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Abstract 

Background: In strength and conditioning (S&C) it is commonly believed that baseline capability 

influences response to an intervention, such that in general, those with the higher baseline values 

experience reduced change. Such differences are referred to as intervention differential effects (IDE) 

and are important in the study of  tailoring training programs in S&C. There are, however, several 

conceptual and technical issues that present a challenge when investigating whether baseline capability 

causes IDE. The present review provides an overview of  these conceptual and technical issues, 

highlighting important differences between changes within and between populations, and the role of  

measurement error and subsequent regression to the mean when performing standard analyses.  

Methods: The present review also includes a meta-analysis to explore more generally, whether those 

with higher baseline values experience reduced change. Baseline and post-intervention standard 

deviations were extracted from 421 S&C training studies including the 1RM squat (121 studies; 329 

outcomes), 1RM bench press (103 studies; 307 outcomes), vertical jump (312 studies; 896 outcomes), 

10 m sprint time (95 studies; 194 outcomes), 20 m sprint time (97 studies; 193 outcomes), and 30 m 

sprint time (58 studies; 118 outcomes). For each outcome, a Bayesian three-level hierarchical meta-

analysis model was conducted to estimate the pooled mean difference of  the standard deviations. 

Where results indicated that the post-intervention standard deviation was equal to, or less than the 

baseline standard deviation, this was interpreted as evidence of  a negative relationship between baseline 

and change values. Where results indicated a greater post-intervention standard deviation, this was 

judged as indeterminate due to the potential for random variation in intervention effects to increase the 

post-intervention standard deviation.  

Results: Moderate evidence was obtained for a reduction in standard deviation post-intervention for 

the vertical jump (Difference0.5 = -0.07 [95%CrI: -0.16 to 0.02 cm]; p(Difference <0)= 0.933); and 

strong evidence for the same with sprint time across all three distances (10 m: Difference0.5 = -0.007 

[95%CrI: -0.012 to -0.003 s]; p(Difference <0)>0.999; 20 m: Difference0.5 = -0.020 [95%CrI: -0.034 to -
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0.009 s]; p(Difference <0)>0.999; 30 m: Difference0.5 = -0.011 [95%CrI: -0.020 to -0.002 s]; 

p(Difference <0)=0.992). In contrast, strong evidence was obtained for an increase in post-intervention 

standard deviation for the 1RM squat (Difference0.5 = 0.93 [95%CrI: 0.52 to 1.34 kg]; p(Difference 

<0)<0.001) and bench press (Difference0.5 = 0.69 [95%CrI: 0.40 to 0.98 kg]; p(Difference <0)<0.001).  

Conclusion: Collectively, the results present evidence for a negative IDE of  baseline capability for 

sprint and vertical jump performance, but not maximum strength. Further research that is cognisant of  

the conceptual and analytical challenges in determining if  baseline capability causes IDE is required, 

including the contexts and populations in S&C which may alter the interactions.   
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1.0 Introduction 

Strength and conditioning (S&C) is frequently used in the development of  a range of  outcomes 

important for sporting performance and the ability to carry out demanding physical tasks. Many studies 

have been conducted to identify the types of  interventions that best improve performance of  a 

population on average, across a range of  outcomes and domains. As knowledge has been gained and 

general principles developed, interest has grown in the study of  maximising improvements through 

processes such as individualisation of  interventions. To achieve individualisation, the factors that tend 

to influence response to an intervention must be identified and modifications then mapped to the 

individual’s level. Non-random variation in response to an intervention is referred to as intervention 

differential effects (IDE), with an individual’s baseline capability believed to be an important cause of  

IDE in S&C. It is generally posited that baseline capability is inversely related to improvements such 

that those with higher baseline performances experience reduced improvements (Appleby et al, 2012; 

Wetmore et al, 2020).  

 

Despite the general belief  that baseline capability causes IDE, there are several conceptual issues and 

analytical technicalities that create challenges when investigating any influence. Conceptual issues 

include the important difference of  comparisons between and within populations, and specifics such as 

intervention duration. Analytical technicalities include phenomena such as mathematical coupling and 

regression to the mean that can interfere with statistical approaches frequently used in S&C, creating 

bias and, in some cases, spurious results. The purpose of  this review is to highlight and discuss these 

conceptual issues and analytical technicalities. A more general assessment of  baseline capability and 

IDE in S&C is also explored using meta-analyses with a large aggregate data set extracted from S&C 

interventions across a range of  popular outcomes.    
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1.1 Conceptual Issues 

Conceptually it is important to distinguish between the relative improvements of  different populations 

and the relative improvements of  individuals within a population that start with different capabilities. 

Across different populations, the influence of  baseline capability and IDE is relatively simple, and 

research has consistently shown that more advanced populations experience smaller improvements than 

less advanced populations. Across a twenty-one-week resistance training intervention comparing 

experienced strength athletes and untrained males, Ahtiainen et al, (2003) reported increases of  20.9% 

in maximum force and 5.6% in muscle cross-sectional area for the untrained group, compared with 

changes of  3.9 and -1.8% for the trained group. Additionally, multiple long-term (≥1 year) studies have 

identified relatively small magnitude (Appleby et al, 2012) or non-significant changes (Häkkinen et al, 

1987) in the strength of  elite athletes clearly indicating the existence of  ceiling effects. What is less 

clear, however, is whether those with higher baseline values experience different magnitudes of  

improvement compared to those with lower baseline values within the same population. For example, 

whether the strongest individuals within an untrained population (e.g. have never performed structured 

resistance exercise) will increase strength more or less than those with lower baseline values. 

Additionally, it is not clear whether any IDE caused by baseline capability would be similar within 

untrained, intermediate, and elite populations. Whilst often not stated explicitly in these terms, this 

appears to be one of  the main questions of  interest for individualising S&C interventions.  

 

Another important conceptual issue is the duration of  the intervention. Most research in S&C is 

conducted over a single intervention with durations between 6 and 12 weeks, and 95% of  interventions 

lasting less than 25 weeks (Swinton et al, 2022). The change across such short time periods is likely to 

be relatively simple and constrain the form of  any relationship with baseline capability. In contrast, 

long-term interventions are likely to create more complex and non-linear changes (Steele et al, 2022), 

such that any relationship may be different to those obtained with short interventions. Future research 
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should be cognisant of  these potential differences and seek to explore IDE and baseline capability 

relationships across a range of  durations employing suitable research designs and analyses.  

 

1.2 Analytical 

Previous research in S&C has generally adopted one of  two different approaches to investigate baseline 

capability and IDE within a population. The first is to perform the intervention and then include basic 

correlation or regression analyses of  change and baseline values (Appleby et al, 2012; Latella 2020). The 

second is to perform the intervention and then group individuals using baseline values and a threshold, 

comparing differences in mean change between the created groups (James et al, 2018; Wetmore et al, 

2020). Both approaches can be severely impaired and result in spurious relationships or differences 

where none exist, or bias results where there is an underlying effect. These limitations are due to 

mathematical coupling and regression to the mean. In the following sections these processes are 

explained with a plausible data generating model used to provide interpretable formulae.    

 

1.2.1 Mathematical coupling 

The correlation between baseline (𝑃𝑟𝑒) and change (𝑃𝑜𝑠𝑡 − 𝑃𝑟𝑒) values results in part from the 

mathematical coupling between the two terms. Mathematical coupling occurs when one variable is part 

of  another (Chiolero et al, 2013) and occurs independently of  measurement error. Previous discussions 

of  mathematical coupling and IDE often begin by highlighting the spurious relationship that occurs 

when correlating baseline and change values when 𝑃𝑟𝑒 and 𝑃𝑜𝑠𝑡 values are unrelated (see 

Supplementary B1). Baseline and post-intervention values are, however, always correlated in S&C, such 

that mathematical coupling does not produce spurious results, but is best understood as a process that 

constrains the variances and relationships between baseline, post-intervention, and change values. To 

https://doi.org/10.31236/osf.io/y7sk6


Doi:10.51224/SRXIV.285 SportR𝜒iv Preprint version 1 

 

 

highlight these constraints, it is best to introduce a plausible data generating model that describes IDE 

due to baseline values. A simple data generating model includes the following:  

𝑃𝑜𝑠𝑡 = 𝑃𝑟𝑒 + 𝛽0 + 𝛽1𝑃𝑟𝑒 + 𝜉.                                                                                                                                   𝑒𝑞. 1  

𝑃𝑜𝑠𝑡 and 𝑃𝑟𝑒 are the true baseline and post-intervention values without measurement error and 𝛽0 is a 

constant describing systematic change. Where IDE due to baseline capability exists, 𝛽1 will be non-zero, 

and in general −1 < 𝛽1 < 0. True variation in intervention effects beyond baseline capability (e.g. 

variation due to the participant, training, and external factors such as nutrition and sleep) is described 

by the random error term 𝜉~𝑁(0, 𝜈2). For the purposes of  regression and correlation, we can also 

express the data generating model as: 

𝑃𝑜𝑠𝑡 = 𝛽0 + (1 + 𝛽1)𝑃𝑟𝑒 + 𝜉,                                                                                                                                                        𝑒𝑞. 2  

where we regress post-intervention values on baseline values and obtain an estimate of  𝛽1 by 

subtracting 1. Additionally, we can express the model as:  

𝑃𝑜𝑠𝑡 − 𝑃𝑟𝑒 = 𝛽0 + 𝛽1𝑃𝑟𝑒 + 𝜉,                                                                                                                                                       𝑒𝑞. 3  

where we regress change on baseline values to obtain an estimate of  𝛽1. To identify the constraints 

induced by mathematical coupling (Supplementary B2), we first note that the correlation between true 

baseline and post-intervention values (𝜌) is predominantly determined by the variance ratio of  baseline 

values (𝜎2) and the random intervention effect (𝜈2): 

Cor(𝑃𝑟𝑒, 𝑃𝑜𝑠𝑡) =
1+𝛽1

√(1+𝛽1)2+
𝜈2

𝜎2

.                                                                                                                                                        𝑒𝑞. 4  

The correlation between true baseline and change values (Supplementary B2) is then given by: 

Cor(𝑃𝑟𝑒, 𝑃𝑜𝑠𝑡 − 𝑃𝑟𝑒) =
𝜌√Var(𝑃𝑜𝑠𝑡)−√Var(𝑃𝑟𝑒)

√(Var(𝑃𝑟𝑒)+Var(𝑃𝑜𝑠𝑡)−2𝜌√Var(𝑃𝑟𝑒)Var(𝑃𝑜𝑠𝑡))
.                                                                                      𝑒𝑞. 5  
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Here the constraints from mathematical coupling show that as 0 < 𝜌 < 1, the correlation between true 

baseline and change values will always be negative if  the variance of  post-intervention values is equal to 

or less than the variance of  baseline values.   

 

1.2.2 Regression to the mean  

In the previous section it was shown that mathematical coupling imposes several constraints that 

are well understood when relating baseline and change values from a simple data generating model. 

Importantly, if  outcomes were measured without error, simple correlation or regression could be used 

to obtain appropriate parameter estimates including any IDE due to baseline capability. In many 

measurements routinely used in S&C, however, large measurement errors occur, and it is these errors 

that create regression to the mean and can create biased estimates and spurious results. Regression to 

the mean is defined as a statistical phenomenon occurring due to errors in repeated measurements 

made on the same individual that can be the cause of  observed change (Barnett et al, 2005). In general, 

we model measurement errors as being normally distributed around a hypothetical true value which 

remains unknown, but can be considered the average of  a very large number of  independent trials: 

𝑝𝑟𝑒 = 𝑃𝑟𝑒 + 𝜖; 𝑝𝑜𝑠𝑡 = 𝑃𝑜𝑠𝑡 + 𝜖,                                                                                                                                                   𝑒𝑞. 6  

where lower case 𝑝𝑟𝑒 and 𝑝𝑜𝑠𝑡 are the observed baseline and post-intervention values, and 

measurement errors 𝜖~𝑁(0, 𝛿2) are independent for each individual and each time point.  

 

Measurement error is any difference between the observed and true value and comprises 

instrumentation noise and biological noise. The former includes error due to the measurement 

apparatus and variation in the instantiation of  a test. For example, in a one-repetition maximum (1RM) 

test, instrumentation noise can comprise non-calibrated barbells and weights, and the test administrator 

failing to notice a participant shortening the required range of  motion. Similarly, in a vertical jump test, 
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instrumentation noise can comprise non-calibrated jump-mat timers, and participants extending time in 

the air by flexing lower-body joints. In contrast, biological noise comprises error due to biological 

processes such as circadian rhythm, nutritional intake, previous sleep, and motivation. It is important to 

note that measurement error definitions and associated gaussian models are appropriate for maximum 

tests such as the 1RM. That is, we conceive of  an individual’s true 1RM value not as the maximum 

performance that could be achieved under any permissible state (e.g. ruling out stimulants and any 

other acute enhancement), but as the theoretical average of  a very large number of  independent trials 

that will exhibit variation due to a range of  instrumentation and biological factors.    

 

The process by which measurement errors create regression to the mean is straightforward when we 

consider errors to be independent. Where for example, an individual experiences a large positive error, 

the subsequent measurement error is likely to be lower such that the observed difference (𝑝𝑜𝑠𝑡 − 𝑝𝑟𝑒) 

will be smaller than the true difference (𝑃𝑜𝑠𝑡 − 𝑃𝑟𝑒). The opposite effect occurs for individuals that 

experience an initial large negative error. This phenomenon can be easily illustrated by correlating the 

initial measurement error with the change value which creates a negative correlation with greater 

absolute value for tests with higher measurement errors (Supplementary C1). 

 

To quantify the effects of  regression to the mean when estimating the influence of  baseline capability 

on change, we consider separately the two standard analytical approaches used in S&C research. Firstly, 

we consider the continuous case where an intervention is conducted, and change values are regressed 

on baseline values. Given our data generating model presented in 𝑒𝑞. 1, we wish to estimate the 

parameter 𝛽1. Where there is no measurement error, we obtain an unbiased estimate. We can show, 

however (Supplementary C2), where we have measurement error simply regressing observed change 

and baseline values gives the estimate 𝛽̂1, where: 
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𝛽̂1 =
𝛽1𝜎2−𝛿2

𝜎2+𝛿2 .                                                                                                                                                                                        𝑒𝑞. 7  

This equation shows that where there is no IDE from baseline values (𝛽1 = 0), we will estimate a 

negative regression coefficient that increases in absolute magnitude as measurement errors increase and 

the group studied is more homogenous. Where there is IDE from baseline values (𝛽1 ≠ 0) the equation 

shows that bias will increase with greater measurement error (approaching -1) and will tend to decrease 

towards the true population value as the baseline variation increases.  

 

The second analytical approach commonly used in S&C to investigate potential IDE from baseline 

values is to conduct an intervention and post-hoc, split the sample into groups using baseline values 

and a threshold. The threshold may be determined a priori (Wetmore et al, 2020) or with an arbitrary 

midpoint generating what can be labelled for example ‘stronger’ and ‘weaker’ groups (James et al, 2018). 

Conceptually, the limitation of  this method is that some of  the individuals in the stronger group will 

have exceeded the threshold based on a positive measurement error, and conversely, some of  those in 

the weaker group due to a negative measurement error. Regression to the mean tends to result in those 

mislabelled as stronger observing lower change and those mislabelled as weaker observing greater 

change than is true. When the mean of  the weaker group is subtracted from the stronger group 

regression to the mean will bias results and where there is no IDE from baseline values, we will tend to 

observe a negative value indicating greater improvement of  the weaker group. More formally, it can be 

shown (Supplementary C3) where there is no IDE from baseline values the regression to the mean 

when selecting a threshold 𝑐 is equal to:  

−
𝛿2

√(𝜎2+𝛿2)
(𝐶(𝑧𝑝𝑟𝑒

− ) + 𝐶(𝑧𝑝𝑟𝑒
+ )) ,                                                                                                                                                    𝑒𝑞. 8  

where 𝑧𝑝𝑟𝑒
+ = (

𝑐−𝜇𝑝𝑟𝑒

√𝜎2+𝛿2 
), 𝑧𝑝𝑟𝑒

− = (
𝜇𝑝𝑟𝑒−𝑐

√𝜎2+𝛿2 
), and 𝐶(𝑧) is the ratio of  the standard normal density function 

(𝜙(𝑧)) and one minus the cumulative distribution function (Φ(𝑧)). As with the continuous case, the 

analysis shows that the magnitude of  the regression to the mean effect is increased as measurement 
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error increases and the group studied is more homogenous. Additionally, eq.8 shows that the regression 

to the mean effect is increased as the threshold value moves further from the population mean. 

 

1.2.2 Accounting for regression to the mean  

Multiple methods have been proposed to account for regression to the mean and obtain unbiased 

estimates of  the relationship between baseline capability and change. One popular method includes 

Oldham’s method (1962) which regresses change values on the average of  the baseline and post-

intervention values. This method is reflective of  the Bland-Altman method and associated plot 

frequently used in criterion validity and reliability analyses (Bland and Altman 1986). In some cases, 

Oldham’s method (1962) obtains non-biased estimates of  the relationship between baseline capability 

and change. The biological significance of  a correlation between change values and the middle value of  

an intervention has, however, been criticised (MacGregor et al, 1985). In addition, the method does not 

perform well when there is variation in intervention effect reflected by 𝜈2 (Hayes 1988). It is important 

to note the difference between variation in intervention effect and the concept of  trainability that has 

been discussed more recently in S&C (Hecksteden et al, 2015). Here, trainability refers to individual 

participant factors (e.g. genotype, previous training history) that interact with the training stimulus to 

cause systematic variation in the intervention effect (Hecksteden et al, 2015). These factors could be 

added to the data generating model and reduce the random variation 𝜈2. The extent to which these 

factors exist, however, is debated, with many recent reviews failing to provide quality evidence 

(Williamson et al, 2017;Bonafiglia et al, 2022). Approaches to test for trainability have typically 

compared variation in change values between intervention and control groups, and concluded there is 

evidence of  trainability when the variance is greater in those performing the intervention (Atkinson et 

al, 2019). Whilst this approach may appropriately identify the existence of  trainability when systematic 

variation is large and positive, there are several potential subtleties that may conceal any relationship 

and cause observed variation to be similar between intervention and control groups ( 
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An alternative method that can be used to estimate the relationship between baseline capability and 

change whilst accounting for regression to the mean is Blomqvist’s method (1977). In 𝑒𝑞. 7 we 

presented the estimate of  the IDE from baseline values (𝛽̂1) in terms of  the true population value (𝛽) 

and showed that the two were not equal. In Blomqvist’s method (1977), we rewrite the equation and 

identify the adjustment required so that our new estimate (𝛽1) provides an unbiased estimate of  the 

true population value using the original biased estimate:  

𝛽1 =
𝛽̂1

(𝜎2+𝛿2)+𝛿2

𝜎2
.                                                                                                                                                                            𝑒𝑞. 9  

Blomqvist also provided an approximate standard error (Blomqvist 1977), and we note that the 

expression does not feature 𝜈2, such that the relationship holds regardless of  whether there is variation 

in the intervention effect. To use Blomqvist’s method we must include an estimate of  the measurement 

error 𝛿2 which can be obtained from reliability studies reporting typical error. Additionally, the baseline 

value standard deviation 𝜎 should represent the population standard deviation, and not just those 

included in the study (Hayes 1988). Multiple simulations have confirmed that Blomqvist’s method can 

be used to obtain suitable estimates of  the relationship between change and baseline capability (Hayes 

1988; Chiolero et al, 2013), however, additional methods including the use of  multi-level models can 

also be used and may be more effective where measurements are collected multiple times during the 

intervention (Chiolero et al, 2013).  
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2.0 Meta-analysis 

The meta-analysis was conducted on a database of  S&C training studies obtained from a search of  the 

literature comprising studies from 1962 to 2018. The database included information describing 

outcome variables along with baseline and follow-up means and standard deviations and has been 

described elsewhere (Swinton et al, 2022). For the current meta-analysis, baseline and follow-up 

standard deviations were extracted from the following outcomes: 1) 1RM squat (kg); 2) 1RM bench 

press (kg); 3) maximum vertical jump (cm); 4) 10 m sprint time (s); 5) 20 m sprint time (s); and 6) 30 m 

sprint time (s). Data were extracted from a total of  421 studies comprising 819 groups, 10,267 

participants and 2,037 outcomes (Table 1).  

 

Table 1: Description of  data extracted for different outcomes.  

 1RM squat 1RM bench 

press 

Vertical jump 10 m sprint 20 m sprint 30 m sprint 

Number of  studies 121 103 312 95 97 58 

Number of  outcomes 329 307 896 194 193 118 

Intervention duration 

(median [IQR]) Weeks 

8 [6-10]  8 [6-12]  8 [6-10]  8 [6-10]  8 [6-10]  8 [6-10] 

Number of  groups 254 219 595 170 174 102 

Number of  participants 3137 2959 7374 2181 2372 1346 

 

Meta-analyses were conducted for each outcome to quantify and pool the difference in sample standard 

deviation 𝑠, at each time point with baseline. Within-study errors √Var(𝑠𝑝𝑜𝑠𝑡 − 𝑠𝑝𝑟𝑒) were and accounted 

for the correlation between time points (Supplementary D). Briefly, the standard error of  the standard 

deviation at each time point was calculated from √Var(𝑠) = √𝐸(𝑠2) − 𝐸(𝑠)2. Given standard 

https://doi.org/10.31236/osf.io/y7sk6


Doi:10.51224/SRXIV.285 SportR𝜒iv Preprint version 1 

 

 

distributional assumptions and knowledge that the sample variance is an unbiased estimator we obtain 

√Var(𝑠) = 𝑠√1 −
2𝜆𝑛

2

𝑛−1
, where 𝜆𝑛 =

Γ(
𝑛

2
)

Γ(
(𝑛−1)

2
)
. Using the correlation between sample standard deviations 

𝑟𝑠𝑝𝑟𝑒𝑠𝑝𝑜𝑠𝑡
=

2𝜆𝑛
2 (𝐻(𝜌2)−1)

𝑛−1−2𝜆𝑛
2 , where 𝜌 is the correlation between baseline and other time points, and 𝐻 is a 

hypergeometrical series (Pearson 1925 and Supplementary D), we have: √Var(𝑠𝑝𝑜𝑠𝑡 − 𝑠𝑝𝑟𝑒) =

√(1 −
2𝜆𝑛

2

𝑛−1
) (𝑠𝑝𝑟𝑒

2 + 𝑠𝑝𝑜𝑠𝑡
2 − 4

𝜆𝑛
2 (𝐻(𝜌2)−1)

𝑛−1−2𝜆𝑛
2 𝑠𝑝𝑟𝑒𝑠𝑝𝑜𝑠𝑡).    

 

Interpretations of  meta-analyses were based on the pooled mean difference between post-intervention 

and baseline standard deviations. From eq5, where the standard deviation was judged to decrease or 

remain constant across the intervention, this was interpreted as evidence of  a negative relationship 

between baseline capability and change. For the case where standard deviation increased across the 

intervention this was deemed to be indeterminate, as the increase could be caused by random variation 

in intervention effects combined with either a positive, negative, or no relationship between baseline 

capability and change. All meta-analyses were conducted using Bayesian three-level hierarchical models 

to account for covariances between multiple outcomes reported in the same study due to inclusion of  

multiple groups and/or reporting across multiple time-points. Weakly informative Student’s and half  

Student’s t priors with 3 degrees of  freedom were used for intercept and variance parameters, 

respectively. Inferences from all analyses were performed on posterior samples generated using the 

Hamiltonian Markov Chain Monte Carlo method with 4 chains for 20,000 iterations with a burn-in 

period of  10,000. Interpretations were based on the median value (Difference0.5: 0.5-quantile), the range 

within the credible interval (CrI), and the probability that the pooled mean value was less than 0. 

Analyses were performed using the R wrapper package brms interfaced with Stan to perform sampling 

(Bürkner 2017). Convergence of  parameter estimates was obtained for all models with Gelman-Rubin 

R-hat values below 1.1 (Gelman et al, 2014). 
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3.0 Results 

Distributions of  posterior estimates are presented in Figure 1, with results showing an increase in 

standard deviation from baseline to post-intervention for the 1RM squat (Difference0.5 = 0.93 [95%CrI: 

0.52 to 1.34 kg]; p(Difference <0)<0.001) and bench press (Difference0.5 = 0.69 [95%CrI: 0.40 to 0.98 

kg]; p(Difference <0)<0.001). Results provided some evidence for a decrease in standard deviation 

from baseline to post-intervention for the vertical jump (Difference0.5 = -0.07 [95%CrI: -0.16 to 0.02 

cm]; p(Difference <0)= 0.933) and strong evidence for sprint time across all three distances (10 m: 

Difference0.5 = -0.007 [95%CrI: -0.012 to -0.003 s]; p(Difference <0)>0.999; 20 m: Difference0.5 = -

0.020 [95%CrI: -0.034 to -0.009 s]; p(Difference <0)>0.999; 30 m: Difference0.5 = -0.011 [95%CrI: -

0.020 to -0.002 s]; p(Difference <0)=0.992).  

 

Figure 1: Meta-analysis results illustrating posterior distributions of  difference in baseline and post-
intervention standard deviations across outcomes.  
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4.0 Discussion 

It is commonly believed in S&C that baseline capability causes IDE and may be one of  the main 

factors influencing observed variation in response to an intervention. As highlighted by this review, 

there are several important conceptual issues and technical challenges that must be considered when 

investigating whether baseline capability causes IDE. This is especially relevant in S&C where there is 

interest in maximum performance and as a result, the potential for large measurement errors that can 

cause substantive regression to the mean effects. In addition to highlighting some of  the important 

conceptual and technical issues, this review adopted a distinct approach to the analysis of  IDE caused 

by baseline capability, seeking to explore the phenomena more generally. To achieve this, meta-analyses 

were conducted comparing baseline and post-intervention standard deviations and pooling across a 

large number of  studies. As identified in the introduction, post-intervention standard deviations should 

be expected to increase relative to baseline due to variability in response to the intervention. Based on 

the data generating mechanism presented, however, a negative relationship between baseline capability 

and change would counteract this increase. Where there is evidence that the post-intervention standard 

deviation is equal to, or certainly less than baseline standard deviation, this can be interpreted as 

providing evidence for a negative relationship between baseline capability and change. In the meta-

analyses presented, moderate evidence was obtained for a reduction in standard deviation for vertical 

jump, and strong evidence for a reduction in standard deviation for sprint performance across all three 

distances. In contrast, strong evidence was obtained for an increase in standard deviation for maximum 

strength as measured during the squat and bench press. At present it is unknown why results were 

distinct across the different outcomes. It remains possible that in general a negative relationship exists 

between baseline capability and change for maximum strength, but that this relationship is counteracted 

by a greater variation in treatment response. Most interventions investigated in S&C are primarily aimed 

at improving maximum strength and this may explain greater variation in treatment response compared 

to other outcomes. Further research is required to investigate further the results presented here and the 

different contexts which influence the magnitude of  variation in treatment response and the causes of  
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IDE. To conduct this research, future studies should be cognisant of  the potential data generating 

mechanisms and include appropriate research designs and statistical approaches to account for the 

conceptual and technical challenges present in this area of  investigation.  
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Supplementary files 

The following supplementary files derive the required results presented in the main paper and provides R code to 

illustrate and provide checks.  

 

Supplementary A: Properties of  statistical models 

In this section basic properties of  statistical models are outlined that will be used to derive subsequent results.  

Property 1 (P1): Jointly Normal random variables: Two random variables 𝑋, 𝑌 are said to be jointly normal if  they can be 

expressed in the form 𝑋 = 𝑎𝑈 + 𝑏𝑉; 𝑌 = 𝑐𝑈 + 𝑑𝑉 where 𝑈 and 𝑉 are independent normal random variables.  

Property 2 (P2): Population mean 𝐸(𝑋) = 𝜇 and the linearity of  expectation: 𝐸(𝑎𝑋 + 𝑏𝑌) = 𝑎𝐸(𝑋) + 𝑏𝐸(𝑌), where 𝑎 

and 𝑏 are constants.  

Property 3 (P3): Expectation of  an independent product: if  𝑋 and 𝑌 are independent then 𝐸(𝑋𝑌) = 𝐸(𝑋)𝐸(𝑌). 

Property 4 (P4): Population variance and expectation: Var(𝑋) = 𝐸(𝑋2) − 𝜇2. 

Property 5 (P5): Variance of  a linear combination: Var(𝑎𝑋 + 𝑏𝑦) = 𝑎2Var(𝑋) + 2𝑎𝑏Cov(𝑋, 𝑌) + 𝑏2Var(𝑌). 

Property 6 (P6): Covariance and expectation: Cov(𝑋, 𝑌) = 𝐸(𝑋𝑌) − 𝜇𝑋𝜇𝑌. 

Property 7 (P7): Covariance and correlation: Corr(𝑋, 𝑌) = 𝜌𝑋𝑌 =
Cov(𝑋,𝑌)

√Var(𝑋)Var(𝑌)
. 

Property 8 (P8): Bivariate normal distribution: 

𝑋
𝑌

~ℕ ([
𝜇𝑋

𝜇𝑌
] , [

Var(𝑋) 𝜌𝑋𝑌√Var(𝑋)Var(𝑌)

𝜌𝑋𝑌√Var(𝑋)Var(𝑌) Var(𝑌)
]). 

Property 9 (P9): Conditional expectations  

𝐸(𝑋𝑌) = 𝐸[𝐸(𝑋𝑌|𝑌)] = 𝐸[𝑌𝐸(𝑋|𝑌)] 

Property 10 (P10): Conditional expectation in the bivariate general normal distribution: 

𝐸(𝑌|𝑋 = 𝑥) = 𝜇𝑌 + 𝜌 (
𝜎𝑌

𝜎𝑋

) (𝑥 − 𝜇𝑋). 
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Supplementary B: Mathematical Coupling 

We consider two situations when calculating the correlation between true pre-intervention values (𝑃𝑟𝑒) and true change 

values (𝑃𝑜𝑠𝑡 − 𝑃𝑟𝑒). The first situation is where there is no correlation between 𝑃𝑟𝑒 and 𝑃𝑜𝑠𝑡, the second situation is 

where there is a positive correlation. Across both conditions we assume no measurement error.   

Supplementary B1 - Situation 1: No correlation between Pre and Post  

Corr(𝑃𝑟𝑒, 𝑃𝑜𝑠𝑡 − 𝑃𝑟𝑒) =
Cov(𝑃𝑟𝑒,𝑃𝑜𝑠𝑡−𝑃𝑟𝑒)

√Var(𝑃𝑟𝑒)+Var(𝑃𝑜𝑠𝑡−𝑃𝑟𝑒)
  

=
𝐸(𝑃𝑟𝑒(𝑃𝑜𝑠𝑡−𝑃𝑟𝑒))−𝜇𝑃𝑟𝑒(𝜇𝑃𝑜𝑠𝑡−𝜇𝑃𝑟𝑒)

√Var(𝑃𝑟𝑒)(Var(𝑃𝑟𝑒)+Var(𝑃𝑜𝑠𝑡))

                                                

=
𝐸(𝑃𝑟𝑒𝑃𝑜𝑠𝑡)−𝐸(𝑃𝑟𝑒2)−𝜇𝑃𝑟𝑒𝜇𝑃𝑜𝑠𝑡+𝜇𝑃𝑟𝑒

2

√Var(𝑃𝑟𝑒)(Var(𝑃𝑟𝑒)+Var(𝑃𝑜𝑠𝑡))

  

=
𝜇𝑃𝑟𝑒𝜇𝑃𝑜𝑠𝑡−(Var(𝑃𝑟𝑒)+𝜇𝑃𝑟𝑒

2 )−𝜇𝑃𝑟𝑒𝜇𝑃𝑜𝑠𝑡+𝜇𝑃𝑟𝑒
2  

√(Var(𝑃𝑟𝑒)+Var(𝑃𝑜𝑠𝑡))Var(𝑃𝑟𝑒)
  

=
−Var(𝑃𝑟𝑒) 

√(Var(𝑃𝑟𝑒)+Var(𝑃𝑜𝑠𝑡))Var(𝑃𝑟𝑒)
.          Result 1 

For result 1, where Var(𝑃𝑟𝑒) = Var(𝑃𝑜𝑠𝑡) we have Corr(𝑃𝑜𝑠𝑡 − 𝑃𝑟𝑒, 𝑃𝑟𝑒)     =
−Var(𝑃𝑟𝑒) 

√2Var(𝑃𝑟𝑒)2
= −

1

√2
.  

 

Supplementary B2 - Situation 2: Positive correlation between Pre and Post  

To obtain an expression for Corr(𝑃𝑟𝑒, 𝑃𝑜𝑠𝑡 − 𝑃𝑟𝑒) under the usual circumstance where baseline and post-intervention 

values are correlated, we first introduce our data generating model and some basic results. The data generating model is:  

𝑃𝑜𝑠𝑡 = 𝑃𝑟𝑒 + 𝛽0 + 𝛽1𝑃𝑟𝑒 + 𝜉, Where 𝑃𝑟𝑒~𝑁(𝜇, 𝜎2).  

The model states that 𝑃𝑜𝑠𝑡 values are a function of  𝑃𝑟𝑒 values (𝑃𝑟𝑒~𝑁(𝜇𝑃𝑟𝑒 , 𝜎2)), plus an average intervention effect 

𝛽0, some intervention differential effect (IDE) based on 𝑃𝑟𝑒 values where 𝛽1 ≠ 0, and an independent term describing 

random offset of  intervention effects 𝜉~𝑁(0, 𝜈2). 

We can see that 𝜇𝑃𝑜𝑠𝑡 = 𝐸(𝑃𝑟𝑒 + 𝛽0 + 𝛽1𝑃𝑟𝑒 + 𝜉) = (1 + 𝛽1)𝜇𝑃𝑟𝑒 + 𝛽0, and  

Var(𝑃𝑜𝑠𝑡) = Var(𝑃𝑟𝑒 + 𝛽0 + 𝛽1𝑃𝑟𝑒 + 𝜉) = 𝜎2(1 + 𝛽1)2 + 𝜈2.  

 

We now consider the correlation between baseline and post-intervention values given the data generating model.  

Corr(𝑃𝑟𝑒, 𝑃𝑜𝑠𝑡) =
Cov(𝑃𝑟𝑒,𝑃𝑜𝑠𝑡)

√Var(𝑃𝑟𝑒)Var(𝑃𝑜𝑠𝑡)
  

=
𝐸(𝑃𝑟𝑒𝑃𝑜𝑠𝑡)−𝜇𝑃𝑟𝑒𝜇𝑃𝑜𝑠𝑡

√𝜎2(𝜎2(1+𝛽1)2+𝜈2)
    

=
𝐸(𝑃𝑟𝑒(𝑃𝑟𝑒+𝛽0+𝛽1𝑃𝑟𝑒+𝜉))−𝜇𝑃𝑟𝑒(𝜇𝑃𝑟𝑒+𝛽0+𝛽1𝜇𝑃𝑟𝑒)

√𝜎2(𝜎2(1+𝛽1)2+𝜈2)
  

=
𝐸(𝑃𝑟𝑒2)+𝛽0𝐸(𝑃𝑟𝑒)+𝛽1𝐸(𝑃𝑟𝑒2)+𝐸(𝜉𝑃𝑟𝑒)−𝜇𝑃𝑟𝑒

2 −𝛽0𝜇𝑃𝑟𝑒−𝛽1𝜇𝑃𝑟𝑒
2

√𝜎2(𝜎2(1+𝛽1)2+𝜈2)
  

=
Var(𝑃𝑟𝑒)+𝜇𝑃𝑟𝑒

2 +𝛽0𝜇𝑃𝑟𝑒+𝛽1(Var(𝑃𝑟𝑒)+𝜇𝑃𝑟𝑒
2 )+𝐸(𝑃𝑟𝑒)𝐸(𝜉)−𝜇𝑃𝑟𝑒

2 −𝛽0𝜇𝑃𝑟𝑒−𝛽1𝜇𝑃𝑟𝑒
2

√𝜎2(𝜎2(1+𝛽1)2+𝜈2)
  

=
(1+𝛽1)𝜎2

√𝜎2(𝜎2(1+𝛽1)2+𝜈2)
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=
(1+𝛽1)𝜎

√𝜎2(1+𝛽1)2+𝜈2
  

=
1+𝛽1

√(1+𝛽1)2+
𝜈2

𝜎2

.           Result 2 

Now that we have the correlation 𝜌 between 𝑃𝑟𝑒 and 𝑃𝑜𝑠𝑡, we know that the variables follow a bivariate normal 

distribution and from properties 10 and 11 have 𝐸(𝑃𝑟𝑒𝑃𝑜𝑠𝑡) = 𝐸[𝑃𝑜𝑠𝑡 𝐸(𝑃𝑟𝑒|𝑃𝑜𝑠𝑡)] and 𝐸(𝑃𝑟𝑒|𝑃𝑜𝑠𝑡) = 𝜇𝑃𝑟𝑒 +

𝜌√
Var(𝑃𝑟𝑒)

Var(𝑃𝑜𝑠𝑡)
(𝑃𝑜𝑠𝑡 − 𝜇𝑃𝑜𝑠𝑡).  

Therefore, 

Corr(𝑃𝑟𝑒, 𝑃𝑜𝑠𝑡 − 𝑃𝑟𝑒) =
Cov(𝑃𝑟𝑒,𝑃𝑜𝑠𝑡−𝑃𝑟𝑒)

√Var(𝑃𝑟𝑒)Var(𝑃𝑜𝑠𝑡−𝑃𝑟𝑒)
  

=
𝐸(𝑃𝑟𝑒(𝑃𝑜𝑠𝑡−𝑃𝑟𝑒))−𝜇𝑃𝑟𝑒(𝜇𝑃𝑜𝑠𝑡−𝜇𝑃𝑟𝑒)

√Var(𝑃𝑟𝑒)(Var(𝑃𝑟𝑒)+Var(𝑃𝑜𝑠𝑡)−2𝜌√Var(𝑃𝑟𝑒)Var(𝑃𝑜𝑠𝑡))
  

=
𝐸(𝑃𝑟𝑒𝑃𝑜𝑠𝑡)−𝐸(𝑃𝑟𝑒2)−𝜇𝑃𝑟𝑒𝜇𝑃𝑜𝑠𝑡+𝜇𝑃𝑟𝑒

2

√Var(𝑃𝑟𝑒)(Var(𝑃𝑟𝑒)+Var(𝑃𝑜𝑠𝑡)−2𝜌√Var(𝑃𝑟𝑒)Var(𝑃𝑜𝑠𝑡))
  

=
𝐸[𝑃𝑜𝑠𝑡 𝐸(𝑃𝑟𝑒|𝑃𝑜𝑠𝑡)]−(Var(𝑃𝑟𝑒)+𝜇𝑃𝑟𝑒

2 )−𝜇𝑃𝑟𝑒𝜇𝑃𝑜𝑠𝑡+𝜇𝑃𝑟𝑒
2

√Var(𝑃𝑟𝑒)(Var(𝑃𝑟𝑒)+Var(𝑃𝑜𝑠𝑡)−2𝜌√Var(𝑃𝑟𝑒)Var(𝑃𝑜𝑠𝑡))
  

=
𝐸[𝑃𝑜𝑠𝑡(𝜇𝑃𝑟𝑒+𝜌√

Var(𝑃𝑟𝑒)

Var(𝑃𝑜𝑠𝑡)
(𝑃𝑜𝑠𝑡−𝜇𝑃𝑜𝑠𝑡))]−(Var(𝑃𝑟𝑒)+𝜇𝑃𝑟𝑒𝜇𝑃𝑜𝑠𝑡)

√Var(𝑃𝑟𝑒)(Var(𝑃𝑟𝑒)+Var(𝑃𝑜𝑠𝑡)−2𝜌√Var(𝑃𝑟𝑒)Var(𝑃𝑜𝑠𝑡))
  

=
𝜇𝑃𝑟𝑒𝐸(𝑃𝑜𝑠𝑡)+𝜌√

Var(𝑃𝑟𝑒)

Var(𝑃𝑜𝑠𝑡)
[𝐸(𝑃𝑜𝑠𝑡2)−𝜇𝑃𝑜𝑠𝑡𝐸(𝑃𝑜𝑠𝑡)]−(Var(𝑃𝑟𝑒)+𝜇𝑃𝑟𝑒𝜇𝑃𝑜𝑠𝑡)

√Var(𝑃𝑟𝑒)(Var(𝑃𝑟𝑒)+Var(𝑃𝑜𝑠𝑡)−2𝜌√Var(𝑃𝑟𝑒)Var(𝑃𝑜𝑠𝑡))
  

=
𝜇𝑃𝑟𝑒𝜇𝑃𝑜𝑠𝑡+𝜌√

Var(𝑃𝑟𝑒)

Var(𝑃𝑜𝑠𝑡)
Var(𝑃𝑜𝑠𝑡)−(Var(𝑃𝑟𝑒)+𝜇𝑃𝑟𝑒𝜇𝑃𝑜𝑠𝑡)

√Var(𝑃𝑟𝑒)(Var(𝑃𝑟𝑒)+Var(𝑃𝑜𝑠𝑡)−2𝜌√Var(𝑃𝑟𝑒)Var(𝑃𝑜𝑠𝑡))
  

=
𝜌√Var(𝑃𝑟𝑒)Var(𝑃𝑜𝑠𝑡)−Var(𝑃𝑟𝑒)

√Var(𝑃𝑟𝑒)(Var(𝑃𝑟𝑒)+Var(𝑃𝑜𝑠𝑡)−2𝜌√Var(𝑃𝑟𝑒)Var(𝑃𝑜𝑠𝑡))
   

=
𝜌√Var(𝑃𝑜𝑠𝑡)−√Var(𝑃𝑟𝑒)

√(Var(𝑃𝑟𝑒)+Var(𝑃𝑜𝑠𝑡)−2𝜌√Var(𝑃𝑟𝑒)Var(𝑃𝑜𝑠𝑡))
.        Result 3 

From result 3, we can see that as 𝜌 is positive, then the correlation between pre-intervention and change values will be 

negative when Var(𝑃𝑟𝑒) = Var(𝑃𝑜𝑠𝑡). 

 

Plugging in our previously determined variances and correlation gives 

Corr(𝑃𝑟𝑒, 𝑃𝑜𝑠𝑡 − 𝑃𝑟𝑒) =
𝜌√Var(𝑃𝑜𝑠𝑡)−√Var(𝑃𝑟𝑒)

√(Var(𝑃𝑟𝑒)+Var(𝑃𝑜𝑠𝑡)−2𝜌√Var(𝑃𝑟𝑒)Var(𝑃𝑜𝑠𝑡))
  

=

(1+𝛽1)𝜎

√𝜎2(1+𝛽1)2+𝜈2
√𝜎2(1+𝛽1)2+𝜈2−𝜎

√
𝜎2+𝜎2(1+𝛽1)2+𝜈2−2

(1+𝛽1)𝜎

√(𝜎2(1+𝛽1)2+𝜈2)

√𝜎2(𝜎2(1+𝛽1)2+𝜈2)
  

=
𝛽1𝜎

√𝜎2+𝜎2(1+𝛽1)2+𝜈2−2(1+𝛽1)𝜎2
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=
𝛽1𝜎

√𝜎2(1+(1+𝛽1)2−2(1+𝛽1))+𝜈2
  

=
𝛽1𝜎

√𝜎2(𝛽1
2+

𝜈2

𝜎2)

  

=
𝛽1

√𝛽1
2+

𝜈2

𝜎2

.            Result 4 

Note, we can see that from this data generating model, the example discussed in Supplementary B1 (Result 1) is simply 

the case where 𝛽1 = −1, here we have 𝑃𝑜𝑠𝑡 = 𝛽0 + 𝜉, Cor(𝑃𝑟𝑒, 𝑃𝑜𝑠𝑡) = 0, Var(𝑃𝑜𝑠𝑡) = 𝜈2, and if  𝜈2 = 𝜎2, then 

Corr(𝑃𝑟𝑒, 𝑃𝑜𝑠𝑡 − 𝑃𝑟𝑒) = −
1

√2
. 
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Supplementary C: Regression to the mean 

Supplementary C1 – Correlating errors and repeated measurements 

Regression to the mean phenomena occur in the presence of  measurement error. Up to this point we have considered 

measurements with no error, that is measurements that return the true values 𝑃𝑟𝑒 and 𝑃𝑜𝑠𝑡. In practice we do not have 

access to true values and instead our observed values 𝑝𝑟𝑒 and 𝑝𝑜𝑠𝑡 are assumed to comprise measurement error 𝜖 that 

are normally distributed with the same standard deviation, independent of  each other, and independent of  the true score 

such that:  

𝑝𝑟𝑒 = 𝑃𝑟𝑒 + 𝜖; 𝑝𝑜𝑠𝑡 = 𝑃𝑜𝑠𝑡 + 𝜖; 𝜖~𝑁(0, 𝛿2).  

Derivations in subsequent sections based on our data generating model will require knowledge of  the following 

correlations: 

Cor(𝑃𝑟𝑒, 𝑝𝑟𝑒) =
Cov(𝑃𝑟𝑒,𝑝𝑟𝑒)

√Var(𝑃𝑟𝑒)Var(𝑝𝑟𝑒)
  

=
𝐸(𝑃𝑟𝑒 𝑝𝑟𝑒)−𝜇𝑝𝑟𝑒𝜇𝑃𝑟𝑒

√𝜎2(𝜎2+𝛿2)
    

=
𝐸((𝑃𝑟𝑒+𝜖𝑝𝑟𝑒)(𝑃𝑟𝑒))−𝜇𝑝𝑟𝑒

2

√𝜎2(𝜎2+𝛿2)
  

=
𝐸(𝑃𝑟𝑒2)+𝐸(𝜖𝑝𝑟𝑒𝑃𝑟𝑒)−𝜇𝑝𝑟𝑒

2

√𝜎2(𝜎2+𝛿2)
  

=
Var(𝑃𝑟𝑒)+𝜇𝑃𝑟𝑒

2 −𝜇𝑝𝑟𝑒
2

√(𝜎2+𝛿2)(𝜎2+𝜈2+𝛿2)
  

=
𝜎2

√𝜎2(𝜎2+𝛿2)
  

=
𝜎

√𝜎2+𝛿2
            Result 5 

 

Cor(𝑃𝑟𝑒, 𝑝𝑜𝑠𝑡) =  
Cov(𝑃𝑟𝑒,𝑝𝑜𝑠𝑡)

√Var(𝑃𝑟𝑒)Var(𝑝𝑜𝑠𝑡)
  

=
𝐸(𝑃𝑟𝑒 𝑝𝑜𝑠𝑡)−𝜇𝑃𝑟𝑒𝜇𝑝𝑜𝑠𝑡

√𝜎2(𝜎2(1+𝛽1)2+𝜈2+𝛿2)
    

=
𝐸(𝑃𝑟𝑒(𝑃𝑟𝑒+𝛽0+𝛽1𝑃𝑟𝑒+𝜉+𝜖))−𝜇𝑃𝑟𝑒(𝜇𝑃𝑟𝑒+𝛽0+𝛽1𝜇𝑃𝑟𝑒)

√𝜎2(𝜎2(1+𝛽1)2+𝜈2+𝛿2)
  

=
𝐸(𝑃𝑟𝑒2)+𝛽0𝐸(𝑃𝑟𝑒)+𝛽1𝐸(𝑃𝑟𝑒2)+𝐸(𝜉𝑃𝑟𝑒)+𝐸(𝑃𝑟𝑒𝜖)−𝜇𝑃𝑟𝑒

2 −𝛽0𝜇𝑃𝑟𝑒−𝛽1𝜇𝑃𝑟𝑒
2

√𝜎2(𝜎2(1+𝛽1)2+𝜈2+𝛿2)
  

=
Var(𝑃𝑟𝑒)+𝜇𝑃𝑟𝑒

2 +𝛽0𝜇𝑃𝑟𝑒+𝛽1(Var(𝑃𝑟𝑒)+𝜇𝑃𝑟𝑒
2 )+𝐸(𝑃𝑟𝑒)𝐸(𝜉)+𝐸(𝑃𝑟𝑒)𝐸(𝜖)−𝜇𝑃𝑟𝑒

2 −𝛽0𝜇𝑃𝑟𝑒−𝛽1𝜇𝑃𝑟𝑒
2

√𝜎2(𝜎2(1+𝛽1)2+𝜈2+𝛿2)
  

=
(1+𝛽1)𝜎2

√𝜎2(𝜎2(1+𝛽1)2+𝜈2+𝛿2)
  

=
(1+𝛽1)𝜎

√𝜎2(1+𝛽1)2+𝜈2+𝛿2
  

=
1+𝛽1

√(1+𝛽1)2+
𝜈2+𝛿2

𝜎2

.           Result 6 

 

Corr(𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡) =  
𝐸(𝑝𝑟𝑒𝑝𝑜𝑠𝑡)−𝜇𝑝𝑟𝑒𝜇𝑝𝑜𝑠𝑡

√Var(𝑝𝑟𝑒)Var(𝑝𝑜𝑠𝑡)
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=
𝐸((𝑃𝑟𝑒+𝜖𝑝𝑟𝑒)(𝑃𝑟𝑒+𝛽0+𝛽1𝑃𝑟𝑒+𝜉+𝜖𝑝𝑜𝑠𝑡))−𝜇𝑝𝑟𝑒(𝜇𝑝𝑟𝑒+𝛽0+𝛽1𝜇𝑝𝑟𝑒)

√(𝜎2+𝛿2)(𝜎2(1+𝛽1)2+𝜈2+𝛿2)
  

=
𝐸(𝑃𝑟𝑒2)+𝛽0𝐸(𝑃𝑟𝑒)+𝛽1𝐸(𝑃𝑟𝑒2)+𝐸(𝜉𝑃𝑟𝑒)+𝐸(𝜖𝑝𝑜𝑠𝑡𝑃𝑟𝑒)+𝐸(𝜖𝑝𝑟𝑒(𝑃𝑟𝑒+𝛽0+𝛽1𝑃𝑟𝑒+𝜉+𝜖𝑝𝑜𝑠𝑡))−𝜇𝑝𝑟𝑒

2 −𝛽0𝜇𝑝𝑟𝑒−𝛽1𝜇𝑃𝑟𝑒
2

√(𝜎2+𝛿2)(𝜎2(1+𝛽1)2+𝜈2+𝛿2)
  

=
(1+𝛽1)(Var(𝑃𝑟𝑒)+𝜇𝑃𝑟𝑒

2 )+𝛽0𝜇𝑃𝑟𝑒−𝜇𝑝𝑟𝑒
2 −𝛽0𝜇𝑝𝑟𝑒−𝛽1𝜇𝑃𝑟𝑒

2

√(𝜎2+𝛿2)(𝜎2(1+𝛽1)2+𝜈2+𝛿2)
  

=
(1+𝛽1)𝜎2

√𝜎2(1+
𝛿2

𝜎2)𝜎2((1+𝛽1)2+
𝜈2+𝛿2

𝜎2 )

  

=
1+𝛽1

√(1+
𝛿2

𝜎2)((1+𝛽1)2+
𝜈2+𝛿2

𝜎2 )

.          Result 7 

 

We now illustrate the general regression to the mean phenomena and start with repeated measurements and quantify the 

correlation between the error on the first measurement and the difference between measurements one and two.  

We have 𝑝𝑟𝑒𝑖 = 𝑃𝑟𝑒 + 𝜖𝑖, 𝑃𝑟𝑒~𝑁(𝜇, 𝜎2), 𝜖𝑖~𝑁(0, 𝛿2), 𝑖 = 1,2. 

Corr(𝜖1, 𝑝𝑟𝑒2 − 𝑝𝑟𝑒1) =
𝐸(𝜖1(𝑝𝑟𝑒2−𝑝𝑟𝑒1))

√Var(𝜖1)Var(𝑝𝑟𝑒2−𝑝𝑟𝑒1)
  

=
𝐸(𝜖1(𝑃𝑟𝑒+𝜖2−𝑃𝑟𝑒+𝜖1))

√𝛿2(Var(𝑝𝑟𝑒1)+Var(𝑝𝑟𝑒2)−2Cov(𝑝𝑟𝑒1,𝑝𝑟𝑒2))

  

=
𝐸(𝜖1)𝐸(𝑃𝑟𝑒)+𝐸(𝜖1)𝐸(𝜖2)−𝐸(𝜖1)𝐸(𝑃𝑟𝑒)−𝐸(𝜖1

2)

√𝛿2(Var(𝑃𝑟𝑒+𝜖1)+Var(𝑃𝑟𝑒+𝜖2)−2Cov(𝑝𝑟𝑒1,𝑝𝑟𝑒2))

  

=
−𝛿2

√𝛿2(2(𝜎2+2𝛿2−Cov(𝑝𝑟𝑒1,𝑝𝑟𝑒2)))
.  

We also have  

Cov(𝑝𝑟𝑒1, 𝑝𝑟𝑒2) = 𝐸(𝑝𝑟𝑒1𝑝𝑟𝑒2) − 𝜇𝑝𝑟𝑒
2   

= 𝐸((𝑃𝑟𝑒 + 𝜖1)(𝑃𝑟𝑒 + 𝜖2)) − 𝜇𝑝𝑟𝑒
2   

= 𝐸(𝑃𝑟𝑒2) + 𝐸(𝑃𝑟𝑒)𝐸(𝜖2) + 𝐸(𝜖)𝐸(𝑃𝑟𝑒) + 𝐸(𝜖1)𝐸(𝜖2) − 𝜇𝑝𝑟𝑒
2  

= 𝜎2. 

Hence  

Corr(𝜖1, 𝑝𝑟𝑒2 − 𝑝𝑟𝑒1) =
−𝛿2

√𝛿2(2(𝜎2+2𝛿2−𝜎2))

  

=
−1

√2
.            Result 8 
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Supplementary C2 – Regression to the mean and continuous analyses.  

For simple linear regression of  𝑦 on 𝑥 we have 𝛽1 =
Cov(𝑥,𝑦)

Var(𝑥)
. Therefore, given our data generating model we would 

estimate 𝛽1 from 

𝛽̂1 =  
Cov(𝑝𝑜𝑠𝑡−𝑝𝑟𝑒,𝑝𝑟𝑒)

Var(𝑝𝑟𝑒)
     

=
𝐸(𝑝𝑟𝑒(𝑝𝑜𝑠𝑡−𝑝𝑟𝑒))−𝐸(𝑝𝑟𝑒−𝑝𝑜𝑠𝑡)𝐸(𝑝𝑟𝑒)

Var(𝑝𝑟𝑒)
  

=
−𝐸(𝑝𝑟𝑒2)+𝐸(𝑝𝑟𝑒 𝑝𝑜𝑠𝑡)−𝐸(𝑝𝑜𝑠𝑡)𝐸(𝑝𝑟𝑒)+𝐸(𝑝𝑟𝑒)2

Var(𝑝𝑟𝑒)
  

=
−(Var(𝑝𝑟𝑒)+𝜇𝑝𝑟𝑒

2 )+Cov(𝑝𝑟𝑒,𝑝𝑜𝑠𝑡)+𝜇𝑝𝑟𝑒𝜇𝑝𝑜𝑠𝑡−𝜇𝑝𝑟𝑒𝜇𝑝𝑜𝑠𝑡+𝜇𝑝𝑟𝑒
2

Var(𝑝𝑟𝑒)
   

=
Cov(𝑝𝑟𝑒,𝑝𝑜𝑠𝑡)−Var(𝑝𝑟𝑒)

Var(𝑝𝑟𝑒)
.    

 

From 𝑃𝑜𝑠𝑡 = 𝑃𝑟𝑒 + (𝛽0 + 𝛽1𝑃𝑟𝑒) + 𝜉, we have 𝑃𝑜𝑠𝑡 = 𝛽0 + 𝑃𝑟𝑒(1 + 𝛽1) + 𝜉. 

Hence Cov(𝑃𝑜𝑠𝑡, 𝑃𝑟𝑒)  = (1 + 𝛽1)Var(𝑃𝑟𝑒).  

Now we show that Cov(𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡) = Cov(𝑃𝑜𝑠𝑡, 𝑃𝑟𝑒). 

Cov(𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡) = Cov(𝑃𝑜𝑠𝑡 + 𝜖𝑝𝑜𝑠𝑡 , 𝑃𝑟𝑒 + 𝜖𝑝𝑟𝑒)  

= 𝐸 ((𝑃𝑜𝑠𝑡 + 𝜖𝑝𝑜𝑠𝑡)(𝑃𝑟𝑒 + 𝜖𝑝𝑟𝑒)) − 𝜇𝑃𝑟𝑒𝜇𝑃𝑜𝑠𝑡  

= 𝐸(𝑃𝑜𝑠𝑡𝑃𝑟𝑒 + 𝑃𝑜𝑠𝑡𝜖𝑝𝑟𝑒 + 𝑃𝑟𝑒𝜖𝑝𝑜𝑠𝑡 + 𝜖𝑝𝑜𝑠𝑡𝜖𝑝𝑟𝑒) − 𝜇𝑃𝑟𝑒𝜇𝑃𝑜𝑠𝑡   

= Cov(𝑃𝑟𝑒, 𝑃𝑜𝑠𝑡).  

Inserting this expression to that above gives:   

𝛽̂1 =
Cov(𝑝𝑟𝑒,𝑝𝑜𝑠𝑡)−Var(𝑝𝑟𝑒)

Var(𝑝𝑟𝑒)
   

=
(1+𝛽1)Var(𝑃𝑟𝑒)−Var(𝑝𝑟𝑒)

Var(𝑝𝑟𝑒)
   

=
(1+𝛽1)𝜎2−(𝜎2+𝛿2)

𝜎2+𝛿2    

=
𝛽1𝜎2−𝛿2

𝜎2+𝛿2 .             Result 9 

 

Here we have shown that if  𝛽1 = 0 we obtain a spurious negative relationship. If   𝛽1 ≠ 0 there is no bias if  𝛿2 = 0, and 

a bias which increases as 𝛿2 increases resulting in a more negative relationship. To address this bias, we can use 

Blomqvist’s method (1977) and rewrite the equation and identify the adjustment required so that our new estimate (𝛽1) 

provides an unbiased estimate of  the true population value using the original biased estimate:  

𝛽̂1 =
𝛽̃1𝜎2−𝛿2

𝜎2+𝛿2 → 𝛽1 =
𝛽̂1(𝜎2+𝛿2)+𝛿2

𝜎2 .          Result 10 
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Supplementary C3 – Regression to the mean based on groups and threshold values. 

To quantify regression to the mean in the scenario where a sample is split into two groups using baseline values relative to 

a threshold and the subsequent change values compared, we need to quantify conditional expectations based on true and 

observed values. If  we have a variable 𝑋~𝑁(𝜇, 𝜎2) and we truncate so we have two groups 𝑋 > 𝑐 and 𝑋 < 𝑐, then from 

Davis (1976) we have:  

𝐸(𝑋|𝑋 > 𝑐) = 𝜇 + 𝐶(𝑧𝑋
+)√Var(𝑋)  

𝐸(𝑋|𝑋 < 𝑐) = 𝜇 − 𝐶(𝑧𝑋
−)√Var(𝑋)  

where 𝑧𝑋
+ = (

𝑐−𝜇

√Var(𝑋)
), 𝑧𝑋

− = (
𝜇−𝑐

√Var(𝑋)
), and 𝐶(𝑧) =

𝜙(𝑧)

1−Φ(𝑧)
.    

 

Where we don’t have measurement error this would give:  

𝐸(𝑋|𝑋 > 𝑐) = 𝜇 + (𝜙 (
𝑐−𝜇

𝜎
) / (1 − 𝜙 (

𝑐−𝜇

𝜎
))) 𝜎  

𝐸(𝑋|𝑋 < 𝑐) = 𝜇 − (𝜙 (
𝜇−𝑐

𝜎
) / (1 − 𝜙 (

𝑐−𝜇

𝜎
))) 𝜎.       Result 11 

 

Where we introduce measurement error 𝑥 = 𝑋 + 𝜖, 𝜖~𝑁(0, 𝛿2), we have:  

𝐸(𝑥|𝑥 > 𝑐) = 𝜇 + (𝜙 (
𝑐−𝜇

√𝜎2+𝛿2
) / (1 − 𝜙 (

𝑐−𝜇

√𝜎2+𝛿2
))) √𝜎2 + 𝛿2  

𝐸(𝑥|𝑥 < 𝑐) = 𝜇 − (𝜙 (
𝜇−𝑐

√𝜎2+𝛿2
) / (1 − 𝜙 (

𝜇−𝑐

√𝜎2+𝛿2
))) √𝜎2 + 𝛿2.     Result 12 

 

Also from Davis (1976), where 𝑥, 𝑦 follow a bivariate normal distribution with correlation 𝜌, we have: 

𝐸(𝑦|𝑥 > 𝑐) = 𝜇𝑦 + 𝜌𝐶(𝑧𝑥
+)√Var(𝑦)  

𝐸(𝑦|𝑥 < 𝑐) = 𝜇𝑦 − 𝜌𝐶(𝑧𝑥
−)√Var(𝑦).        Result 13 

 

To quantify the effects of  regression to the mean we first examine the case where there is no IDE due to baseline values 

(𝛽1 = 0) such that 𝑃𝑜𝑠𝑡 = 𝑃𝑟𝑒 + 𝛽0 + 𝜉. We show that if  we were able to split the sample based on true baseline 

values, we obtain a non-biased estimate of  the change. Using Result 2, setting 𝛽1 = 0 and subsequently √Var(𝑃𝑜𝑠𝑡) =

√σ2 + 𝜈2, gives: 

𝐸(𝑃𝑜𝑠𝑡|𝑃𝑟𝑒 > 𝑐) = 𝜇𝑃𝑜𝑠𝑡 +
1

√1+
𝜈2

𝜎2

𝐶(𝑧𝑃𝑟𝑒
+ )√σ2 + 𝜈2 = 𝜇𝑃𝑜𝑠𝑡 + 𝐶(𝑧𝑃𝑟𝑒

+ )σ  

𝐸(𝑃𝑜𝑠𝑡|𝑃𝑟𝑒 < 𝑐) = 𝜇𝑃𝑜𝑠𝑡 −
1

√1+
𝜈2

𝜎2

𝐶(𝑧𝑃𝑟𝑒
− )√σ2 + 𝜈2 = 𝜇𝑃𝑜𝑠𝑡 − 𝐶(𝑧𝑃𝑟𝑒

− )σ  

Note using Result 6, we obtain the same expression if  we use the observed post-intervention values: 

𝐸(𝑝𝑜𝑠𝑡|𝑃𝑟𝑒 > 𝑐) = 𝜇𝑃𝑜𝑠𝑡 +
1

√1+
𝜈2+𝛿2

𝜎2

𝐶(𝑧𝑃𝑟𝑒
+ )√σ2 + 𝜈2 + 𝛿2 = 𝜇𝑃𝑜𝑠𝑡 + 𝐶(𝑧𝑃𝑟𝑒

+ )σ  
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𝐸(𝑝𝑜𝑠𝑡|𝑃𝑟𝑒 < 𝑐) = 𝜇𝑃𝑜𝑠𝑡 −
1

√1+
𝜈2+𝛿2

𝜎2

𝐶(𝑧𝑃𝑟𝑒
− )√σ2 + 𝜈2 + 𝛿2 = 𝜇𝑃𝑜𝑠𝑡 − 𝐶(𝑧𝑃𝑟𝑒

− )σ.  

We can see there is no regression to the mean when using true baseline values and the expected change across the 

intervention is correct:  

𝐸(𝑝𝑜𝑠𝑡|𝑃𝑟𝑒 > 𝑐) − 𝐸(𝑃𝑟𝑒|𝑃𝑟𝑒 > 𝑐) = 𝜇 + 𝛽0 + 𝐶(𝑧𝑃𝑟𝑒
+ )σ − 𝜇 + 𝐶(𝑧𝑃𝑟𝑒

+ )𝜎 = 𝛽0 

𝐸(𝑝𝑜𝑠𝑡|𝑃𝑟𝑒 < 𝑐) − 𝐸(𝑃𝑟𝑒|𝑃𝑟𝑒 < 𝑐) = 𝜇 + 𝛽0 − 𝐶(𝑧𝑃𝑟𝑒
− )σ − (𝜇 − 𝐶(𝑧𝑃𝑟𝑒

− )σ) = 𝛽0. 

Where regression to the mean occurs, is when we split groups based on observed values beyond and below the threshold. 

We find that the expected values are biased at both baseline and post-intervention, creating the regression to the mean 

effect. To quantify this bias, we start with the group comprising those with observed values above the threshold and use 

Results 5-7:  

[𝐸(𝑝𝑜𝑠𝑡|𝑝𝑟𝑒 > 𝑐) − 𝐸(𝑝𝑜𝑠𝑡|𝑃𝑟𝑒 > 𝑐)] − [𝐸(𝑝𝑟𝑒|𝑝𝑟𝑒 > 𝑐) − 𝐸(𝑝𝑟𝑒|𝑃𝑟𝑒 > 𝑐)] =  

[𝜇 + 𝛽0 +
√σ2+𝜈2+𝛿2

√(1+
𝛿2

𝜎2)(1+
𝜈2+𝛿2

𝜎2 )

𝐶(𝑧𝑝𝑟𝑒
+ ) − (𝜇 + 𝛽0 + 𝐶(𝑧𝑃𝑟𝑒

+ )σ)] − [𝜇 + 𝐶(𝑧𝑝𝑟𝑒
+ )√𝜎2 + 𝛿2 − (𝜇 +

𝜎

√𝜎2+𝛿2
𝐶(𝑧𝑃𝑟𝑒

+ )√𝜎2 + 𝛿2)]   

= [σ (
𝐶(𝑧𝑝𝑟𝑒

+ )

√(1+
𝛿2

𝜎2)

− 𝐶(𝑧𝑃𝑟𝑒
+ ))] −  [𝜎 (𝐶(𝑧𝑝𝑟𝑒

+ )√1 +
𝛿2

𝜎2 − 𝐶(𝑧𝑃𝑟𝑒
+ ))]  

= σ𝐶(𝑧𝑝𝑟𝑒
+ ) (−

𝛿2/𝜎2

√(1+
𝛿2

𝜎2)

)  

= −𝐶(𝑧𝑝𝑟𝑒
+ ) (

𝛿2

√(𝜎2+𝛿2)
).  

For the group comprising those with observed values below the threshold we have:  

[𝐸(𝑝𝑜𝑠𝑡|𝑝𝑟𝑒 < 𝑐) − 𝐸(𝑝𝑜𝑠𝑡|𝑃𝑟𝑒 < 𝑐)] − [𝐸(𝑝𝑟𝑒|𝑝𝑟𝑒 < 𝑐) − 𝐸(𝑝𝑟𝑒|𝑃𝑟𝑒 < 𝑐)] =  

[𝜇 + 𝛽0 −
√σ2+𝜈2+𝛿2

√(1+
𝛿2

𝜎2)(1+
𝜈2+𝛿2

𝜎2 )

𝐶(𝑧𝑝𝑟𝑒
− ) − (𝜇 + 𝛽0 − 𝐶(𝑧𝑃𝑟𝑒

− )σ)] − [𝜇 − 𝐶(𝑧𝑝𝑟𝑒
− )√𝜎2 + 𝛿2 − (𝜇 −

𝜎

√𝜎2+𝛿2
𝐶(𝑧𝑃𝑟𝑒

− )√𝜎2 + 𝛿2)]   

= [σ (𝐶(𝑧𝑃𝑟𝑒
− ) −

𝐶(𝑧𝑝𝑟𝑒
− )

√(1+
𝛿2

𝜎2)

)] − [𝜎 (𝐶(𝑧𝑃𝑟𝑒
− ) − 𝐶(𝑧𝑝𝑟𝑒

− )√1 +
𝛿2

𝜎2)]   

= σ𝐶(𝑧𝑝𝑟𝑒
− ) (

𝛿2/𝜎2

√(1+
𝛿2

𝜎2)

)  

= 𝐶(𝑧𝑝𝑟𝑒
− ) (

𝛿2

√(𝜎2+𝛿2)
).  

The total regression to the mean accounting for the underestimation of  the group above the threshold and the 

overestimation of  the group below the threshold is then  

−
𝛿2

√(𝜎2+𝛿2)
(𝐶(𝑧𝑝𝑟𝑒

− ) + 𝐶(𝑧𝑝𝑟𝑒
+ )).  
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Supplementary D: Meta-analysis of  standard deviations 

To conduct a meta-analysis with standard deviations, we have the random variable for the sample standard deviation 𝑆 =

√
1

𝑛−1
∑ (𝑋𝑖 − 𝑋̅)2𝑛

𝑖=1  , we have from Cochran’s theorem (1934) that 
(𝑛−1)𝑆2

𝜎2 = 𝑈, where 𝑈 is a random variable with chi-

squared distribution 𝜒𝜈
2 with degrees of  freedom 𝜈 = 𝑛 − 1.  

To perform meta-analyses with the sample standard deviation, we require the standard error √Var(𝑆) = √𝐸(𝑆2) − 𝐸(𝑆)2. 

The sample variance 𝑆2 is an unbiased estimator hence 𝐸(𝑆2) = 𝜎2. To calculate 𝐸(𝑆), we note that 𝑆 = √
(𝑛−1)𝑆2

𝜎2

𝜎2

𝑛−1
 and 

the probability density function for 𝜒𝑛
2 is 𝑝(𝑥) =

(1/2)𝑛/2

Γ(
𝑛−1

2
)

𝑥(𝑛/2)−1𝑒−
𝑥

2. Hence 

𝐸(𝑆) = √
𝜎2

𝑛−1
𝐸 (√

(𝑛−1)𝑆2

𝜎2 ).  

The expectation of  function of  a random variable 𝐸(𝑔(𝑋)) = ∫ 𝑔(𝑥)𝑓(𝑥)𝑑𝑥, hence 

 𝐸(𝑆) = √
𝜎2

𝑛−1
∫ √𝑠

(1/2)(𝑛−1)/2

Γ(
𝑛−1

2
)

𝑠((𝑛−1)/2)−1𝑒−
𝑠

2
∞

0
𝑑𝑠 

= √
𝜎2

𝑛−1
∫

(1/2)(𝑛−1)/2

Γ(
𝑛−1

2
)

𝑠(𝑛/2)−1𝑒−
𝑠

2
∞

0
𝑑𝑠. 

To turn the latter expression back into a chi-squared distribution to integrate to 1, we perform the following manipulation  

𝐸(𝑆) = √
2𝜎2

𝑛−1

Γ(𝑛/2)

Γ(
𝑛−1

2
)

∫
(1/2)𝑛/2

Γ(𝑛/2)
𝑠(𝑛/2)−1𝑒−

𝑠

2𝑑𝑠
∞

0
. 

Hence 𝐸(𝑆) = 𝜎√
2

𝑛−1

Γ(𝑛/2)

Γ(
𝑛−1

2
)
. 

Let 𝜆𝑛 =
Γ(𝑛/2)

Γ(
𝑛−1

2
)
, then  

√Var(𝑆) = √𝐸(𝑆2) − 𝐸(𝑆)2  

= √𝜎2 − 𝜎2 2𝜆𝑛
2

𝑛−1
  

= 𝜎√1 −
2𝜆𝑛

2

𝑛−1
.  

As an estimate, we then replace 𝜎 with our observed sample standard deviation 𝑠. 

Note, frequently the standard error term for 𝑠 is reported as 
𝑠

√2(𝑛−1)
, we can see this from  

√Var(𝑆) = 𝜎√1 −
2

𝑛−1
(

Γ(
𝑛

2
)

Γ(
𝑛−1

2
)
)

2
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= 𝜎√
2

𝑛−1
√𝑛−1

2
− (

Γ(
𝑛

2
)

Γ(
𝑛−1

2
)
)

2

.  

From general properties of  the Gamma function Γ(𝑎 + 1) = 𝑎Γ(𝑎) we have, and Γ (
𝑛+1

2
) =

𝑛−1

2
Γ (

𝑛−1

2
) and 

𝑛−1

2
=

Γ (
𝑛+1

2
) /Γ (

𝑛−1

2
). Hence we can express √Var(𝑆) as: 

√Var(𝑆) = 𝜎√
2

𝑛−1
√𝑛−1

2
− (

Γ(
𝑛

2
)

Γ(
𝑛−1

2
)
)

2

  

= 𝜎√
2

𝑛−1
√

Γ(
𝑛+1

2
)

Γ(
𝑛−1

2
)

− (
Γ(

𝑛

2
)

Γ(
𝑛−1

2
)
)

2

.  

The term √
Γ(

𝑛+1

2
)

Γ(
𝑛−1

2
)

− (
Γ(

𝑛

2
)

Γ(
𝑛−1

2
)
)

2

 rapidly approaches 
1

2
, hence 

√Var(𝑆) ≈
1

2
𝜎√

2

𝑛−1
=

𝜎

√2(𝑛−1)
  

Where again as an estimate, we then replace 𝜎 with 𝑠. 

 

Now that we have the within study error for 𝑆 we can calculate the within study error for the actual statistic used in the 

study which is 𝑆𝑃𝑜𝑠𝑡 − 𝑆𝑃𝑟𝑒 . We have  

√Var(𝑆𝑃𝑜𝑠𝑡 − 𝑆𝑃𝑟𝑒) = √Var(𝑆𝑃𝑜𝑠𝑡) + Var(𝑆𝑃𝑟𝑒) − 2Cov(𝑆𝑃𝑟𝑒 , 𝑆𝑃𝑜𝑠𝑡)  

= √Var(𝑆𝑃𝑜𝑠𝑡) + Var(𝑆𝑃𝑟𝑒) − 2Corr(𝑆𝑃𝑟𝑒 , 𝑆𝑃𝑜𝑠𝑡)√Var(𝑆𝑃𝑜𝑠𝑡)√Var(𝑆𝑃𝑟𝑒).  

From Pearson (1925), If  we have a population with 𝜎1, 𝜎2 and correlation between 𝑋1, 𝑋2 = 𝜌, then we have 

Corr(𝑆𝑋1, 𝑆𝑋2) =
2𝜆𝑛2(𝐻(𝜌)−1)

𝑛−1−2𝜆𝑛2 , where 𝐻 is a hypergeometrical series  

𝐻(𝜌2) = 1 +
𝜌2

1!

1

2𝑛−2
+

𝜌4

2!

1

2(𝑛−1)(2𝑛+2)
+ ⋯

𝜌2𝑝

𝑝!

1

(2𝑛−2)(2𝑛+2)…(2𝑛+4𝑝−6)
+ ⋯, where we use up to 𝑝 = 3 here.  

Therefore, we estimate  √Var(𝑆𝑃𝑜𝑠𝑡 − 𝑆𝑃𝑟𝑒) with 

√𝑠𝑃𝑟𝑒
2 (1 −

2𝜆𝑛
2

𝑛−1
) + 𝑠𝑃𝑜𝑠𝑡

2 (1 −
2𝜆𝑛

2

𝑛−1
) − 2

2𝜆𝑛2(𝐻(𝜌)−1)

𝑛−1−2𝜆𝑛2
√𝑠𝑃𝑟𝑒

2 (1 −
2𝜆𝑛

2

𝑛−1
) √𝑠𝑃𝑜𝑠𝑡

2 (1 −
2𝜆𝑛

2

𝑛−1
)  

= √(1 −
2𝜆𝑛

2

𝑛−1
) (𝑠𝑃𝑟𝑒

2 + 𝑠𝑃𝑜𝑠𝑡
2 − 4

𝜆𝑛
2 (𝐻(𝜌2)−1)

𝑛−1−2𝜆𝑛
2 𝑠𝑃𝑟𝑒𝑠𝑃𝑜𝑠𝑡). 
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Supplementary E: suR code 
# In the following file we demonstrate the supplementary results derived 

# Load packages 

library(ggplot2) 

library(MASS) 

 

# Supplementary B: Mathematical Coupling 

# Supplementary B1 - Situation 1: No correlation between Pre and Post  

# We simulate non-correlated variables and then correlate the first with  

# the difference. We included two cases, one where the variances are not  

# equal and the second where they are.  

set.seed(1) 

n_B1 = 100000 

mu_Pre_B1 = 100 

mu_Post_B1 = 100 

sd_Pre_B1 = 10 

sd_Post1_B1 = 12 

sd_Post2_B1 = 10 

Pre_B1 = rnorm(n_B1,mu_Pre_B1,sd_Pre_B1) 

Post1_B1 = rnorm(n_B1,mu_Post_B1,sd_Post1_B1) 

Post2_B1 = rnorm(n_B1,mu_Post_B1,sd_Post2_B1) 

 

# Calculate correlation non equal variance 

round(cor(Pre_B1,Post1_B1-Pre_B1),2) 

# check with derivation 

round(-sd_Pre_B1^2/ 

  sqrt((sd_Pre_B1^2+sd_Post1_B1^2)*sd_Pre_B1^2),2) 

 

# Calculate correlation  equal variance 

round(cor(Pre_B1,Post2_B1-Pre_B1),2) 

# check with derivation 

round(-1/sqrt(2),2) 

############ 

 

# Supplementary B2 - Situation 2 Positive correlation between Pre and Post  

# We simulate data using the model  

# Post = Pre + \beta_0 + \beta_1*Pre + \xi 

 

# We simulate two conditions, the first where there is no IDE of baseline values 

# such that \beta_1 = 0, and the second where \beta_1 \neq 0. 

set.seed(1) 

n_B2 = 1000000 

mu_Pre_B2 = 100 

sd_Pre_B2 = 10 

beta_B2_0 = 40 

beta_B2_1a = 0 

beta_B2_1b = -0.3 

sd_random_B2 = 5 

 

Pre_B2 = rnorm(n_B2,mu_Pre_B2,sd_Pre_B2) 

random_term_B2 = rnorm(n_B2,0,sd_random_B2) 

Post_B2_a = Pre_B2 + beta_B2_0 + beta_B2_1a*Pre_B2 + random_term_B2 

Post_B2_b = Pre_B2 + beta_B2_0 + beta_B2_1b*Pre_B2 + random_term_B2 

 

# check means and variance 

round(mean(Post_B2_a),1) 

round(mu_Pre_B2+beta_B2_0+beta_B2_1a*mu_Pre_B2,1) 

 

round(mean(Post_B2_b),1) 

round(mu_Pre_B2+beta_B2_0+beta_B2_1b*mu_Pre_B2,1) 
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round(var(Post_B2_a),0) 

var_Post_B2_a = (sd_Pre_B2^2)*((1+beta_B2_1a)^2)+sd_random_B2^2 

round(var_Post_B2_a,0) 

 

round(var(Post_B2_b),0) 

var_Post_B2_b = (sd_Pre_B2^2)*((1+beta_B2_1b)^2)+sd_random_B2^2 

round(var_Post_B2_b,0) 

 

# check correlations pre and post (result 2) 

round(cor(Pre_B2,Post_B2_a),2) 

corPre_B2Post_B2_a 

=(1+beta_B2_1a)/sqrt(((1+beta_B2_1a)^2)+sd_random_B2^2/sd_Pre_B2^2) 

round(corPre_B2Post_B2_a,2) 

 

round(cor(Pre_B2,Post_B2_b),2) 

corPre_B2Post_B2_b 

=(1+beta_B2_1b)/sqrt(((1+beta_B2_1b)^2)+sd_random_B2^2/sd_Pre_B2^2) 

round(corPre_B2Post_B2_b,2) 

 

# check Correlation between pre and change (Result 3 and 4) 

round(cor(Pre_B2,Post_B2_a-Pre_B2),2) 

 

# Result 3 

(corPre_B2Post_B2_a*sqrt(var_Post_B2_a)-sd_Pre_B2)/ 

  sqrt(sd_Pre_B2^2+var_Post_B2_a-

(2*corPre_B2Post_B2_a*sqrt((sd_Pre_B2^2)*var_Post_B2_a))) 

 

# Result 4 

round(beta_B2_1a/(sqrt(beta_B2_1a^2+(sd_random_B2^2)/sd_Pre_B2^2)),2) 

 

 

round(cor(Pre_B2,Post_B2_b-Pre_B2),2) 

 

# Result 3 

round((corPre_B2Post_B2_b*sqrt(var_Post_B2_b)-sd_Pre_B2)/ 

        sqrt(sd_Pre_B2^2+var_Post_B2_b-

(2*corPre_B2Post_B2_b*sqrt((sd_Pre_B2^2)*var_Post_B2_b))),2) 

 

# Result 4 

round(beta_B2_1b/(sqrt(beta_B2_1b^2+(sd_random_B2^2)/sd_Pre_B2^2)),2) 

############ 

 

# Supplementary C1 – Correlating errors and repeated measurements 

# We start with using our data generating model and generating true and observed 

# values and check the expressions for the various correlations derived.  

 

# We simulate two sets of pre value and two sets of post values. For the latter 

# we simulate with and without IDE of baseline values.  

set.seed(1) 

n_C = 1000000 

mu_Pre_C = 100 

sd_Pre_C = 10 

beta_C_0 = 40 

beta_C_1a = 0 

beta_C_1b = -0.3 

sd_random_C = 8 

sd_epsilon_C = 5 

 

Pre_C = rnorm(n_C,mu_Pre_C,sd_Pre_C) 

random_term_C = rnorm(n_C,0,sd_random_C) 

Post_C_a = Pre_C + beta_C_0 + beta_C_1a*Pre_C + random_term_C 
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Post_C_b = Pre_C + beta_C_0 + beta_C_1b*Pre_C + random_term_C 

 

error_C_pre_a = rnorm(n_C,0,sd_epsilon_C) 

error_C_pre_b = rnorm(n_C,0,sd_epsilon_C) 

error_C_post_a = rnorm(n_C,0,sd_epsilon_C) 

error_C_post_b = rnorm(n_C,0,sd_epsilon_C) 

 

pre_C_a = Pre_C + error_C_pre_a 

pre_C_b = Pre_C + error_C_pre_b 

post_C_a = Post_C_a + error_C_post_a 

post_C_b = Post_C_b + error_C_post_b 

 

# Check Result 5 

round(cor(pre_C_a,Pre_C),2) 

Cor_Pre_pre_C = sd_Pre_C/sqrt(sd_Pre_C^2+sd_epsilon_C^2) 

round(Cor_Pre_pre_C,2) 

 

# Check Result 6 

round(cor(post_C_a,Pre_C),2) 

Cor_Pre_post_C_a = (1+beta_C_1a)/ 

  sqrt((1+beta_C_1a)^2 + (sd_random_C^2+sd_epsilon_C^2)/sd_Pre_C^2) 

round(Cor_Pre_post_C_a,2) 

 

round(cor(post_C_b,Pre_C),2) 

Cor_Pre_post_C_b = (1+beta_C_1b)/ 

  sqrt((1+beta_C_1b)^2 + (sd_random_C^2+sd_epsilon_C^2)/sd_Pre_C^2) 

round(Cor_Pre_post_C_b,2) 

 

# Check Result 7 

round(cor(pre_C_a,post_C_a),2) 

Cor_pre_post_C_a = (1+beta_C_1a)/ 

  sqrt((1+((sd_epsilon_C^2)/(sd_Pre_C^2)))* 

          ((1+beta_C_1a)^2 + (sd_random_C^2+sd_epsilon_C^2)/sd_Pre_C^2)) 

round(Cor_pre_post_C_a,2) 

 

round(cor(pre_C_a,post_C_b),2) 

Cor_pre_post_C_b = (1+beta_C_1b)/ 

  sqrt((1+((sd_epsilon_C^2)/(sd_Pre_C^2)))* 

         ((1+beta_C_1b)^2 + (sd_random_C^2+sd_epsilon_C^2)/sd_Pre_C^2)) 

round(Cor_pre_post_C_b,2) 

 

# To provide a general illustration of regression to the mean, we explore the  

# correlation between measurement error and the difference between two observed 

# values. 

 

plotRTM1 = data.frame(x =error_C_pre_a, y =pre_C_b-pre_C_a) 

ggplot(plotRTM1[1:10000,],aes(x=x,y=y)) + geom_point() +  

  theme_classic() + labs(x="Measurement 1 error", 

                         y = "Change value") +  

  geom_vline(xintercept=0, linetype="dashed", color = "red") +  

  geom_hline(yintercept=0, linetype="dashed", color = "red") 

 

# Check Result 8 

round(cor(error_C_pre_a,pre_C_b-pre_C_a),2) 

round(-1/sqrt(2),2) 

############ 

 

# Supplementary C2 – Regression to the mean and continuous analyses.  

 

# We now investigate regression to the mean by estimating \beta_1 using  

# both true and observed values 
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# Case where \beta_1 = 0 

# True values 

round(summary(lm(Post_C_a~Pre_C))$coefficients[2,1]-1,2) 

round(summary(lm(Post_C_a-Pre_C~Pre_C))$coefficients[2,1],2) 

 

# observed values 

round(summary(lm(post_C_a~pre_C_a))$coefficients[2,1]-1,2) 

round(summary(lm(post_C_a-pre_C_a~pre_C_a))$coefficients[2,1],2) 

 

# Check Result 9 

round((beta_C_1a*sd_Pre_C^2 - sd_epsilon_C^2)/ 

  (sd_Pre_C^2 + sd_epsilon_C^2),2) 

 

# Case where \beta_1 \neq 0 

# True values 

round(summary(lm(Post_C_b~Pre_C))$coefficients[2,1]-1,2) 

round(summary(lm(Post_C_b-Pre_C~Pre_C))$coefficients[2,1],2) 

 

# observed values 

round(summary(lm(post_C_b~pre_C_a))$coefficients[2,1]-1,2) 

round(summary(lm(post_C_b-pre_C_a~pre_C_a))$coefficients[2,1],2) 

 

# Check Result 9 

round((beta_C_1b*sd_Pre_C^2 - sd_epsilon_C^2)/ 

        (sd_Pre_C^2 + sd_epsilon_C^2),2) 

 

# use Blomqvist’s method  

# Case where \beta_1 = 0 

# Check Result 10 

((((beta_C_1a*sd_Pre_C^2 - sd_epsilon_C^2)/ 

     (sd_Pre_C^2 + 

sd_epsilon_C^2))*(sd_Pre_C^2+sd_epsilon_C^2))+sd_epsilon_C^2)/ 

  sd_Pre_C^2 

 

 

# Case where \beta_1 \neq 0  

# Check Result 10 

((((beta_C_1b*sd_Pre_C^2 - sd_epsilon_C^2)/ 

  (sd_Pre_C^2 + sd_epsilon_C^2))*(sd_Pre_C^2+sd_epsilon_C^2))+sd_epsilon_C^2)/ 

  sd_Pre_C^2 

############ 

 

# Supplementary C3 – Regression to the mean based on groups and threshold 

values. 

# To quantify regression to the mean in the scenario where a sample is split  

# into two groups using baseline values relative to a threshold and  

# the subsequent change values compared, we need to quantify  

# conditional expectations based on true and observed values.  

 

# First we provide checks on expectations conditioned on true and observed 

values 

# generated previously and the threshold 110 

C_thresh = 110 

 

# Check Result 11 

z_plus_Pre = (C_thresh-mu_Pre_C)/sd_Pre_C 

z_minus_Pre = (mu_Pre_C-C_thresh)/sd_Pre_C 

Cz_plus_Pre = dnorm(z_plus_Pre)/(1-pnorm(z_plus_Pre)) 

Cz_minus_Pre = dnorm(z_minus_Pre)/(1-pnorm(z_minus_Pre)) 
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round(mean(Pre_C[Pre_C>C_thresh]),2) 

round(mu_Pre_C + sd_Pre_C*Cz_plus_Pre,2) 

 

round(mean(Pre_C[Pre_C<C_thresh]),2) 

round(mu_Pre_C - sd_Pre_C*Cz_minus_Pre,2) 

 

# Check Result 12 

z_plus_pre = (C_thresh-mu_Pre_C)/sqrt(sd_Pre_C^2+sd_epsilon_C^2) 

z_minus_pre = (mu_Pre_C-C_thresh)/sqrt(sd_Pre_C^2+sd_epsilon_C^2) 

Cz_plus_pre = dnorm(z_plus_pre)/(1-pnorm(z_plus_pre)) 

Cz_minus_pre = dnorm(z_minus_pre)/(1-pnorm(z_minus_pre)) 

 

round(mean(pre_C_a[pre_C_a>C_thresh]),2) 

round(mu_Pre_C + sqrt(sd_Pre_C^2+sd_epsilon_C^2)*Cz_plus_pre,2) 

 

round(mean(pre_C_a[pre_C_a<C_thresh]),2) 

round(mu_Pre_C - sqrt(sd_Pre_C^2+sd_epsilon_C^2)*Cz_minus_pre,2) 

 

# We provide a check on the post intervention expectations conditioned on true  

# baseline values. Here we assume that \beta_1 = 0. 

 

# Check Result 13 

round(mean(Post_C_a[Pre_C>C_thresh]),1) 

round(mean(post_C_a[Pre_C>C_thresh]),1) 

round(mu_Pre_C + beta_C_0 + Cz_plus_Pre*sd_Pre_C,1) 

 

round(mean(Post_C_a[Pre_C<C_thresh]),1) 

round(mean(post_C_a[Pre_C<C_thresh]),1) 

round(mu_Pre_C + beta_C_0 - Cz_minus_Pre*sd_Pre_C,1) 

 

# Still assuming that \beta_1 = 0, we quantify the regression to the mean  

# that will occur when groups are determined based on observed baseline values 

 

# We achieve this by calculating the difference between expectations when   

# using observed versus true baseline values 

 

round((mean(post_C_a[pre_C_a>C_thresh])- 

    mean(post_C_a[Pre_C>C_thresh])) -  

  (mean(pre_C_a[pre_C_a>C_thresh])- 

     mean(pre_C_a[Pre_C>C_thresh])),1) 

 

round(-Cz_plus_pre*(sd_epsilon_C^2/sqrt(sd_epsilon_C^2+sd_Pre_C^2)),1) 

 

round((mean(post_C_a[pre_C_a<C_thresh])- 

         mean(post_C_a[Pre_C<C_thresh])) -  

        (mean(pre_C_a[pre_C_a<C_thresh])- 

           mean(pre_C_a[Pre_C<C_thresh])),1) 

 

round(Cz_minus_pre*(sd_epsilon_C^2/sqrt(sd_epsilon_C^2+sd_Pre_C^2)),1) 

 

# Total regression to the mean  

round(((mean(post_C_a[pre_C_a>C_thresh])- 

         mean(post_C_a[Pre_C>C_thresh])) -  

        (mean(pre_C_a[pre_C_a>C_thresh])- 

           mean(pre_C_a[Pre_C>C_thresh])))- 

  ((mean(post_C_a[pre_C_a<C_thresh])- 

      mean(post_C_a[Pre_C<C_thresh])) -  

     (mean(pre_C_a[pre_C_a<C_thresh])- 

        mean(pre_C_a[Pre_C<C_thresh]))),1) 

round(-

(Cz_minus_pre+Cz_plus_pre)*(sd_epsilon_C^2/sqrt(sd_epsilon_C^2+sd_Pre_C^2)),1) 
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############ 

 

# Supplementary D: Meta-analysis of standard deviations 

 

# Standard error of standard deviation  

# sd(s) = s*(\sqrt(1-2/n-1*\lambda_n) 

 

# function for lambda 

lambdan = function(n){ 

  gamma(n/2)/gamma((n-1)/2) 

} 

 

# Function for Se of S 

SeS = function(s,n){ 

  s*sqrt(1-((2*lambdan(n)^2)/(n-1))) 

  } 

             

# We compare across group sizes of 10,25,50,100 

 

# Collect results 

set.seed(123) 

sesCollectn = c(10,25,50,100) 

  sesCollect = matrix(NA, nrow = 100000, ncol=4) 

for(j in 1:4){ 

  for(i in 1:100000){ 

        sesCollect[i,j] = sd(rnorm(sesCollectn[j],100,20)) 

  }} 

 

round(apply(sesCollect,2,sd),2) 

# Check  

round(SeS(20,sesCollectn),2) 

 

 

# We now look at the correlation between standard deviations 

Hrho2 = function(n,rho2){ 

  1 + rho2*(1/(2*n-2)) +  

    (rho2^2/2)*(1/((2*n-2)*(2*n+2))) +  

    (rho2^3/6)*(1/((2*n-2)*(2*n+2)*(2*n+6))) 

} 

 

cors12 = function(n,rho){ 

  (2*(lambdan(n)^2)*(Hrho2(n,rho^2)-1))/ 

    (n-1-(2*lambdan(n)^2)) 

} 

# We simulate data from multivariate normal distribution with correlations equal 

# to 0, 0.25, 0.5 and 0.75. across sample sizes of 10,25,50,100. 

Sigma0 = matrix(c(20^2, 0*20*20, 0*20*20, 20^2),ncol=2) 

Sigma025 = matrix(c(20^2, 0.25*20*20, 0.25*20*20, 20^2),ncol=2) 

Sigma05 = matrix(c(20^2, 0.5*20*20, 0.5*20*20, 20^2),ncol=2) 

Sigma075 = matrix(c(20^2, 0.75*20*20, 0.75*20*20, 20^2),ncol=2) 

 

Sigmas = list(Sigma0,Sigma025,Sigma05,Sigma075) 

 

set.seed(123) 

sdcorCollect = array(NA, c(100000,2,4)) 

for(j in 1:4){ 

  for(i in 1:100000){ 

    Data = mvrnorm(sesCollectn[j],c(100,100),Sigmas[[j]]) 

    sdcorCollect[i,1,j] = sd(Data[,1]) 

    sdcorCollect[i,2,j] = sd(Data[,2]) 

https://doi.org/10.31236/osf.io/y7sk6


Doi:10.51224/SRXIV.285 SportR𝜒iv Preprint version 1 

 

 

  }} 

 

round(cor(sdcorCollect[,1,1],sdcorCollect[,2,1]),2) 

# 0 

round(cors12(10,0),2) 

 

round(cor(sdcorCollect[,1,2],sdcorCollect[,2,2]),2) 

# 0.06 

round(cors12(25,0.25),2) 

 

round(cor(sdcorCollect[,1,3],sdcorCollect[,2,3]),2) 

# 0.25  

round(cors12(50,0.5),2) 

 

round(cor(sdcorCollect[,1,4],sdcorCollect[,2,4]),2) 

# 0.56 

round(cors12(100,0.75),2) 

 

 

# We now look at the standard error of the difference in standard deviations 

SEsdiff = function(sd1,sd2,n,rho){ 

   

  sqrt((1-2*(lambdan(n)^2)/(n-1))*(sd1^2+sd2^2 - 2*cors12(n,rho)*sd1*sd2)) 

} 

          

 

round(sd(sdcorCollect[,2,1]-sdcorCollect[,1,1]),2) 

round(SEsdiff(20,20,10,0),2) 

 

round(sd(sdcorCollect[,2,2]-sdcorCollect[,1,2]),2) 

round(SEsdiff(20,20,25,0.25),2) 

 

round(sd(sdcorCollect[,2,3]-sdcorCollect[,1,3]),2) 

round(SEsdiff(20,20,50,0.5),2) 

 

round(sd(sdcorCollect[,2,4]-sdcorCollect[,1,4]),2) 

round(SEsdiff(20,20,100,0.75),2) 
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