷̂𝐼𝑅
2

𝐹
𝜒𝑛1−1

2
−1 (𝛼/2) 

,                                                                                                                          𝑒𝑞. 6 

where 𝐹𝜒𝑛1−1
2

−1  is the inverse of the cumulative distribution function for a chi-squared random variable with 𝑛1 − 1 degrees of 

freedom. As with the previous method, 100(1 − 𝛼)% confidence limits are obtained for 𝑆𝐷𝐼𝑅 by taking the square root of 

the initial limits and accounting for negative values if required. It is important to note, however, that whilst 
(𝑛𝑗−1)𝑆Δ𝑗

2

𝜎Δ𝑗
2  follows 

a chi-squared distribution, the difference between two random variables with a chi-squared distribution follows either a 

VarianceGamma distribution  (if the degrees of freedom are equal; Ferarri 2019) or a Gamma difference distribution (where 

the degrees of freedom are not equal; Klar 2015). These findings are based on noting that the chi-squared distribution is a 

special case of a Gamma distribution. Using the shape 𝑘 and scale 𝜃 parameterization for the Gamma distribution Γ(𝑘, 𝜃), 

we have the following probability distribution function: 

𝑓(𝑥; 𝑘, 𝜃) =
𝑥𝑘−1𝑒−𝑥/𝜃

θ𝑘Γ(𝑘)
.  

For the Chi-squared distribution with 𝜈 degrees of freedom we have:  
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𝑓(𝑥; 𝜈) =
𝑥(𝜈/2)−1𝑒−𝑥/2

2𝜈/2Γ(𝜈/2)
.  

We can see that the Chi-squared is Γ (
𝜈

2
, 2), and from Ferrari (2019) the case where we have two chi-squared random 

variables 𝑋1, 𝑋2 with the same degrees of freedom 𝜈, then their difference follows a VarianceGamma (VG) distribution: 

𝑋 = 𝑋1 − 𝑋2~𝑉𝐺 (0,2√𝜈, 0,
2

𝜈
), with location, spread, asymmetry and shape parameters. When degrees of freedom are not 

equal, the probability distribution function for the Gamma difference distribution is provided in Klar (2015).  

 

Given the 𝑆𝐷̂𝐼𝑅
2  does not follow a chi-squared distribution, as identified in the simulations documented in the supplementary 

R code for this review, the confidence intervals proposed by Hecksteden et al, 2018 are not likely to map to the proportions 

required.  

 

Finally, we introduce a third method for creating confidence intervals that maps to the 𝑆𝐷̂𝐼𝑅
2  sampling distribution across all 

sample sizes. The method is referred to as “melded confidence intervals” and can be used when we have confidence intervals 

for two parameters 𝜃1 and 𝜃2 from separate samples and wish to create a confidence interval for 𝑔(𝜃1, 𝜃2) such as 𝜃2 − 𝜃1. 

Given the data obtained from the two samples (𝒙𝟏, 𝒙𝟐), the approach requires the 100𝛼% one-sided lower and upper 

confidence limits 𝐿𝜃𝑖
(𝒙𝒊, 𝛼) and  𝑈𝜃𝑖

(𝒙𝒊𝛼), respectively. The 100(1 − 𝛼)% lower and upper one-sided melded confidence 

limits for 𝛽 = 𝑔(𝜃1, 𝜃2) are then given with:  

𝐿𝛽(𝒙, 1 − 𝛼) = the 𝛼-th quantile of 𝑔{𝑈𝜃1
(𝒙𝟏, 𝐴), 𝐿𝜃2

(𝒙𝟏, 𝐵), } 

𝑈𝛽(𝒙, 1 − 𝛼) = the (1 − 𝛼)-th quantile of 𝑔{𝐿𝜃1
(𝒙𝟏, 𝐴), 𝑈𝜃2

(𝒙𝟏, 𝐵), }, 

where 𝐴 and 𝐵 are independent and uniform random variables, such that the melded intervals can be calculated using Monte 

Carlo simulation or numeric integration.  

For 𝑆𝐷𝐼𝑅
2 = 𝜎Δ1

2 − 𝜎Δ0

2  and its estimate 𝑆𝐷̂𝐼𝑅
2 = 𝑆Δ1

2 − 𝑆Δ0

2 , we have (𝑛𝑗 − 1)𝑆Δ𝑗

2 ~𝜎Δ𝑗

2 𝜒𝑛𝑗−1
2 , hence to create a confidence 

interval for 𝜎Δ𝑗

2  we take our pivot 
(𝑛𝑗−1)𝑆Δ𝑗

2

𝜎Δ𝑗
2  and note that:  

𝑃 {𝐹𝜒𝑛𝑗−1
2

−1 (𝛼/2) <
(𝑛𝑗−1)𝑆Δ𝑗

2

𝜎Δ𝑗
2 < 𝐹𝜒𝑛𝑗−1

2
−1 (1 − 𝛼/2)} = 1 − 𝛼   → 

𝑃 {

𝐹
𝜒𝑛𝑗−1

2
−1 (𝛼/2)

(𝑛𝑗−1)𝑆Δ𝑗
2 <

1

𝜎Δ𝑗
2 <

𝐹
𝜒𝑛𝑗−1

2
−1 (1−𝛼/2)

(𝑛𝑗−1)𝑆Δ𝑗
2 } = 1 − 𝛼   →  

𝑃 {
(𝑛𝑗−1)𝑆Δ𝑗

2

𝐹
𝜒𝑛𝑗−1

2
−1 (𝛼/2)

> 𝜎Δ𝑗

2 >
(𝑛𝑗−1)𝑆Δ𝑗

2

𝐹
𝜒𝑛𝑗−1

2
−1 (1−𝛼/2)

} = 1 − 𝛼   →  
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𝑃 {
(𝑛𝑗−1)𝑆Δ𝑗

2

𝐹
𝜒𝑛𝑗−1

2
−1 (1−𝛼/2)

< 𝜎Δ𝑗

2 <
(𝑛𝑗−1)𝑆Δ𝑗

2

𝐹
𝜒𝑛𝑗−1

2
−1 (𝛼/2)

} = 1 − 𝛼.     

The 100(1 − 𝛼)% lower and upper one-sided melded confidence limits for 𝑆𝐷𝐼𝑅
2  are thus obtained with: 

𝐿𝑆𝐷𝐼𝑅
2 (𝒙𝒊, 𝛼) = the 𝛼-th quantile of (𝑛1 − 1)𝑆Δ1

2 /𝐹𝜒𝑛1−1 
2

−1 (𝐴)  − (𝑛0 − 1)𝑆Δ0

2 /𝐹𝜒𝑛0−1 
2

−1 (𝐵) 

𝑈𝑆𝐷𝐼𝑅
2 (𝒙𝒊, 𝛼) = the (1 − 𝛼)-th quantile of (𝑛1 − 1)𝑆Δ1

2 /𝐹𝜒𝑛1−1 
2

−1 (𝐴)  − (𝑛0 − 1)𝑆Δ0

2 /𝐹𝜒𝑛0−1 
2

−1 (𝐵)                                 𝑒𝑞. 7 

 

The above shows that for Monte Carlo simulation we would obtain two separate samples (𝐴 and 𝐵) from a Uniform(0,1); e.g. 

in R using runif(#sample). We would then plug these samples into Result 6; e.g. in R using qchisq(𝐴, 𝑛1 − 1) and take the 𝛼-

th and (1 − 𝛼)-th quantiles. As with the previous methods, 100(1 − 𝛼)% confidence limits are obtained for 𝑆𝐷𝐼𝑅 by taking 

the square root of the initial limits and accounting for negative values if required. 

 

Supplementary B4 – Model misspecification, post training error magnitude  

Model misspecification in terms of differential measurement error for groups post-intervention would cause the data 

generating model in eq.2 to be updated such that 𝜖𝑖𝑗1~𝑁(0, 𝛿2) is replaced with  𝜖𝑖𝑗1~𝑁(0, 𝛿.𝑗1
2 ). First, we examine what 

effect this may have on the quantity 𝑆𝐷𝐼𝑅  to represent 𝜏𝑇𝑟𝑎𝑖𝑛 . With this new data generating model we have: 

 

Var(Δ.0.) = 𝜏𝐸𝑥𝑡
2 + 𝛿2 + 𝛿.01

2 .  

Var(Δ.1.) = 𝜏𝑇𝑟𝑎𝑖𝑛
2 + 𝜏𝐸𝑥𝑡

2 + 𝛿2 + 𝛿.11
2 .  

𝑆𝐷𝐼𝑅 = √Var(Δ.1.) − Var(Δ.0.)  

= √𝜏𝑇𝑟𝑎𝑖𝑛
2 + 𝜏𝐸𝑥𝑡

2 + 𝛿2 + 𝛿.11
2 − 𝜏𝐸𝑥𝑡

2 − 𝛿2 − 𝛿.01
2   

= √𝜏𝑇𝑟𝑎𝑖𝑛
2 + 𝛿.11

2 − 𝛿.01
2 .                                                 Result 3 

 

Assume in addition to 𝑦𝑖𝑗1we have additional post training measurements 𝑦𝑖𝑗1𝐴
= 𝑌𝑖𝑗1 + 𝜖𝑖𝑗1𝐴

, and 𝑦𝑖𝑗1𝐵
= 𝑌𝑖𝑗1 + 𝜖𝑖𝑗1𝐵

. 

We will use the difference in these measurements which we define Δ𝑖𝑗1𝐴𝐵
= 𝑦𝑖𝑗1𝐵

− 𝑦𝑖𝑗1𝐴
. Across the two groups we have:  

Var(Δ𝑖01𝐴𝐵
) = Var(𝑦.01𝐵) + Var(𝑦.01𝐴) − 2Cov(𝑦.01𝐵, 𝑦.01𝐴)  

             = 𝜑2 + 𝜏𝐸𝑥𝑡
2 + 𝛿.01

2 + 𝜑2 + 𝜏𝐸𝑥𝑡
2 + 𝛿.01

2 − 2Cov(𝑦.01𝐵, 𝑦.01𝐴) 

               = 𝜑2 + 𝜏𝐸𝑥𝑡
2 + 𝛿.01

2 + 𝜑2 + 𝜏𝐸𝑥𝑡
2 + 𝛿.01

2 − 2𝜑2 − 2𝜏𝐸𝑥𝑡
2  

               = 2𝛿.01
2 . 
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Var(Δ𝑖11𝐴𝐵
) = Var(𝑦.11𝐵) + Var(𝑦.11𝐴) − 2Cov(𝑦.11𝐵, 𝑦.11𝐴)  

             = 𝜑2 + 𝜏𝑇𝑟𝑎𝑖𝑛
2 + 𝜏𝐸𝑥𝑡

2 + 𝛿.11
2 + 𝜑2 + 𝜏𝑇𝑟𝑎𝑖𝑛

2 + 𝜏𝐸𝑥𝑡
2 + 𝛿.11

2 − 2Cov(𝑦.11𝐵, 𝑦.11𝐴) 

               = 𝜑2 + 𝜏𝑇𝑟𝑎𝑖𝑛
2 + 𝜏𝐸𝑥𝑡

2 + 𝛿.11
2 + 𝜑2 + 𝜏𝑇𝑟𝑎𝑖𝑛

2 + 𝜏𝐸𝑥𝑡
2 + 𝛿.11

2 − 2𝜑2 − 2𝜏𝑇𝑟𝑎𝑖𝑛
2 − 2𝜏𝐸𝑥𝑡

2  

               = 2𝛿.11
2 . 

We now wish to use an updated 𝑆𝐷𝐼𝑅  denoted 𝑆𝐷̃𝐼𝑅, to account for the updated data generating model such that 𝑆𝐷̃𝐼𝑅  =

𝜏𝑇𝑟𝑎𝑖𝑛 . To obtain this we use: 

𝑆𝐷̃𝐼𝑅  = √Var(Δ.1.) − Var(Δ.0.) +
1

2
(Var(Δ𝑖01𝐴𝐵

) − Var(Δ𝑖11𝐴𝐵
))                                                                                    𝑒𝑞. 8  

 = √𝜏𝑇𝑟𝑎𝑖𝑛
2 + 𝛿.11

2 − 𝛿.01
2 +

1

2
(2𝛿.01

2 − 2𝛿.11
2 ) 

          = 𝜏𝑇𝑟𝑎𝑖𝑛                                                                                                                                                             Result 4  

We estimate 𝑆𝐷̃𝐼𝑅 with  𝑆𝐷̂̃𝐼𝑅, where:  

𝑆𝐷̂̃𝐼𝑅 = √𝑆Δ1

2 − 𝑆Δ0

2 +
1

2
(𝑆Δ0𝐴𝐵

2 − 𝑆Δ1𝐴𝐵

2 ),  

where 𝑆Δ𝑗𝐴𝐵

2  is the sample variance of the difference scores in the two post-training measurements used to estimate reliability 

in group 𝑗. To create confidence intervals for 𝑆𝐷̃𝐼𝑅, we assume a normal distribution for 𝑆𝐷̂̃𝐼𝑅
2 , estimate the standard error, 

calculate the 100(1 − 𝛼)% confidence interval and take the square of the limits as done previously. Using a similar process 

as previous, we estimate the standard error of 𝑆𝐷̂̃𝐼𝑅
2  as:  

√Var (𝑆𝐷̂̃𝐼𝑅
2 ) = √Var (𝑆Δ1

2 − 𝑆Δ0

2 +
1

2
(𝑆Δ0𝐴𝐵

2 − 𝑆Δ1𝐴𝐵

2 )).  

Expanding the different terms we can see that the sample variances are independent of each other such that: 

Var (𝑆Δ1

2 − 𝑆Δ0

2 +
1

2
(𝑆Δ0𝐴𝐵

2 − 𝑆Δ1𝐴𝐵

2 )) = Var(𝑆Δ1

2 ) + Var(𝑆Δ0

2 ) +
1

4
(Var (𝑆Δ0𝐴𝐵

2 ) + Var (𝑆Δ1𝐴𝐵

2 )). 

Based on the same reasoning with the chi-squared distribution as previous, we then have  

√Var(𝑆Δ1

2 ) +  Var(𝑆Δ0

2 ) +
1

4
(Var (𝑆Δ0𝐴𝐵

2 ) + Var (𝑆Δ1𝐴𝐵

2 )) ≈ √2 (
𝑆Δ0

4

𝑛0−1
+

𝑆Δ1
4

𝑛1−1
+

𝑆Δ0𝐴𝐵

4

4(𝑛0−1)
+

𝑆Δ1𝐴𝐵

4

4(𝑛1−1)
),  

with a 100(1 − 𝛼)% confidence interval obtained with: 

𝑆𝐷̂̃𝐼𝑅
2 + 𝐹𝑧

−1(𝛼/2)√2 (
𝑆Δ0

4

𝑛0−1
+

𝑆Δ1
4

𝑛1−1
+

𝑆Δ0𝐴𝐵

4

4(𝑛0−1)
+

𝑆Δ1𝐴𝐵

4

4(𝑛1−1)
) < 𝑆𝐷̃𝐼𝑅

2 < 𝑆𝐷̂̃𝐼𝑅
2 + 𝐹𝑧

−1(1 − 𝛼/2)√2 (
𝑆Δ0

4

𝑛0−1
+

𝑆Δ1
4

𝑛1−1
+

𝑆Δ0𝐴𝐵

4

4(𝑛0−1)
+

𝑆Δ1𝐴𝐵

4

4(𝑛1−1)
),                                         

where 𝐹𝑧
−1 is the inverse of the standard normal cumulative distribution function. 
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We now examine the calculations required when instead of conducting two separate post-training measures to account for 

model misspecification, we include the more likely research design where two measurements are conducted both pre- 

(𝑦𝑖𝑗0𝐴
, 𝑦𝑖𝑗0𝐵

) and post-training (𝑦𝑖𝑗1𝐴
, 𝑦𝑖𝑗1𝐵

), and both the average (𝑦̅𝑖𝑗𝑘𝐴𝐵
=

1

2
(𝑦𝑖𝑗𝑘𝐴

+ 𝑦𝑖𝑗𝑘𝐵
)) and differences within 

(Δ𝑖𝑗1𝐴𝐵
= 𝑦𝑖𝑗1𝐵

− 𝑦𝑖𝑗1𝐴
) and between (Δ𝑖𝑗.𝐴𝐵

= 𝑦̅𝑖𝑗1𝐴𝐵
− 𝑦̅𝑖𝑗0𝐴𝐵

) measurement times are used. we first derive some 

preliminary results. 

 

Var(𝑦̅.𝑗0𝐴𝐵
) = Var (

1

2
(𝑦.𝑗0𝐴

+ 𝑦.𝑗0𝐵
))  

              =
1

4
(Var(𝑦.𝑗0𝐴

) + Var(𝑦.𝑗0𝐵
) + 2Cov(𝑦.𝑗0𝐴

, 𝑦.𝑗0𝐵
)) 

              =
1

4
(2𝜑2 + 2𝛿2 + 2𝜑2) 

               = 𝜑2 +
𝛿2

2
. 

 

Var(𝑦̅.01𝐴𝐵
) = Var (

1

2
(𝑦.01𝐴

+ 𝑦.01𝐵
))  

              =
1

4
(Var(𝑦.01𝐴

) + Var(𝑦.01𝐵
) + 2Cov(𝑦.01𝐴

, 𝑦.01𝐵
)) 

              =
1

4
(2𝜑2 + 2𝜏𝐸𝑥𝑡

2 + 2𝛿.01
2 + 2𝜑2 + 2𝜏𝐸𝑥𝑡

2 ) 

               = 𝜑2 + 𝜏𝐸𝑥𝑡
2 +

𝛿.01
2

2
. 

 

Var(𝑦̅.11𝐴𝐵
) = Var (

1

2
(𝑦.11𝐴

+ 𝑦.11𝐵
))  

              =
1

4
(Var(𝑦.11𝐴

) + Var(𝑦.11𝐵
) + 2Cov(𝑦.11𝐴

, 𝑦.11𝐵
)) 

              =
1

4
(2𝜑2 + 2𝜏𝑇𝑟𝑎𝑖𝑛

2 + 2𝜏𝐸𝑥𝑡
2 + 2𝛿.11

2 + 2𝜑2 + 2𝜏𝑇𝑟𝑎𝑖𝑛
2 + 2𝜏𝐸𝑥𝑡

2 ) 

               = 𝜑2 + 𝜏𝑇𝑟𝑎𝑖𝑛
2 + 𝜏𝐸𝑥𝑡

2 +
𝛿.11

2

2
. 

 

Var(Δ.0.𝐴𝐵
)   = Var(𝑦̅.01𝐴𝐵

− 𝑦̅.00𝐴𝐵
)  

               = 𝜑2 + 𝜏𝐸𝑥𝑡
2 +

𝛿.01
2

2
+ 𝜑2 +

𝛿2

2
− 2Cov(𝑦̅.00𝐴𝐵

, 𝑦̅.01𝐴𝐵
). 
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Cov(𝑦̅.00𝐴𝐵
, 𝑦̅.01𝐴𝐵

) =
1

4
𝐸 ((𝑦.00𝐴

+ 𝑦.00𝐵
)(𝑦.01𝐴

+ 𝑦.01𝐵
)) −

1

4
𝜇𝑦̅.00𝐴𝐵

𝜇𝑦̅.01𝐴𝐵
  

                          =
1

4
𝐸 ((2𝑌.00 + 𝜖.00𝐴

+ 𝜖.00𝐵
)(2𝑌.00 + 2𝛽0 + 2𝜁𝐸𝑥𝑡 𝑖.1

+ 𝜖.01𝐴
+ 𝜖.01𝐵

)) −
1

4
(2𝜇02(𝜇0 + 𝛽0)) 

                            =
1

4
(4(𝐸(𝑌.00

2 )) + 4𝛽0𝐸(𝑌.00)) − 𝜇0
2 − 𝜇0𝛽0  

                                       = Var(𝑌.00) + 𝜇0
2 + 𝜇0𝛽0 − 𝜇0

2 − 𝜇0𝛽0  

                                       = 𝜑2  

Hence: 

Var(Δ.0.𝐴𝐵
) = 𝜏𝐸𝑥𝑡

2 +
1

2
(𝛿2 + 𝛿.01

2 )  

Similarly,  

Var(Δ.1.𝐴𝐵
)   = Var(𝑦̅.11𝐴𝐵

− 𝑦̅.10𝐴𝐵
)  

               = 𝜑2 + 𝜏𝑇𝑟𝑎𝑖𝑛
2 + 𝜏𝐸𝑥𝑡

2 +
𝛿.11

2

2
+ 𝜑2 +

𝛿2

2
− 2Cov(𝑦̅.10𝐴𝐵

, 𝑦̅.11𝐴𝐵
). 

                      = 𝜏𝑇𝑟𝑎𝑖𝑛
2 + 𝜏𝐸𝑥𝑡

2 +
1

2
(𝛿2 + 𝛿.11

2 )  

Given  

Var(Δ𝑖𝑗1𝐴𝐵
) = 2𝛿.𝑗1

2 , then under the current design with two pre- and two post-training measurements we can obtain 

𝜏𝑇𝑟𝑎𝑖𝑛 with  

𝑆𝐷̃𝐼𝑅 = √Var(Δ.1.𝐴𝐵
) − Var(Δ.0.𝐴𝐵

) +
1

4
(Var(Δ𝑖01𝐴𝐵

) − Var(Δ𝑖11𝐴𝐵
))    

= √𝜏𝑇𝑟𝑎𝑖𝑛
2 + 𝜏𝐸𝑥𝑡

2 +
1

2
(𝛿2 + 𝛿.11

2 ) − 𝜏𝐸𝑥𝑡
2 −

1

2
(𝛿2 + 𝛿.01

2 ) +
1

4
(2𝛿.01

2 − 2𝛿.11
2 )  

          = 𝜏𝑇𝑟𝑎𝑖𝑛 .                                                                                                                                                                              Result 5                                               

 

As was done previously, we estimate 𝑆𝐷̃𝐼𝑅 with  𝑆𝐷̂̃𝐼𝑅, where:  

𝑆𝐷̂̃𝐼𝑅 = √𝑆Δ̅1

2 − 𝑆Δ̅0

2 +
1

4
(𝑆Δ0𝐴𝐵

2 − 𝑆Δ1𝐴𝐵

2 ),  

where 𝑆Δ̅𝑗

2  is the sample variance of the difference in the average values across the two measurements pre- and post-training, 

and 𝑆Δ𝑗𝐴𝐵

2  is the sample variance of the difference scores in the two post-training measurements used to estimate reliability in 

group 𝑗. Using the same processes as done previously, we estimate the standard error and calculate the 100(1 − 𝛼)% 

confidence interval with:  
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√Var (𝑆𝐷̂̃𝐼𝑅
2 ) = √Var (𝑆Δ̅1

2 − 𝑆Δ̅0

2 +
1

4
(𝑆Δ0𝐴𝐵

2 − 𝑆Δ1𝐴𝐵

2 ))  

                         = √Var (𝑆Δ̅1

2 ) +  Var (𝑆Δ̅0

2 ) +
1

16
(Var (𝑆Δ0𝐴𝐵

2 ) + Var (𝑆Δ1𝐴𝐵

2 ))  

                          ≈ √2 (
𝑆

Δ̅0
4

𝑛0−1
+

𝑆
Δ̅1
4

𝑛1−1
+

𝑆Δ0𝐴𝐵

4

16(𝑛0−1)
+

𝑆Δ1𝐴𝐵

4

16(𝑛1−1)
),  

with a 100(1 − 𝛼)% confidence interval obtained with: 

𝑆𝐷̂̃𝐼𝑅
2 + 𝐹𝑧

−1(𝛼/2)√2 (
𝑆

Δ̅0
4

𝑛0−1
+

𝑆
Δ̅1
4

𝑛1−1
+

𝑆Δ0𝐴𝐵

4

16(𝑛0−1)
+

𝑆Δ1𝐴𝐵

4

16(𝑛1−1)
) < 𝑆𝐷̃𝐼𝑅

2 < 𝑆𝐷̂̃𝐼𝑅
2 + 𝐹𝑧

−1(1 − 𝛼/2)√2 (
𝑆

Δ̅0
4

𝑛0−1
+

𝑆
Δ̅1
4

𝑛1−1
+

𝑆Δ0𝐴𝐵

4

16(𝑛0−1)
+

𝑆Δ1𝐴𝐵

4

16(𝑛1−1)
),                                         

where 𝐹𝑧
−1 is the inverse of the standard normal cumulative distribution function. 

 

Supplementary B5 – variance heterogeneity in external factors 

To explore variance heterogeneity, we introduce the final data generating model: 

𝑌𝑖𝑗1 = 𝑌𝑖𝑗0 + 𝛽0 + 𝛽1𝑋1.𝑗1
+ 𝛽2𝑋2.𝑗1

+ 𝜁𝑇𝑟𝑎𝑖𝑛𝑖11
+ 𝜁𝐸𝑥𝑡 𝑖.1

.                                                                                                         𝑒𝑞. 9  

where 𝑋2𝑖𝑗1
 is a covariate measuring an external factor that influences the post-training value. 𝛽2 quantifies the magnitude and 

direction of the influence and is constant across individuals and groups. We have 𝑋2𝑖𝑗1
~𝑁 (𝜓2.𝑗1

, 𝜏2.𝑗1
) such that the mean 

and variance can differ across groups, and 𝑋2𝑖𝑗1
 is independent of 𝜁𝑇𝑟𝑎𝑖𝑛 𝑖11

 and 𝜁𝐸𝑥𝑡𝑖.1
. Here we show that if the standard 

definition of the 𝑆𝐷𝐼𝑅  is used we do not return 𝜏𝑇𝑟𝑎𝑖𝑛 as desired.  

𝑆𝐷𝐼𝑅    = √Var(Δ.1.) − Var(Δ.0.)                                                                                                                                                        

   = √𝛽2
2𝜏2

2
.11

+ 𝜏𝑇𝑟𝑎𝑖𝑛
2 + 𝜏𝐸𝑥𝑡

2 + 2𝛿2 − 𝛽2
2𝜏2

2
.01

− 𝜏𝐸𝑥𝑡
2 − 2𝛿2 

            = √𝜏𝑇𝑟𝑎𝑖𝑛
2 + 𝛽2

2(𝜏2
2

.11
− 𝜏2

2
.01

).                                                                                                                      Result 6 
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Supplementary C: R code 
# Supplementary C: R code 

# In the following file we demonstrate in R the supplementary results derived 

# Load packages 

library(ggplot2) 

library(tidybayes) 

 

# Supplementary B1 – Variances in baseline-by-training interaction model 

 

# Fist we create a function to generate data according to eq.1 in the main paper 

# and supplementary file  

DataCreateModelEq1 = function(n0,n1,Beta_2, Y_ij0_mu = 100, Y_ij0_sd = 15,Beta_0 

= 5,Beta_1 = 15, 

                          tau_Extsd = 6,epsilon_sd = 2){ 

  Y_i00 = rnorm(n0,Y_ij0_mu,Y_ij0_sd) 

  Y_i10 = rnorm(n1,Y_ij0_mu,Y_ij0_sd) 

  Y_i01 = Y_i00 + Beta_0 + rnorm(n0,0,tau_Extsd)  

  Y_i11 = Y_i10 + Beta_0 + Beta_1 + Beta_2*Y_i10  + rnorm(n1,0,tau_Extsd)  

  y_i00 = Y_i00 + rnorm(n0,0,epsilon_sd) 

  y_i10 = Y_i10 + rnorm(n1,0,epsilon_sd) 

  y_i01 = Y_i01 + rnorm(n0,0,epsilon_sd) 

  y_i11 = Y_i11 + rnorm(n1,0,epsilon_sd) 

  diff0 = y_i01-y_i00 

  diff1 = y_i11-y_i10 

  return(list(diff0,diff1,y_i00,y_i01,y_i10,y_i11))} 

 

# We create three sets of data, the first where beta_2 = 0,  

# the second with beta_2 = -0.7,  

# the third with beta_2 = 0.7 

set.seed(123) 

Eq1Data1 = DataCreateModelEq1(1000000,1000000,0) 

Eq1Data2 = DataCreateModelEq1(1000000,1000000,-0.7) 

Eq1Data3 = DataCreateModelEq1(1000000,1000000,0.7) 

 

# We show that when beta_2 = 0 that the change value variance is the same for  

# intervention and control 

round(var(Eq1Data1[[1]]),1) 

# 44 

round(var(Eq1Data1[[2]]),1) 

# 44 

 

# We show that when beta_2 \neq 0 that the change value variance is greater  

# for the intervention and the same regardless of sign 

round(var(Eq1Data2[[2]]),1) 

# 154.4 

round(var(Eq1Data3[[2]]),1) 

# 154.4 

 

# Check Result 1 

round(var(Eq1Data1[[1]]),1) 

# 44 

6^2 + 2*(2^2) 

# 44 

 

# Check Result 2 

round(var(Eq1Data2[[2]]),0) 

# 154 

round(((-0.7)^2)*(15^2) + 6^2 + 2*(2^2),0) 

# 154 

 

# Supplementary B2 – Results of the SD_IR 
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### Graphical overview of SDIR 

 

SDIRPlot = data.frame(Value = c(rnorm(10000,10,8),rnorm(10000,10,5)), 

                               Fill = c(rep("A",10000),rep("B",10000))) 

 

ggplot(SDIRPlot, aes(x=Value, fill=Fill)) + 

  geom_density(alpha=.25, adjust = 2) + theme_classic() + xlab("Pre- to post-

training difference") + 

  theme(axis.title.y=element_blank(), 

        axis.text.y=element_blank(),  

        axis.ticks.y=element_blank()) +  

  geom_vline(xintercept=10, 

               color = "black", size=1) + 

  geom_vline(xintercept=0, linetype="dashed",  

               color = "red", size=0.8) +  

  annotate(geom="text", x=22.5, y=0.075,  

           label=expression(paste("Individual response = N(Mean 

change,",tau[Train]^2,")")))+ 

annotate(geom="text", x=32, y=0.025,  

         label=expression(paste("Gross response = N(Mean 

change,",tau[Train]^2,"+", 

                                tau[Ext]^2,"+",epsilon^2,")"))) + 

  theme(legend.position = "none") + scale_x_continuous(breaks=seq(-20,40,10)) 

 

 

# Fist we create a function to generate data according to eq.2  

DataCreateModelEq2 = function(n0,n1,Y_ij0_mu = 100, Y_ij0_sd = 15,Beta_0 = 

5,Beta_1 = 15, 

                          tau_Trainsd = 10,tau_Extsd = 6,epsilon_ijk = 2){ 

  Y_i00 = rnorm(n0,Y_ij0_mu,Y_ij0_sd) 

  Y_i10 = rnorm(n1,Y_ij0_mu,Y_ij0_sd) 

  Y_i01 = Y_i00 + Beta_0 + rnorm(n0,0,tau_Extsd)  

  Y_i11 = Y_i10 + Beta_0 + Beta_1 + rnorm(n1,0,tau_Trainsd) + 

rnorm(n1,0,tau_Extsd)  

  y_i00 = Y_i00 + rnorm(n0,0,epsilon_ijk) 

  y_i10 = Y_i10 + rnorm(n1,0,epsilon_ijk) 

  y_i01 = Y_i01 + rnorm(n0,0,epsilon_ijk) 

  y_i11 = Y_i11 + rnorm(n1,0,epsilon_ijk) 

  diff0 = y_i01-y_i00 

  diff1 = y_i11-y_i10 

  return(list(diff0,diff1))} 

 

set.seed(123) 

Eq2Data1 = DataCreateModelEq2(1000000,1000000) 

 

# Check Result 3 

round(sqrt(var(Eq2Data1[[2]])-var(Eq2Data1[[1]])),1) 

# 10 

 

# Supplementary B3 – SD_IR estimate and confidence intervals 

 

# Normal distribution confidence intervals  

NormalCI = function(n0,n1,niter,Trainsd){ 

  LB = c(NULL) 

  UB = c(NULL) 

  SDIR2 = c(NULL) 

  # Run simulation 

  for(i in 1:niter){ 

    # Simulate data 

    Data = DataCreateModelEq2(n0,n1,tau_Trainsd=Trainsd) 

    # Calculate SDIR^2 estimate 
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    SDIR2[i] = var(Data[[2]])-var(Data[[1]]) 

    # Calculate standard error for SDIR^2 estimate 

    SE = sqrt(2*(sd(Data[[1]])^4/(length(Data[[1]])-

1)+sd(Data[[2]])^4/(length(Data[[2]])-1))) 

    # Calculate 95% CI 

    LB[i]=SDIR2[i]-1.96*SE 

    UB[i]=SDIR2[i]+1.96*SE 

     

  } 

  # Proportion of intervals that include true vale for SDIR^2 

  Prop = mean(LB<(Trainsd^2)&UB>(Trainsd^2)) 

  Out = list(SDIR2,LB,UB,Prop) 

  return(Out)} 

 

# Test on equal sample sizes of 10/20/50/100 

 

# Normal, N0 = 10; N1 = 10 

set.seed(123) 

NormalCI1010 = NormalCI(10,10,10000,10) 

# Proportion of intervals that contain true value  

NormalCI1010[[4]] 

# 0.8961 

 

# Normal, N0 = 20; N1 = 20 

set.seed(123) 

NormalCI2020 = NormalCI(20,20,10000,10) 

# Proportion of intervals that contain true value  

NormalCI2020[[4]] 

# 0.918 

 

# Normal, N0 = 50; N1 = 50 

set.seed(123) 

NormalCI5050 = NormalCI(50,50,10000,10) 

# Proportion of intervals that contain true value  

NormalCI5050[[4]] 

# 0.9365 

 

# Normal, N0 = 100; N1 = 100 

set.seed(123) 

NormalCI100100 = NormalCI(100,100,10000,10) 

# Proportion of intervals that contain true value  

NormalCI100100[[4]] 

# 0.9472 

 

# Unequal sample sizes 

# Normal, N0 = 5; N1 = 10 

set.seed(123) 

NormalCI510 = NormalCI(5,10,10000,10) 

# Proportion of intervals that contain true value  

NormalCI510[[4]] 

# 0.9359 

 

# Normal, N0 = 10; N1 = 20 

set.seed(123) 

NormalCI1020 = NormalCI(10,20,10000,10) 

# Proportion of intervals that contain true value  

NormalCI1020[[4]] 

# 0.9431 

 

# Normal, N0 = 25; N1 = 50 

set.seed(123) 
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NormalCI2550 = NormalCI(25,50,10000,10) 

# Proportion of intervals that contain true value  

NormalCI2550[[4]] 

# 0.9496 

 

# Normal, N0 = 50; N1 = 100 

set.seed(123) 

NormalCI50100 = NormalCI(50,100,10000,10) 

# Proportion of intervals that contain true value  

NormalCI50100[[4]] 

# 0.9499 

 

##### Chi-squared  

ChiCI = function(n0,n1,niter,Trainsd){ 

  LB = c(NULL) 

  UB = c(NULL) 

  SDIR2 = c(NULL) 

  # Run simulation 

  for(i in 1:niter){ 

    # Simulate data 

    Data = DataCreateModelEq2(n0,n1,tau_Trainsd=Trainsd) 

    # Calculate SDIR^2 estimate 

    # Take the absolute value to match the chi-squared being positive onlyu 

    SDIR2[i] = var(Data[[2]])-var(Data[[1]]) 

    # Calculate CI bound 

    # Calculate 95% CI 

    LB[i]=(SDIR2[i]*(n1-1))/qchisq(0.975,(n1-1)) 

    UB[i]=(SDIR2[i]*(n1-1))/qchisq(0.025,(n1-1)) 

     

  } 

  # Proportion of intervals that include true vale for SDIR^2 

  Prop = mean(LB<(Trainsd^2)&UB>(Trainsd^2)) 

  Out = list(SDIR2,LB,UB,Prop) 

  return(Out)} 

 

# Test on equal sample sizes of 10/20/50/100 

 

# Chi, N0 = 10; N1 = 10 

set.seed(123) 

ChiCI1010 = ChiCI(10,10,10000,10) 

# Proportion of intervals that contain true value  

ChiCI1010[[4]] 

# 0.7822 

 

 

# Chi, N0 = 20; N1 = 20 

set.seed(123) 

ChiCI2020 = ChiCI(20,20,10000,10) 

# Proportion of intervals that contain true value  

ChiCI2020[[4]] 

# 0.7962 

 

# Chi, N0 = 50; N1 = 50 

set.seed(123) 

ChiCI5050 = ChiCI(50,50,10000,10) 

# Proportion of intervals that contain true value  

ChiCI5050[[4]] 

# 0.8 

 

# Chi, N0 = 100; N1 = 100 

set.seed(123) 
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ChiCI100100 = ChiCI(100,100,10000,10) 

# Proportion of intervals that contain true value  

ChiCI100100[[4]] 

# 0.806 

 

# Unequal sample sizes 

# Chi, N0 = 5; N1 = 10 

set.seed(123) 

ChiCI510 = ChiCI(5,10,10000,10) 

# Proportion of intervals that contain true value  

ChiCI510[[4]] 

# 0.7662 

 

# Chi, N0 = 10; N1 = 20 

set.seed(123) 

ChiCI1020 = ChiCI(10,20,10000,10) 

# Proportion of intervals that contain true value  

ChiCI1020[[4]] 

# 0.7756 

 

# Chi, N0 = 25; N1 = 50 

set.seed(123) 

ChiCI2550 = ChiCI(25,50,10000,10) 

# Proportion of intervals that contain true value  

ChiCI2550[[4]] 

# 0.7843 

 

# Chi, N0 = 50; N1 = 100 

set.seed(123) 

ChiCI50100 = ChiCI(50,100,10000,10) 

# Proportion of intervals that contain true value  

ChiCI50100[[4]] 

# 0.783 

 

# Melded 

MeldCI = function(n0,n1,niter,MCiter,Trainsd){ 

  LB = c(NULL) 

  UB = c(NULL) 

  SDIR2 = c(NULL) 

  # Run simulation 

  for(i in 1:niter){ 

    # Simulate data 

    Data = DataCreateModelEq2(n0,n1,tau_Trainsd=Trainsd) 

    # Calculate SDIR^2 estimate 

    SDIR2[i] = var(Data[[2]])-var(Data[[1]]) 

    # Calculate CI bound 

    Chisq0 = (sd(Data[[1]])^2)*(length(Data[[1]])-

1)/qchisq(runif(MCiter),(length(Data[[1]])-1)) 

    Chisq1 = (sd(Data[[2]])^2)*(length(Data[[2]])-

1)/qchisq(runif(MCiter),(length(Data[[2]])-1)) 

    Bound = Chisq1-Chisq0 

    LB[i]=quantile(Bound,0.025) 

    UB[i]=quantile(Bound,0.975) 

 

  } 

  # Proportion of intervals that include true vale for SDIR^2 

  Prop = mean(LB<(Trainsd^2)&UB>(Trainsd^2)) 

  Out = list(SDIR2,LB,UB,Prop) 

  return(Out)} 

 

# Test on equal sample sizes of 10/20/50/100 
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# Meld, N0 = 10; N1 = 10 

set.seed(123) 

MeldCI1010 = MeldCI(10,10,10000,1000,10) 

# Proportion of intervals that contain true value  

MeldCI1010[[4]] 

# 0.9514 

 

 

# Meld, N0 = 20; N1 = 20 

set.seed(123) 

MeldCI2020 = MeldCI(20,20,10000,1000,10) 

# Proportion of intervals that contain true value  

MeldCI2020[[4]] 

# 0.9496 

 

# Meld, N0 = 50; N1 = 50 

set.seed(123) 

MeldCI5050 = MeldCI(50,50,10000,1000,10) 

# Proportion of intervals that contain true value  

MeldCI5050[[4]] 

# 0.9514 

 

# Meld, N0 = 100; N1 = 100 

set.seed(123) 

MeldCI100100 = MeldCI(100,100,10000,1000,10) 

# Proportion of intervals that contain true value  

MeldCI100100[[4]] 

# 0.9512 

 

# Unequal sample sizes 

# Meld, N0 = 5; N1 = 10 

set.seed(123) 

MeldCI510 = MeldCI(5,10,10000,1000,10) 

# Proportion of intervals that contain true value  

MeldCI510[[4]] 

# 0.9551 

 

# Meld, N0 = 10; N1 = 20 

set.seed(123) 

MeldCI1020 = MeldCI(10,20,10000,1000,10) 

# Proportion of intervals that contain true value  

MeldCI1020[[4]] 

# 0.9515 

 

# Meld, N0 = 25; N1 = 50 

set.seed(123) 

MeldCI2550 = MeldCI(25,50,10000,1000,10) 

# Proportion of intervals that contain true value  

MeldCI2550[[4]] 

# 0.948 

 

# Meld, N0 = 50; N1 = 100 

set.seed(123) 

MeldCI50100 = MeldCI(50,100,10000,1000,10) 

# Proportion of intervals that contain true value  

MeldCI50100[[4]] 

# 0.9488 

 

# Plots  
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# SDIR2 

SDIR2DF = data.frame(SDIR2 = c(NormalCI1010[[1]],NormalCI2020[[1]], 

                                NormalCI5050[[1]],NormalCI100100[[1]]), 

                      Group = c(rep("N1=10",length(NormalCI1010[[1]])), 

                                rep("N1=20",length(NormalCI2020[[1]])), 

                                rep("N1=50",length(NormalCI5050[[1]])), 

                                rep("N1=100",length(NormalCI100100[[1]])))) 

 

SDIR2DF$Group = factor(SDIR2DF$Group, levels=c("N1=10","N1=20", 

                                                 "N1=50","N1=100")) 

 

SDIR2DFOR = SDIR2DF[SDIR2DF$SDIR2<300,] 

ggplot(SDIR2DFOR,aes(x = Group, y = SDIR2, fill=Group)) + 

  stat_halfeye() +  theme_classic() + theme(legend.position="none")  + 

  labs(x="", y=expression(widehat(SD)[IR]^2)) +  

  geom_hline(yintercept = 100, color = "red", linetype=2) +  

  scale_x_discrete(labels=c("N1=10" = bquote("n" [1]~"=10"), "N1=20" = bquote("n" 

[1]~"=20"),  

                            "N1=50" = bquote("n" [1]~"=50"),"N1=100" = bquote("n" 

[1]~"=100"))) 

 

# CI Plot  

CIDFPlot = data.frame(Bound = c(NormalCI1010[[2]],NormalCI2020[[2]], 

                                  NormalCI5050[[2]],NormalCI100100[[2]], 

                                  NormalCI1010[[3]],NormalCI2020[[3]], 

                                  NormalCI5050[[3]],NormalCI100100[[3]], 

                                   

                                  ChiCI1010[[2]],ChiCI2020[[2]], 

                                  ChiCI5050[[2]],ChiCI100100[[2]], 

                                  ChiCI1010[[3]],ChiCI2020[[3]], 

                                  ChiCI5050[[3]],ChiCI100100[[3]], 

                                   

                                  MeldCI1010[[2]],MeldCI2020[[2]], 

                                  MeldCI5050[[2]],MeldCI100100[[2]], 

                                  MeldCI1010[[3]],MeldCI2020[[3]], 

                                  MeldCI5050[[3]],MeldCI100100[[3]]), 

                                   

                          Group = 

c(rep(c(rep("N1=10",length(NormalCI1010[[1]])), 

                                      rep("N1=20",length(NormalCI2020[[1]])), 

                                      rep("N1=50",length(NormalCI5050[[1]])), 

                                      

rep("N1=100",length(NormalCI100100[[1]]))),2), 

                                     

                                    rep(c(rep("N1=10",length(ChiCI1010[[1]])), 

                                          rep("N1=20",length(ChiCI2020[[1]])), 

                                          rep("N1=50",length(ChiCI5050[[1]])), 

                                          

rep("N1=100",length(ChiCI100100[[1]]))),2), 

                                     

                                    rep(c(rep("N1=10",length(MeldCI1010[[1]])), 

                                          rep("N1=20",length(MeldCI2020[[1]])), 

                                          rep("N1=50",length(MeldCI5050[[1]])), 

                                          

rep("N1=100",length(MeldCI100100[[1]]))),2)), 

                           

                                  BoundType = 

c(rep("LB",(length(NormalCI1010[[1]])+ 

                                                  length(NormalCI1010[[1]])+ 

                                                  length(NormalCI1010[[1]])+ 

                                                  length(NormalCI1010[[1]]))), 
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rep("UB",(length(NormalCI1010[[1]])+ 

                                                  length(NormalCI1010[[1]])+ 

                                                  length(NormalCI1010[[1]])+ 

                                                  length(NormalCI1010[[1]]))), 

                                                 

                                                

rep("LB",(length(ChiCI1010[[1]])+ 

                                                            

length(ChiCI1010[[1]])+ 

                                                            

length(ChiCI1010[[1]])+ 

                                                            

length(ChiCI1010[[1]]))), 

                                                

rep("UB",(length(ChiCI1010[[1]])+ 

                                                            

length(ChiCI1010[[1]])+ 

                                                            

length(ChiCI1010[[1]])+ 

                                                            

length(ChiCI1010[[1]]))), 

                                                 

                                                

rep("LB",(length(MeldCI1010[[1]])+ 

                                                            

length(MeldCI1010[[1]])+ 

                                                            

length(MeldCI1010[[1]])+ 

                                                            

length(MeldCI1010[[1]]))), 

                                                

rep("UB",(length(MeldCI1010[[1]])+ 

                                                            

length(MeldCI1010[[1]])+ 

                                                            

length(MeldCI1010[[1]])+ 

                                                            

length(MeldCI1010[[1]])))), 

                       

                  Distribution = c(rep(rep("Normal",(length(NormalCI1010[[1]])+ 

                                             length(NormalCI1010[[1]])+ 

                                             length(NormalCI1010[[1]])+ 

                                             length(NormalCI1010[[1]]))),2), 

          

                  rep(rep("Chi-squared",(length(ChiCI1010[[1]])+ 

                                   length(ChiCI1010[[1]])+ 

                                   length(ChiCI1010[[1]])+ 

                                   length(ChiCI1010[[1]]))),2), 

                   

                  rep(rep("Melded",(length(MeldCI1010[[1]])+ 

                                    length(MeldCI1010[[1]])+ 

                                    length(MeldCI1010[[1]])+ 

                                    length(MeldCI1010[[1]]))),2))) 

                   

 

CIDFPlot$Group = factor(CIDFPlot$Group, levels=c("N1=10","N1=20", 

                                                     "N1=50","N1=100")) 

 

ggplot(CIDFPlot[CIDFPlot$Bound<700& 
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                  CIDFPlot$Bound>-200,],aes(x = Distribution, y = Bound, fill = 

BoundType)) + 

  stat_halfeye(position = "dodge",width=0.6) +   

  theme_classic() + theme(legend.position="none")  + 

  labs(x="", y=expression(widehat(SD)[IR]^2)) +  

  scale_y_continuous(breaks = seq(-200,600,200))+ 

  geom_hline(yintercept = 100, color = "red", linetype=2) + 

  facet_wrap(~Group) 

 

 

# Supplementary B4 – Model misspecification, post training error magnitude 

 

# Function to create data 

DataCreatePostR = function(n0,n1,Y_ij0_mu = 100, Y_ij0_sd = 15,Beta_0 = 5,Beta_1 

= 15, 

                           tau_Trainsd = 10,tau_Extsd = 6,epsilon_ij0 = 4, 

                           epsilon_i01 = 4, epsilon_i11 = 2){ 

  Y_i00 = rnorm(n0,Y_ij0_mu,Y_ij0_sd) 

  Y_i10 = rnorm(n1,Y_ij0_mu,Y_ij0_sd) 

  Y_i01 = Y_i00 + Beta_0 + rnorm(n0,0,tau_Extsd)  

  Y_i11 = Y_i10 + Beta_0 + Beta_1 + rnorm(n1,0,tau_Trainsd) + 

rnorm(n1,0,tau_Extsd)  

  y_i00 = Y_i00 + rnorm(n0,0,epsilon_ij0) 

  y_i10 = Y_i10 + rnorm(n1,0,epsilon_ij0) 

  y_i01 = Y_i01 + rnorm(n0,0,epsilon_i01) 

  y_i01a = Y_i01 + rnorm(n0,0,epsilon_i01) 

  y_i01b = Y_i01 + rnorm(n0,0,epsilon_i01) 

  y_i11 = Y_i11 + rnorm(n1,0,epsilon_i11) 

  y_i11a = Y_i11 + rnorm(n1,0,epsilon_i11) 

  y_i11b = Y_i11 + rnorm(n1,0,epsilon_i11) 

  diff0 =  y_i01 - y_i00 

  diff1 =  y_i11 - y_i10 

  diff0AB = y_i01b - y_i01a 

  diff1AB = y_i11b - y_i11a 

  return(list(diff0,diff1,diff0AB,diff1AB))} 

 

# Check Result 4 

ModelMisAB = DataCreatePostR(10000,10000) 

round(sqrt(var(ModelMisAB[[2]])-var(ModelMisAB[[1]])+ 

       0.5*var(ModelMisAB[[3]])+0.5*var(ModelMisAB[[4]])),0) 

# 10 

      

 

# Function to create CIs  

NormalCICompare = function(n0,n1,niter,Trainsd){ 

  LBOriginal = c(NULL) 

  UBOriginal = c(NULL) 

  LBUpdate = c(NULL) 

  UBUpdate = c(NULL) 

  SDIR2Original = c(NULL) 

  SDIR2Update = c(NULL) 

  # Run simulation 

  for(i in 1:niter){ 

    # Simulate data 

    Data = DataCreatePostR(n0,n1,tau_Trainsd=Trainsd) 

    # Calculate SDIR^2 estimates 

    SDIR2Original[i] = var(Data[[2]])-var(Data[[1]]) 

    SDIR2Update[i] = var(Data[[2]])-var(Data[[1]]) + 0.5*var(Data[[3]]) -

0.5*var(Data[[4]]) 

    # Calculate standard error for SDIR^2 estimate 
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    SEOriginal = sqrt(2*(sd(Data[[1]])^4/(length(Data[[1]])-

1)+sd(Data[[2]])^4/(length(Data[[2]])-1))) 

    SEUpdate = sqrt(2*(sd(Data[[1]])^4/(length(Data[[1]])-

1)+sd(Data[[2]])^4/(length(Data[[2]])-1)+ 

                         sd(Data[[3]])^4/(4*(length(Data[[1]])-

1))+sd(Data[[4]])^4/(4*(length(Data[[1]])-1)))) 

    # Calculate 95% CI 

    LBOriginal[i]=SDIR2Original[i]-1.96*SEOriginal 

    UBOriginal[i]=SDIR2Original[i]+1.96*SEOriginal 

    LBUpdate[i]=SDIR2Update[i]-1.96*SEUpdate 

    UBUpdate[i]=SDIR2Update[i]+1.96*SEUpdate 

     

  } 

  # Proportion of intervals that include true vale for SDIR^2 

  PropOriginal = mean(LBOriginal<(Trainsd^2)&UBOriginal>(Trainsd^2)) 

  PropUpdate = mean(LBUpdate<(Trainsd^2)&UBUpdate>(Trainsd^2)) 

  Out = list(SDIR2Original,SDIR2Update,LBOriginal,UBOriginal, 

             LBUpdate,UBUpdate,PropOriginal,PropUpdate ) 

  return(Out)} 

 

# Normal, N0 = 10; N1 = 10 

set.seed(123) 

NormalCI1010Compare = NormalCICompare(10,10,10000,10) 

# Proportion of intervals that contain true value  

NormalCI1010Compare[[7]] 

# 0.8907 

NormalCI1010Compare[[8]] 

# 0.9199 

 

# Normal, N0 = 20; N1 = 20 

set.seed(123) 

NormalCI2020Compare = NormalCICompare(20,20,10000,10) 

# Proportion of intervals that contain true value  

NormalCI2020Compare[[7]] 

# 0.9055 

NormalCI2020Compare[[8]] 

# 0.9389 

 

# Normal, N0 = 50; N1 = 50 

set.seed(123) 

NormalCI5050Compare = NormalCICompare(50,50,10000,10) 

# Proportion of intervals that contain true value  

NormalCI5050Compare[[7]] 

# 0.9018 

NormalCI5050Compare[[8]] 

# 0.9455 

 

# Normal, N0 = 100; N1 = 100 

set.seed(123) 

NormalCI100100Compare = NormalCICompare(100,100,10000,10) 

# Proportion of intervals that contain true value  

NormalCI100100Compare[[7]] 

# 0.8923 

NormalCI100100Compare[[8]] 

# 0.9498 

 

 

#### Two points pre and post 

DataCreatePostR2 = function(n0,n1,Y_ij0_mu = 100, Y_ij0_sd = 15,Beta_0 = 5,Beta_1 

= 15, 

                           tau_Trainsd = 10,tau_Extsd = 6,epsilon_ij0 = 4, 
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                           epsilon_i01 = 4, epsilon_i11 = 2){ 

  Y_i00 = rnorm(n0,Y_ij0_mu,Y_ij0_sd) 

  Y_i10 = rnorm(n1,Y_ij0_mu,Y_ij0_sd) 

  Y_i01 = Y_i00 + Beta_0 + rnorm(n0,0,tau_Extsd)  

  Y_i11 = Y_i10 + Beta_0 + Beta_1 + rnorm(n1,0,tau_Trainsd) + 

rnorm(n1,0,tau_Extsd)  

  y_i00a = Y_i00 + rnorm(n0,0,epsilon_ij0) 

  y_i00b = Y_i00 + rnorm(n0,0,epsilon_ij0) 

  y_i10a = Y_i10 + rnorm(n1,0,epsilon_ij0) 

  y_i10b = Y_i10 + rnorm(n1,0,epsilon_ij0) 

  y_i01a = Y_i01 + rnorm(n0,0,epsilon_i01) 

  y_i01b = Y_i01 + rnorm(n0,0,epsilon_i01) 

  y_i11a = Y_i11 + rnorm(n1,0,epsilon_i11) 

  y_i11b = Y_i11 + rnorm(n1,0,epsilon_i11) 

  bary_i00 = 0.5*(y_i00a+y_i00b) 

  bary_i10 = 0.5*(y_i10a+y_i10b) 

  bary_i01 = 0.5*(y_i01a+y_i01b) 

  bary_i11 = 0.5*(y_i11a+y_i11b) 

  diff0 =  bary_i01 - bary_i00 

  diff1 =  bary_i11 - bary_i10 

  diff0AB = y_i01b - y_i01a 

  diff1AB = y_i11b - y_i11a 

  return(list(diff0,diff1,diff0AB,diff1AB))} 

 

# Check Result 5 

ModelMisAB2 = DataCreatePostR2(10000,10000) 

round(sqrt(var(ModelMisAB2[[2]])-var(ModelMisAB2[[1]])+ 

             0.25*var(ModelMisAB2[[3]])+0.25*var(ModelMisAB2[[4]])),0) 

# 10 

 

# Function to create CIs 

NormalCICompare2 = function(n0,n1,niter,Trainsd){ 

  LB = c(NULL) 

  UB = c(NULL) 

  SDIR2 = c(NULL) 

 

  # Run simulation 

  for(i in 1:niter){ 

    # Simulate data 

    Data = DataCreatePostR2(n0,n1,tau_Trainsd=Trainsd) 

    # Calculate SDIR^2 estimates 

    SDIR2[i] = var(Data[[2]])-var(Data[[1]]) + 0.25*var(Data[[3]]) -

0.25*var(Data[[4]]) 

    # Calculate standard error for SDIR^2 estimate 

    SE = sqrt(2*(sd(Data[[1]])^4/(length(Data[[1]])-

1)+sd(Data[[2]])^4/(length(Data[[2]])-1)+ 

                         sd(Data[[3]])^4/(16*(length(Data[[1]])-

1))+sd(Data[[4]])^4/(16*(length(Data[[1]])-1)))) 

    # Calculate 95% CI 

    LB[i]=SDIR2[i]-1.96*SE 

    UB[i]=SDIR2[i]+1.96*SE 

 

  } 

  # Proportion of intervals that include true vale for SDIR^2 

  Prop = mean(LB<(Trainsd^2)&UB>(Trainsd^2)) 

  Out = list(SDIR2,LB,UB,Prop) 

  return(Out)} 

 

# Normal, N0 = 10; N1 = 10 

set.seed(123) 

NormalCI1010Compare2 = NormalCICompare2(10,10,10000,10) 
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# Proportion of intervals that contain true value  

NormalCI1010Compare2[[4]] 

# 0.905 

 

# Normal, N0 = 20; N1 = 20 

set.seed(123) 

NormalCI2020Compare2 = NormalCICompare2(20,20,10000,10) 

# Proportion of intervals that contain true value  

NormalCI2020Compare2[[4]] 

# 0.9253 

 

 

# Normal, N0 = 50; N1 = 50 

set.seed(123) 

NormalCI5050Compare2 = NormalCICompare2(50,50,10000,10) 

# Proportion of intervals that contain true value  

NormalCI5050Compare2[[4]] 

 

# Normal, N0 = 100; N1 = 100 

set.seed(123) 

NormalCI100100Compare2 = NormalCICompare2(100,100,10000,10) 

# Proportion of intervals that contain true value  

NormalCI100100Compare2[[4]] 

 

# Compare 

mean(NormalCI1010Compare[[1]]) 

mean(NormalCI1010Compare[[2]]) 

mean(NormalCI1010Compare2[[1]]) 

 

median(NormalCI1010Compare[[3]]) 

median(NormalCI1010Compare[[5]]) 

median(NormalCI1010Compare2[[2]]) 

 

median(NormalCI1010Compare[[4]]) 

median(NormalCI1010Compare[[6]]) 

median(NormalCI1010Compare2[[3]]) 

 

 

# CI Plot  

CIDFPlot2 = data.frame(Bound = 

c(NormalCI1010Compare[[3]],NormalCI2020Compare[[3]], 

                                 

NormalCI5050Compare[[3]],NormalCI100100Compare[[3]], 

                                 

NormalCI1010Compare[[4]],NormalCI2020Compare[[4]], 

                                 

NormalCI5050Compare[[4]],NormalCI100100Compare[[4]], 

                                 

                                 

NormalCI1010Compare[[5]],NormalCI2020Compare[[5]], 

                                 

NormalCI5050Compare[[5]],NormalCI100100Compare[[5]], 

                                 

NormalCI1010Compare[[6]],NormalCI2020Compare[[6]], 

                                 

NormalCI5050Compare[[6]],NormalCI100100Compare[[6]], 

                               

                                 

NormalCI1010Compare2[[2]],NormalCI2020Compare2[[2]], 

                                 

NormalCI5050Compare2[[2]],NormalCI100100Compare2[[2]], 
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NormalCI1010Compare2[[3]],NormalCI2020Compare2[[3]], 

                                 

NormalCI5050Compare2[[3]],NormalCI100100Compare2[[3]]), 

                       

                      Group = 

c(rep(c(rep("N1=10",length(NormalCI1010Compare[[1]])), 

                                      

rep("N1=20",length(NormalCI2020Compare[[1]])), 

                                      

rep("N1=50",length(NormalCI5050Compare[[1]])), 

                                      

rep("N1=100",length(NormalCI100100Compare[[1]]))),2), 

                                 

                                

rep(c(rep("N1=10",length(NormalCI1010Compare[[1]])), 

                                      

rep("N1=20",length(NormalCI2020Compare[[1]])), 

                                      

rep("N1=50",length(NormalCI5050Compare[[1]])), 

                                      

rep("N1=100",length(NormalCI100100Compare[[1]]))),2), 

                                 

                                

rep(c(rep("N1=10",length(NormalCI1010Compare2[[1]])), 

                                      

rep("N1=20",length(NormalCI2020Compare2[[1]])), 

                                      

rep("N1=50",length(NormalCI5050Compare2[[1]])), 

                                      

rep("N1=100",length(NormalCI100100Compare2[[1]]))),2)), 

                       

                      BoundType = c(rep("LB",(length(NormalCI1010Compare[[1]])+ 

                                                

length(NormalCI1010Compare[[1]])+ 

                                                

length(NormalCI1010Compare[[1]])+ 

                                                

length(NormalCI1010Compare[[1]]))), 

                                    rep("UB",(length(NormalCI1010Compare[[1]])+ 

                                                

length(NormalCI1010Compare[[1]])+ 

                                                

length(NormalCI1010Compare[[1]])+ 

                                                

length(NormalCI1010Compare[[1]]))), 

                                     

                                    rep("LB",(length(NormalCI1010Compare[[1]])+ 

                                                

length(NormalCI1010Compare[[1]])+ 

                                                

length(NormalCI1010Compare[[1]])+ 

                                                

length(NormalCI1010Compare[[1]]))), 

                                    rep("UB",(length(NormalCI1010Compare[[1]])+ 

                                                

length(NormalCI1010Compare[[1]])+ 

                                                

length(NormalCI1010Compare[[1]])+ 

                                                

length(NormalCI1010Compare[[1]]))), 
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                                    rep("LB",(length(NormalCI1010Compare2[[1]])+ 

                                                

length(NormalCI1010Compare2[[1]])+ 

                                                

length(NormalCI1010Compare2[[1]])+ 

                                                

length(NormalCI1010Compare2[[1]]))), 

                                    rep("UB",(length(NormalCI1010Compare2[[1]])+ 

                                                

length(NormalCI1010Compare2[[1]])+ 

                                                

length(NormalCI1010Compare2[[1]])+ 

                                                

length(NormalCI1010Compare2[[1]])))), 

                       

                      Distribution = 

c(rep(rep("Normal0",(length(NormalCI1010Compare[[1]])+ 

                                                           

length(NormalCI1010Compare[[1]])+ 

                                                           

length(NormalCI1010Compare[[1]])+ 

                                                           

length(NormalCI1010Compare[[1]]))),2), 

                                        

                                       

rep(rep("Normal1",(length(NormalCI1010Compare[[1]])+ 

                                                                

length(NormalCI1010Compare[[1]])+ 

                                                                

length(NormalCI1010Compare[[1]])+ 

                                                                

length(NormalCI1010Compare[[1]]))),2), 

                                        

                                       

rep(rep("Normal2",(length(NormalCI1010Compare2[[1]])+ 

                                                           

length(NormalCI1010Compare2[[1]])+ 

                                                           

length(NormalCI1010Compare2[[1]])+ 

                                                           

length(NormalCI1010Compare2[[1]]))),2))) 

 

 

CIDFPlot2$Group = factor(CIDFPlot2$Group, levels=c("N1=10","N1=20", 

                                                 "N1=50","N1=100")) 

 

ggplot(CIDFPlot2[CIDFPlot2$Bound<700& 

                   CIDFPlot2$Bound>-200,],aes(x = Distribution, y = Bound, fill = 

BoundType)) + 

  stat_halfeye(position = "dodge",width=0.6) +   

  theme_classic() + theme(legend.position="none")  + 

  labs(x="", y=expression(widehat(SD)[IR]^2)) +  

  scale_y_continuous(breaks = seq(-200,600,200))+ 

  geom_hline(yintercept = 100, color = "red", linetype=2) + 

  facet_wrap(~Group) 

 

# Supplementary B5 – variance heterogeneity in external factors 

 

# Fist we create a function to generate data according to eq.9 in the main paper 

# and supplementary file  
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DataCreateModelEq9 = function(n0,n1,Beta_2, Y_ij0_mu = 100, Y_ij0_sd = 15,Beta_0 

= 5,Beta_1 = 15, 

                              tau_Trainsd = 10, tau_Extsd = 6,epsilon_sd = 2, 

                              X2mu = 5, X2sd0 = 4, X2sd1 = 2){ 

  Y_i00 = rnorm(n0,Y_ij0_mu,Y_ij0_sd) 

  Y_i10 = rnorm(n1,Y_ij0_mu,Y_ij0_sd) 

  X2_i01 = rnorm(n0,X2mu,X2sd0) 

  X2_i11 = rnorm(n0,X2mu,X2sd1) 

  Y_i01 = Y_i00 + Beta_0 + Beta_2*X2_i01 + rnorm(n0,0,tau_Extsd)  

  Y_i11 = Y_i10 + Beta_0 + Beta_1 + Beta_2*X2_i11  + rnorm(n1,0,tau_Trainsd) + 

rnorm(n1,0,tau_Extsd)  

  y_i00 = Y_i00 + rnorm(n0,0,epsilon_sd) 

  y_i10 = Y_i10 + rnorm(n1,0,epsilon_sd) 

  y_i01 = Y_i01 + rnorm(n0,0,epsilon_sd) 

  y_i11 = Y_i11 + rnorm(n1,0,epsilon_sd) 

  diff0 = y_i01-y_i00 

  diff1 = y_i11-y_i10 

  return(list(diff0,diff1,y_i00,y_i01,y_i10,y_i11))} 

 

# We create three sets of data, the first where beta_2 = 0,  

# the second with beta_2 = -2,  

# the third with beta_2 = 2 

set.seed(123) 

Eq9Data1 = DataCreateModelEq9(1000000,1000000,0) 

Eq9Data2 = DataCreateModelEq9(1000000,1000000,-2) 

Eq9Data3 = DataCreateModelEq9(1000000,1000000,2) 

 

# We show that when beta_2 = 0 that the SD_IR returns the correct value  

round(sqrt(var(Eq9Data1[[2]])-var(Eq9Data1[[1]])),1) 

 

# Check Result 6 

# We show that when beta_2 \neq 0 that the SD_IR returns Result 6 in the 

supplementary  

round(sqrt(var(Eq9Data2[[2]])-var(Eq9Data2[[1]])),1) 

# 7.2 

round(sqrt(var(Eq9Data3[[2]])-var(Eq9Data3[[1]])),1) 

# 7.2 

round(sqrt(10^2 + ((2^2)*((2^2)-(4^2)))),1) 

# 7.2 
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