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ABSTRACT 
The main task of applied sport science is to inform decision-making in sports practice, that is, 
enabling practitioners to compare the expectable outcomes of different options (e.g. training 
programs). The “evidence” provided may range from group averages to multivariable prediction 
models. By contrast, many decisions are still largely based on the subjective, experience-based 
judgement of athletes and coaches.  While for the research scientists this may seem “unscientific” 
and even “irrational”, it is important to realize the different perspectives: Science values novelty, 
universal validity, methodological rigor, and contributions towards long-term advancement. 
Practitioners are judged by the performance outcomes of contemporary, specific athletes. This 
makes out-of-sample predictive accuracy and robustness decisive requirements for useful 
decision support. At this point, researchers must concede that under the framework conditions 
of sport (small samples, multifactorial outcomes etc.) near certainty is unattainable, even with 
cutting-edge methods that might theoretically enable near-perfect accuracy. Rather, the sport 
ecosystem favors simpler rules, learning by experience, human judgement, and integration 
across different sources of knowledge. In other words, the focus of practitioners on experience 
and human judgement, complemented - but not superseded - by scientific evidence is probably 
street-smart after all. A major downside of this human-driven approach is the lack of science-
grade evaluation and transparency. However, methods are available to merge the assets of data- 
and human-driven strategies and mitigate biases. This work presents the challenges of learning, 
forecasting and decision-making in sport as well as specific opportunities for turning the 
prevailing “evidence vs. eminence” contrast into a synergy. 
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HOW TO MAKE GOOD DECISIONS IN SPORTS 
Applied sport science aims to provide the basis for informed decisions in sports practice 

– and thereby for the effectiveness and safety of exercise training on all levels. While this 
statement may seem self-evident, framing applied sport science in the context of decision-
making (providing guidance for a concrete, new case) rather than inference (using empirical data 
to gain new insights into the workings of nature) has important consequences. Perhaps most 
fundamentally, quality criteria for the output shift from the habitual set around novelty, universal 
validity, and contribution towards the long-term advancement of science, to a more instrumental 
set around helpfulness towards achieving current goals and validity under the framework 
conditions of the specific use case.  

Figure 1 illustrates how rules learned from past observations are subsequently brought 
to bear in forecasting and decision-making. Reliably deciding for the best or at least for a better-
than-random of several options (e.g. different training intensities, recovery strategies, or time 
points of return to sport), calls for a - at least implicit - prediction of what would happen with 
each of the options. This outcome-oriented perspective of the practitioner makes out-of-sample 
predictive accuracy a critical requirement for useful scientific evidence. Importantly, agreement 
with the past (e.g. previously collected data; scientists' habitual “hindsight” perspective) is a poor 
indicator of generalizability to new cases (practitioners' “foresight” perspective) [1]. Negligible 
out-of-sample predictive performance can occur despite a near-perfect agreement with the 
observations from which the rule has been learned [1, 2]. 
 

 
Figure 1.  Learning, forecasting and decision making 
     Applied sports science contributes important groundwork for informed decision- 
     Making in sports practice – not less and not more. 
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Prediction models and uncertainty in sports 

As sport-related outcomes are usually multifactorially influenced, for a contemporary life 
scientist, the natural approach to the challenge of “foresight” is arguably a data-driven prediction 
model based on (multiple-) regression or a more fancy machine learning algorithm. In fact, a 
comprehensive model could theoretically transform rules previously inferred from data into 
accurate forecasts - thereby directly linking research and practice. An illustrative example is the 
field of astronomy, in which physical laws are used to calculate the future positions of celestial 
bodies with great precision. In the field of sport, however, such a near-clairvoyant model is not 
only unavailable to date but also unrealistic (given the bewildering complexity of exercise training 
effects and limited sample sizes [3, 4]), as well as impractical (considering the testing burden 
associated with assessing the multitude of input variables).  

While uncertainty and ambiguity are generally unfavourable in decision making especially 
if stakes are high, actively embracing the limits of one's knowledge and forecasting tools is an 
important factor in making rational decisions [5]. An obvious advantage of such “intellectual” [5] 
or “epistemic” [6] humility is risk and contingency management: Being aware of perhaps being 
wrong helps mitigate the effects of actual errors (by being attentive and prepared). A less well-
recognized benefit is increased freedom in strategy selection and combination: Being aware that 
“all models are wrong” (even the sophisticated ones currently considered as reference-standard) 
opens the competition for a greater variety of epistemic approaches [6]. 

In fact, under real-world constraints (rules inferred from small samples, unknown 
moderators, measurement error in assessing the specific case etc.) standardized practice based 
on expected values for a larger reference class can offer superior performance compared to 
“individualized” decisions based on a multivariable prediction model [7]. Admittedly, deliberately 
ignoring established influencing factors is counterintuitive. It may be even more surprising that 
improving predictive performance by limiting model complexity is a matter of course in 
bioinformatics and machine learning – uniquely “data-driven” fields that are generally thought to 
seek salvation in complexity and dimensionality [8]. This less-is-more effect can be traced back 
to the tradeoff between tightly fitting the model to the training data on the one hand and the 
generalizability of the trained model to other samples and new cases on the other: A highly 
complex, flexible model will fit limited training data almost perfectly (Remember from highschool 
that two points can always be fit perfectly with a strainght line, three points with a second degree 
polynomial ...). However, such a close fit to the training data (low bias) is achieved by fitting not 
only the regularities but also spurious variations leading to marked differences between models 
trained with different datasets (high variance). However, using a model (or rule) for making 
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practically-useful forecasts requires its applicability (“generalizability”) beyond the cases from 
which it has been learned (fig. 1). The spuriously high, “useless” performance on the training data 
is known as “overfitting”. Simple models generally provide more robust results (low variance) but 
may fail to capture as much of the regularities as possible (high bias, underfitting). Optimizing 
out-of-sample predictive performance requires finding the sweet spot of this bias-variance 
tradeoff – the location of which is heavily dependent on the amount of available training data. 
An intuitive illustration can be found in [8]. Note that overfitting is not confined to machine 
learning but may be seen as a special case of the “narrative fallacy”: In hindsight, we will generally 
find a compelling story of why and how things developed as they did. Projecting this narrative 
into the future is a completely different story.  

Note: The use of the terms “bias” and “variance” differs between machine learning, 
statistics and psychology. This paragraph reflects the machine learning perspective. 

Ecological rationality – generalizing the bias-variance lesson 

Selecting the option with the most favourable expected outcome after carefully weighing 
all available criteria (“maximizing expected utility”) has long been considered the essence of 
rational decision-making. In practice though, the limited amounts of knowledge, information, 
time, and computational power that human beings possess do not allow for such perfection. 
The more benign version of the argument is the “effort-accuracy tradeoff”: Searching additional 
information or using additional computation power improves performance but with diminishing 
returns – and humans stop optimizing when the additional benefit is simply not worth it. The 
bias-variance tradeoff, however, puts this in a very different perspective: In a world marked by 
changes and uncertainties, additional effort (that is: more information and complex 
computation) can actually reduce forecasting accuracy! Put more generally, the real-world 
performance of a forecasting or decision-making strategy (and therefore the rational choice 
between strategies) depends on its fit with the framework conditions of the specific use case 
rather than on the strategies theoretical performance potential under ideal conditions. Table 1 
summarizes the key ideas of ecological rationality. 
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Table 1: Ecological rationality – Key ideas 
 
Don’t let the perfect be the enemy of the good!  
Renouncing an approach that would be able to provide perfect results under ideal conditions 
for a simpler alternative can improve performance under real-world circumstances.  
 
There is no golden bullet!  
The optimal strategy cannot be identified in general but depends on preconditions of the 
specific usecase.  
 
The diversity of epistemic approaches is an asset.  
The above insights can be generalized beyond tailoring machine learning algorithms to a 
broader range of forecasting and decision making strategies. Examples for such alternatives 
range from expert intuition (“gut feeling” [9]) and deliberately simple decision rules (fast-and-
frugal heuristics [10]), to debiasing subjective judgements (“crowd intelligence” [11, 12]) and 
the strategic integration across several sources of information and knowledge 

 

THE SPORT ECOSYSTEM 

Key aspects of ecology 

The prediction ecology of a specific use case primarily concerns the framework 
conditions for learning rules that can subsequently be used to make useful predictions for new 
cases. In a wider sense, the set of options between which to decide, as well as practical 
constraints and evaluation criteria regarding the decision-making process and the decision 
maker are also part of the decision ecology. A clear and concise overview is complicated by 
varying terminologies and focal points associated with different approaches and the fields within 
which they have been developed. Here we aim to provide a unified overview by identifying four 
main aspects: Predictability, explanatory (cues), criterion variables, and the number of 
precedents to learn from. 
 

Predictability 

Predictability of a specific outcome can be limited by random chance playing a role in it 
(aleatoric uncertainty) and/or by practical epistemic constraints (epistemic uncertainty). An 
example of high aleatoric uncertainty is contact injuries in team sports which are due to the 
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player being “in the wrong place and situation at the wrong time” with few (if any) risk factors that 
could – even in principle - be identified in advance [2]. By contrast, overload injuries are an 
example of mainly epistemic uncertainty: The loading capacities of e.g. a runner's metatarsal 
bones and the exercise-induced (local) load are existing quantities and knowable in principle, 
but we cannot assess or estimate them precisely. Importantly, predictability is sensitive to the 
timeframe. In many situations, short-term “anticipation” is easier and more accurate than long-
term forecasting. A theory-based idea of predictability for the outcome in question is crucial for 
topic and strategy selection, risk management, and spotting exaggerated claims of model 
performance and overconfidence in subjective judgements.  

In the field of sports predictability varies widely between negligible (contact injuries in 
team sports) and good (change in running performance with change in body weight [13, 14]). 
Many outcomes fall in between: They are predictable to some (potentially meaningful) extent 
and gradual improvements rely on identifying dominant features and smart strategy 
selection/combination. 

Note that there are several classifications of “worlds” tightly linked to predictability [15-
19].  While the fields of origin and the dimensions differ, a unifying rationale is tentatively 
illustrated by the small tree in figure 2. There are only two nodes: (1) Are the governing rules 
known or do they have to be learned from limited amounts of previous observations? And (2) 
Can we realistically hope to learn rules with near-perfect out-of-sample predictive accuracy 
under real-world conditions? The world of sport is located in the lower right, reflecting limited 
predictability and considerable uncertainty. 
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Figure 2. Predictability in different “worlds” -  
      Can we realistically expect to procure generalizable rules? 
Note: The classification of a specific case may change over time at both nodes. Example for node 
1: The laws of Newtonian mechanics once had to be discovered, but have since aquired the 
status of „law of nature“. Example for node 2: Conceptual and technological advances can 
gradually improve predictability e.g. in weather forecasting. 
 

Cues 

Using currently available cues (explanatory variables) to predict the state of a complex system at 
a future time point is the essence of forecasting - and thereby of evaluating different options 
between which to decide (fig. 1). The number of cues, their relative importance and potential 
interactions determine the complexity of the rule to be learned, and thereby the number of 
precedents needed to do so. The type of relevant cues (manifest/objective quantity, 
latent/complex construct, subjective perception, social) is another important aspect for 
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matching a forecasting strategy to the environmental structure. Further aspects of the set of 
cues are their redundancy (overlap in meaning), accessibility (e.g. testing burden), availability (at 
the time point of making the forecast), and finally the uncertainty of cue values (e.g. due to 
measurement error).  

The general, cue-related specifics of the sport ecosystem mainly concern number and 
type. Most outcomes of major interest in sports are multifactorially influenced with at least a 
considerable subset of influencing factors being of noteworthy and consistent importance. 
Although it is important not to confound “cue” with “cause”, a multitude of relevant explanatory 
factors is highly plausible. Moreover, many conceptually important explanatory factors are not 
manifest, directly observable quantities (e.g. the speed or the number of sprints) but complex 
constructs (e.g. recovery needs or movement quality) that have to be inferred from indicators of 
their various dimensions. Taking recovery needs as an example, indicators may include blood 
born markers, heart rate and heart rate variability measures and tests of neuromuscular 
performance [20]. While this approach is objective and scalable, it further increases the number 
of parameters to be fit and thereby the sample size required for learning. As a complementary 
asset of the sport ecosystem, the corporeality of exercise regularly enables direct access to the 
target construct as a subjective perception. The human brain evolved to integrate exercise-
related cues into a feeling (athlete) or impression (coach) of fatigue, movement quality etc. Again 
taking recovery needs as an example, questionnaire results almost uniformly outperform 
objective indicators – at least in the context of scientific studies with no conflicts of interest on 
the side of athletes or coaches [20].   

Criterion 

To develop and evaluate forecasting accuracy, it is crucial to compare predicted and actual 
outcomes. Therefore, the timely availability of an unambiguous criterion is an important aspect 
of a learning environment. In machine learning this consideration is embodied in the concept 
of “supervised learning”, but it is equally important for (human) learning from experience. The 
above considerations regarding manifest, directly observable quantities and complex, latent 
constructs also apply to the criterion variable. 

Precedents 

The number of similar cases from which to learn is fundamental for obtaining 
generalizable rules. This consideration is embodied by the statistical proverb “Repetition is the 
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key to separate trait from chance.” While in the life science context, the critical quantity is the 
number of cases or events, the rule also applies to learning by experience. Importantly, 
increasing the number of explanatory factors can’t compensate for a limited number of 
precedents but aggravates the risk of overfitting. 

A characteristic feature of high-level sport is the small number of athletes [3] and even 
outside high-performance environments sample sizes in sport science are usually limited. 
Therefore, “greedy” approaches (high-dimensional biomarkers / “omics”, “deep learning”) usually 
fail to provide useful out-of-sample predictive accuracy [3]. Note that experienced coaches may 
have had more opportunities for learning than any scientific trial. 

The sport ecosystem – further relevant aspects 

Beyond the peculiar expression of the 4 main characteristics above, the sport 
ecosystem includes further relevant specifics, 3 of which will be discussed below. 

The ecosystem in high-performance sport is populated by outliers 

High-performance athletes are, more-or-less by definition, exceptions from the rule. This 
impedes the generalizability of learning outcomes and complicates the identification of 
implausible results. 

Specific constraints on decision-making 

For example, in team sports a specific number of players has to be lined up for a 
competitive match – even if all players have a high predicted probability of getting injured. 
Moreover, the trade-off between expected consequences for individual health and team 
success, respectively, varies between players. These aspects differ from decision-making in other 
areas of health care where decisions are based exclusively on the expected (health) 
consequences for the concerned individual [2]. 

Importance of avoiding the big mistakes 

Athletic training and performance development are long-term and therefore involve a 
large number of decisions ranging from strategic to mundane. In this context, it is important to 
keep in mind that a single big mistake may outweigh the positive effects of a large number of 
gradual optimizations. Therefore, it is crucial to identify forecasts that are “way off” or cases that 
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are “off limits” and for which an otherwise successful model may not be applicable (e.g. due to 
rare but influential characteristics [21]). Moreover, as for predictability in general, it is important 
to have a theory-based expectation regarding the distribution of forecasting errors. It makes a 
big difference for risk management whether errors are more or less normally distributed or if 
long streaks of accurate forecasts are punctuated by complete failures [21]. Unfortunately, 
infrequent but massive errors are not well represented by common measures of predictive 
accuracy. Therefore, plausibility checks are essential for robust decision-making with imperfect 
knowledge. Importantly, this requires cross-comparison between different sources of 
knowledge - especially when “plausible” may not be approximated by “within a group-based 
reference range”. To date, such non-algorithmic critical thinking and common sense are still a 
privilege of humans. 

The sport ecosystem in a nutshell 

Taken together, the key challenge of the sport ecosystem is complexity complicated by a 
small, sometimes tiny number of precedents to learn from. On the assets side, there is the 
corporeality of physical exercise which provides direct subjective access to complex exercise-
related features, the feedback provided by daily practice and competition performance, and the 
longstanding, immersive experience of professional coaches, support staff and athletes. From 
the perspective of task analysis, the priority of avoiding big mistakes (robustness) and sport-
specific external constraints on decision-making have to be taken into account. 

LEARNING, FORECASTING & DECISION-MAKING STRATEGIES 
In the context of sports, only two contrasting strategies are generally considered: (1) The 

life science approach including group-based scientific evidence and data-driven prediction 
models and (2) Experiential knowledge and expert intuition. However, this “evidence vs. 
eminence” dichotomy ignores the diversity of available options. In particular, there are two 
potential amendments with promising fit to the sports ecosystem: Deliberately frugal decision 
rules (heuristics) and debiasing and aggregating subjective human judgements (“crowd 
intelligence”). Finally, the individual strategies are not mutually exclusive but may be 
synergistically combined. The following sections discuss assets, drawbacks and potential 
synergies. A conceptual overview is provided in figure 3. 
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Figure 3. Strategy selection and combination in the sport ecosystem – A first serve 

The life-science approach (“Evidence”) 

In many ecosystems, standardized expectations based on a large reference group (e.g. 
results from large randomized controlled trials or meta-analyses) are superior to expert 
judgements [22] and a hard-to-beat benchmark for data-driven, individualized predictions [7]. 
However, it has to be kept in mind that the predictive value of trials with sample sizes typical for 
sport science is low [3, 23]. This means that many (perhaps most [24]) novel findings are false. 
While these busts will eventually be sorted out during the research process [25], they make early 
adoption a hazardous business for practitioners.  

Data-driven prediction models aim on reducing uncertainty by considering a 
comprehensive set of explanatory variables. They combine the theoretical potential for (near-) 
perfect predictive performance with objectivity and scalability (e.g. by implementing the trained 
model in a digital decision support system). Moreover, computation capacity and large amounts 
of data (from wearables, player tracking, power meters, smartphone apps etc.) are readily 
available today. However, critical requirements for unleashing the potential of data-driven 
prediction models are a large number of precedents and an informative (!) panel of explanatory 
variables. As already pointed out, these requirements are generally not met by the sport 
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ecosystem. Importantly, this does not rule out that in some sport-related applications data-
driven prediction models may be helpful – particularly when a limited number of dominant cues 
or patterns can be identified [2] and/or as part of composite strategies [3, 26]. A recent 
illustrative example for the latter is the combination of data-driven prediction with coaches 
subjective judgment in talent identification [9].  

Beyond predictive accuracy, interpretability is an important asset in the context of 
decision support. While in theory “black box” predictions of a relevant target (e.g. injury risk) 
made with a well-validated model can be useful, ideally, predictive accuracy coincides with causal 
interpretability. In other words: The explanatory variables relate to determinants in causal 
concepts and it is known which cue values drive a specific prediction. An illustrative example is 
the monitoring of injury risk: While an accurate estimate of injury risk may in itself be worthwhile 
(e.g. to avoid exposure when the risk estimate is high), knowing the factors that lead to an 
elevated risk would enable a more targeted response.  

Finally, it has to be kept in mind that although current software packages make “machine 
learning” doable for the subject matter scientist, this ease is deceiving and a lack of expertise (or 
rigor) in the finer details of model fitting and validation can easily lead to spuriously high (!) 
estimates of model performance [2]. A salient but regularly overlocked pitfall is information 
leakage [27], the risk of which is particularly high when working with longitudinal (e.g. monitoring) 
data [2]. 

Learning by experience and expert judgement (“Eminence”) 

Arguably, experience-based subjective judgments are still the prevailing basis of decision-
making in sports. While from the life-scientists perspective this may sometimes seem 
“unscientific”, “irrational” or even stubborn, in fact, characteristic features of the sport ecosystem 
favour this approach. To begin with, experienced professional coaches and other support staff 
typically had access to more precedents than can be included in any scientific trials. Together 
with the direct subjective perceptibility of complex exercise-related cues, regular feedback 
provided during daily practice and competition, and guidance from formal training, this favours 
the build-up of robust experiential knowledge. Moreover, making viable forecasts in complex 
situations with very few clearly identifiable precedents is a characteristic feature of human 
reasoning. This human faculty exploits higher-order mental capacities such as thinking in 
analogies to make sense of diverse and incomplete information and remains hard to emulate 
for artificial intelligence.  
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Note that subjective assessments do not necessarily arise from an unconscious “black 
box”. While this is a characteristic feature of intuitions and “gut feelings”, subjective judgements 
and forecasts can be the result of targeted information search and conscious reasoning with an 
explicit line of argument as well as an estimate of uncertainty [28, 29]. While the assets of the 
latter are well supported [28, 29] (particularly when complexity is combined with sparse data as 
it is the case in sport) the potential contribution of expert intuition and “gut feelings” is less clear. 
Arguably, expert intuitions should be particularly considered for spotting abnormalities e.g. 
cases that do not belong to the reference class despite fulfilling formal inclusion criteria [30] 
(figure 3). However, this remains to be empirically verified in the context of sport. 

Deliberately simple decision rules (Heuristics) 

Heuristics are simple “rules of thumb” that enable fast decisions without the effort and 
resources needed for considering all available information. Generally, heuristics are viewed in 
light of an effort-accuracy trade-off: “Quick-and-dirty” solutions, necessary to get along with the 
deluge of everyday decisions that do not merit the effort of optimization. However, as already 
pointed out, simple rules can also be more accurate than extensive strategies that consider 
more cues and use more extensive computation methods [10]. Empirical results supporting a 
“less-is-more” effect have been reported in a wide range of fields [7, 31-38].  

A structured introduction to the science of heuristics is beyond the scope of this work 
and has been provided by experts in the field [10, 39]. However, it is important to identify two 
main perspectives: In the seminal work of Tverski and Kahneman [40] heuristics are  
simplifications of judgemental operations that are unconsciously used by humans and rely on 
subjective cues such as representativeness (how much the specific case evokes a certain class) 
or availability (how easily similar cases come to mind). While the authors explicitly state that “in 
general, these heuristics are quite useful”, the focus is on the biases associated with such 
intuitive short-cuts e.g. insensitivity to base rates, sample size, and predictability. The deficiencies 
of heuristics are demonstrated using the “rational” judgement or choice as a comparator. 
However, while this is straight forward for situations in which the optimal solution is known, in 
most practically relevant situations the optimal solution is unknown or even unknowable. 
Therefore, Gigerenzer and colleagues modified this view by defining heuristics as efficient 
judgemental operations that deliberately use only part of the potentially available information 
and simple computation [10, 39]. Emphasize is put on exploiting “less-is-more” effects and on 
formalizing and evaluating heuristics (e.g. for use in decision support tools [41, 42]). This 
integrates heuristics at par into the larger toolset of forecasting and decision support. 
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Regarding fit with the sport ecology, simple models (heuristics) are generally favoured by 
sparse data. Moreover, the corporeality of exercise offers the option to leverage the innate 
capacities of the human mind (e.g. perceiving physical exertion or recognizing movement 
patterns that indicate it in others) and thereby favors the validity of subjective cues. Finally, 
formalizing experiential knowledge as heuristics [41, 42] offering a potential hub between . Taken 
together, the general fit between heuristics and the sports ecosystem seems to be almost 
exemplary. Readers interested in the rationales and rules for selecting specific heuristics are 
referred to [43]. 

Taming and harnessing subjective judgements (Crowd intelligence) 

Despite the positive perspective on experiential knowledge and expert judgment 
presented above, there are also major downsides of this “human-driven” approach. These 
include limitations in attention, time and memory as well as the numerous biases introduced 
e.g. by limited or irrelevant information and wishful thinking [40]. Moreover, the informal process 
and verbal or even implicit judgements (as opposed to quantitative probability estimates) 
complicate the evaluation of performance. Taken together, subjective judgements are a serious 
option when trying to make forecasts in complex situations with incomplete information and 
very few specific precedents e.g. when trying to mitigate injury risk in an elite athlete. However, 
the risk of bias and a lack of (objective) verification of performance are downsides of this uniquely 
human contribution. 

In fields that regularly deal with this conundrum at high stakes (e.g. intelligence analysis 
[44, 45]) techniques for mitigating these limitations have been developed. First and foremost, 
objective evaluation of subjective judgements is enabled by unambiguous targets (including 
criterion and timeline) and quantitative estimates [29, 44]. Of course, this requires a 
commitment to accountability, feedback and continuous improvement on the part of the raters. 
As a next step, the accuracy of individual raters may be increased by feedback and advice on 
good judgement practice (e.g. incremental updating of reference class information [46]). Beyond 
these basic measures, further improvements are mainly achieved by having not one but many 
raters [11, 44] – in exact analogy to averaging several measurements e.g. of VO2max [47] to 
reduce the impact of measurement error. The concept of “crowd intelligence” or “wisdom of the 
crowd” dates back to the beginning of the democratic era [12] and posits that in many situations 
aggregating subjective judgements from a large number of independent raters (on average) 
leads to a more accurate estimate than the judgement of a single rater [48] – even in the case 
of superior expertise, experience [12] and access to exclusive information [44]. While initially 
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simple averaging was used [12], today more sophisticated methods for aggregation are available 
[11, 29]. Implementing the collection, aggregation and presentation of subjective judgments in 
a web application or smartphone app can be the final step of taming subjective judgements and 
integrating them into the harnessed team of forecasting and decision support tools [49]. Taken 
together, aggregated subjective judgments are a promising option for improving decision 
support in high-level sports – specifically in “unique” situations in which statistical learning is 
doomed to fail, clearcut heuristics are not available and the popularity of a sport provides a large 
and motivated “crowd” (e.g. football). 

Integrating diverse sources of information and knowledge 

In the sports ecosystem, each of the approaches to learning, forecasting and decision-
making comes with considerable limitations. Therefore, it seems promising to search for 
synergies and complementary combinations – in particular between data-driven and human-
driven strategies but also between existing knowledge and new data. Mundane (yet essential) 
examples are the support of experiential learning by formal training [43] (e.g. for obtaining a 
coaching licence) and common-sense-based plausibility checks. While there are countless ways 
to formally combine sources of information and knowledge, it may be helpful to identify two 
main categories: (1) Building upon preexisting knowledge and (2) Single-stage integration of 
results from diverse strategies. 

Leveraging prior knowledge – Bayesian updating, shrinkage, and causal 
inference 

When the small number of precedents and / or the acceptability of extensive study 
requirements are limiting factors (as is typically the case in sport) prior knowledge - which may 
concern the magnitude and/or the causal structure of the effect in question - may be used to 
augment current data.  

Anchor and adapt: Fortunately, at least in high-performance sport, we usually have a 
defendable prior expectation about the direction and magnitude of the effect(-s) in question. 
Options to formally implement a “hub” with new data range from using base rates as 
anchors[50], over Bayesian updating of informative priors [51, 52] and shrinking individual 
forecasts towards the group average [53], to pre-trained models in machine learning [2, 3]. 
Ultimately, these methods balance individuality and robustness by including an “anchor” based 
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on a larger reference class. The following references provide some worked examples for the 
integration of preexisting knowledge and current data in sport [2, 51, 52, 54]. 

Leveraging causal knowledge: Insights into the causal structure of the effect under 
investigation can be used to gain more information from available data, specifically for improving 
out-of-sample predictive accuracy, robustness and interpretability [55]. While fully implementing 
causal inference arguably requires expert collaboration, explicitly specifying subject matter 
knowledge (or assumptions) in a causal diagram is already an important step enabling 
transparent scrutiny and identification of pitfalls [55]. Note that existing causal knowledge or 
respective assumptions are involved in any trial even if the statistical analysis is purely data-
driven and model-free (e.g. for selecting proper stratification criteria and standardization 
measures). 

Integrating diverse perspectives – Dragonfly eye strategies and triangulation 

Supplementary knowledge and different perspectives may also arise in parallel, e.g. by 
applying several of the above strategies to the same use case. As already pointed, integrating 
judgements from diverse and independent raters can reliably improve accuracy and avoid 
extreme outliers. This principle of “crowd intelligence” also applies to non-human sources. A 
salient example is ensemble methods in machine learning such as random forests (which rely 
on purposefully increased diversity and independence followed by aggregation). The 
combination of forecasts across different machine learning methods is referred to as 
“consensus forecasting” or “committee machine”. Of course, different, potentially 
complementary access routes may also be combined in a non-algorithmic way to gain a human-
driven, composite assessment (dragonfly eye strategy) or to identify spurious extremes that may 
arise as artefacts of a particular method (plausibility control). In the context of scientific research, 
increasing the robustness of insights by combining diverse lines of evidence is known as 
“triangulation” [56]. 

CONCLUSION 
Taken together, the above considerations call for (deliberate and reflective) street-

smart decision-making in sport: Waiving extensive proceedings or authorities that are 
axiomatically considered optimal (even if they would theoretically be under ideal conditions) for 
strictly outcome-oriented approaches that are less elegant and ambitious but adapted to and 
proven in the environment in question. Specifically, in the sport ecosystem, key amendments 
to data-driven evidence and individual eminence are: 
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• Using the head start provided by preexisting knowledge  
• Targeting the sweet spot of model complexity by deliberate simplification  
• Harnessing uniquely human contributions 
• Replacing gold-standard dogmas by using synergies between diverse approaches 
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