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Abstract 25 
When designing studies researchers often assume that findings can be replicated, and are not false positive results. 26 
However, in literature that suffer from underpowered designs and publication bias, the replicability of findings 27 
can be hindered. A previous study by Abt et al., (2020) reported a median sample size of 19 and the scarce usage 28 
of pre-study power analyses in studies published in the Journal of Sports Sciences. We meta-analyzed 89 studies 29 
from the same journal to assess the presence and extent of publication bias, as well as the average statistical power, 30 
by conducting a z-curve analysis. In a larger sample of 179 studies, we also examined a) the usage, reporting 31 
practices, and reproducibility of pre-study power analyses; and b) the prevalence of reporting practices of t-32 
statistic or F-ratio, degrees of freedom, exact p-values, effect sizes and confidence intervals. Our results indicate 33 
that there was some indication of publication bias and the average observed power was low (53% for significant 34 
and non-significant findings and 61% for only significant findings). Finally, the usage and reporting practices of 35 
pre-study power analyses as well as statistical results including test statistics, effect sizes and confidence intervals 36 
were suboptimal. 37 
 38 
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1. Introduction 80 
Replicability refers to testing an effect observed in a prior finding using the same study design and data analysis 81 
but collecting new data (Nosek et al., 2022). When a study finding can be replicated, researchers can therefore be 82 
more confident the original finding is not a false negative. Replication projects across several scientific disciplines 83 
such as psychology (Open Science Collaboration, 2015), the social sciences (Camerer et al., 2018) and, more 84 
recently, cancer biology (Errington et al.,  2021) have attempted to replicate original studies. A common outcome 85 
of these replication projects was that original effects were often difficult to replicate even when larger sample 86 
sizes are collected, and if detected, effect sizes were smaller than in the original report (i.e., overestimated effect 87 
sizes). These results have sparked renewed interest in research practices that hinder the replicability of prior 88 
findings (Button et al., 2013; Carter & McCullough, 2014; Errington et al., 2021; Francis, 2012; Simmons et al., 89 
2011; Wicherts et al., 2016). Three issues that are known to lower the replicability of published findings are 90 
studies with underpowered designs, p-hacking, and a scientific literature that suffers from publication bias (Bakker 91 
et al., 2016; Button et al., 2013; Fraley & Vazire, 2014; Francis, 2012; Franco et al., 2014; Stefan & Schönbrodt, 92 
2022).  93 
 94 
Statistical power is the probability of rejecting the null hypothesis when it is false (i.e., the probability of finding 95 
a significant effect when there is one to be found) and depends on the effect size of interest, the sample size, the 96 
statistical test and the Type I error rate (Cohen, 1962; Maxwell et al., 2017). For example, studies investigating 97 
small and medium effects with small samples are likely to be underpowered, and therefore they have a higher 98 
probability of yielding a false negative result. Interestingly, Abt et al., (2020) reported that the Journal of Sports 99 
Sciences published studies with a median sample size of 19 participants. Depending on the design and the effect 100 
size, a study using a sample size of 19 participants may not have sufficient power, particularly when effects are 101 
relatively small and between participant designs are used  (Maxwell et al., 2017). For example, a within-participant 102 
design with a sample size of 20 participants and where the effect of interest, dz, is 0.5, would have 56% power for 103 
a two-sided test with an alpha of 5%. A between-participant design with a sample size of 10 in each condition and 104 
an effect of interest, ds, of 0.5 would have a power of 19% for a two-sided test with an alpha of 5%. These two 105 
studies would require a total sample size of 44 and 172, respectively, to detect a Cohen’s dz of 0.5 with a statistical 106 
power of 90%. Consequently, it is important to examine the designs of the studies published in the Journal of 107 
Sports Sciences are sufficiently powered for effects of interest despite the small sample sizes previously reported 108 
(Abt et al., 2020). 109 
 110 
Publication bias occurs when studies with statistically significant findings have a higher chance of being published 111 
than statistically non-significant findings. This phenomenon includes editors and reviewers selectively publishing 112 
studies with significant findings (i.e., review bias; Mahoney, 1977) and researchers deciding not to submit studies 113 
with non-significant results (i.e., the file-drawer problem; Rosenthal, 1979). This is especially problematic when 114 
studies have underpowered designs because such studies suffer from large sampling error which leads to 115 
substantial uncertainty about the true effect size (Cumming, 2013). Furthermore, when a study with a between-116 
subject design investigates a true Cohen’s ds effect size = 0.5 and there are only 20 subjects per condition, it is not 117 
possible to get a p < 0.05 unless the true effect size is overestimated (Cumming, 2013), as the minimal detectable 118 
effect size with an alpha of 0.05 is ds = 0.64 (Lakens, 2022). Publication bias increases the false positive report 119 



 

 

probability (Wacholder et al., 2004), or the probability that a published significant finding is actually a Type I 120 
error. Furthermore, publication bias based on statistical significance and in the presence of studies with small 121 
sample sizes leads to overestimated effect size estimates (Anderson et al., 2017; Bartoš & Schimmack, 2022). 122 
Despite the relevance of publication bias to the non-replication of studies and cumulative research (Carter & 123 
McCullough, 2014; Francis, 2012; Franco et al., 2014), it has been overlooked in the field of sports and exercise 124 
science. The presence of publication bias and studies with underpowered designs in a body of literature can be 125 
examined using a z-curve analysis (Bartoš & Schimmack, 2022; Brunner & Schimmack, 2020; see also 126 
Simonsohn et al., 2014a, 2014b for p-curve). The z-curve method converts significant and non-significant p-127 
values reported in a literature into z-scores, and uses the distribution of z-scores to determine the presence of 128 
publication bias. It also estimates the average statistical power of the studies conducted and provides an estimate 129 
of their replicability. 130 
 131 
To ensure studies are adequately powered to observe the  effect size of interest in studies in which researchers aim 132 
to perform a hypothesis test, one should conduct a pre-study power analysis (Lakens, 2022). However, despite the 133 
importance of providing an adequate sample size justification, Abt et al., (2020) reported that only 10% of articles 134 
(12 out of 120) published in the Journal of Sports Sciences included a pre-study power analysis. The lack of pre-135 
study power analysis may indicate that researchers rely on intuition, rules of thumb, or prior practices (a.k.a., 136 
heuristics) to determine study sample sizes, such as “20 subjects per condition” or otherwise simply using the 137 
same sample sizes typically reported in their field of research (Anderson et al., 2017; Bakker et al., 2016; Lakens, 138 
2022). Alternatively, it may also indicate that some researchers determine the sample size based on the 139 
questionable research practices of optional stopping (see John et al., 2012 and Wicherts et al., 2016) which 140 
ultimately increase the chances of committing a Type I error (Simmons et al., 2011; Stefan & Schönbrodt, 2022). 141 
Furthermore, Abt et al., (2020) also reported that all studies (12 out of 12) that included a pre-study power analysis 142 
failed to disclose information on the statistical test to be conducted to detect the chosen effect size. Although this 143 
prevents other researchers from evaluating the adequacy of the power analysis, as well as making it impossible to 144 
assess the reproducibility of these pre-study power analysis, no study has examined the reporting practices 145 
including the magnitude of the effect size of interest, the statistical test and the intended power which are required 146 
to enable the reproducibility of pre-study power analyses at the very least. 147 
 148 
Given that the presence of publication bias and studies with underpowered designs are a threat to the replicability 149 
of original findings, one response to the presence of these issues is the replication of original studies with well-150 
powered designs (e.g., Open Science Collaboration, 2015). To facilitate the replicability of original studies, studies 151 
should provide a complete description of statistical results. Several current practices in terms of Null Hypothesis 152 
Significance Testing require the use of the original effect size for assessing the replicability of original studies 153 
(Camerer et al., 2018; Errington, Mathur, et al., 2021; Open Science Collaboration, 2015; Simonsohn, 2015). 154 
Furthermore, effect sizes from published studies can be used to conduct pre-study power analysis for sample size 155 
planning in follow-up studies and to draw meta-analytic conclusions by comparing effect sizes across studies (i.e., 156 
in a meta-analysis). Finally, the reporting of effect size estimates allows researchers to discuss the magnitude or 157 
practical significance of the studied effect (Kelley & Preacher, 2012; see also Götz et al., 2022 and Primbs et al., 158 
2022). However, the reporting of only the effect size estimate might not be sufficient. The American Psychological 159 



 

 

Association’s (APA) recommendations for best reporting practices include the effect size, confidence intervals 160 
(CI), and exact p-value (see Appelbaum et al., 2018). Studies with underpowered designs increase the uncertainty 161 
around the effect size estimate which is reflected in the width of the CI for the effect size estimate (Asendorpf et 162 
al., 2013). However, to what extent these recommended best practices are implemented in sport science journals 163 
are unknown. 164 

Our first aim in this study was to assess the presence of publication bias and studies with underpowered designs 165 
in a set of studies published in the Journal of Sport Sciences. The rationale of selecting the Journal of Sports 166 
Sciences was the use of small samples (n = 19) and the scarce use of pre-study power analysis in studies published 167 
in this journal (Abt et al., 2020). The second aim was to examine the usage, reporting practices and reproducibility 168 
of pre-study power analysis. Thirdly, we sought to investigate the prevalence of reporting practices of t-statistics 169 
or F-ratios, degrees of freedom, exact p-values, and effect sizes and their CI.  170 

2. Methods 171 
The materials including the study selection protocol, dataset generated, disclosure table and R code for the z-curve 172 
analysis are available at https://osf.io/e3rab/. This study was exploratory with an observational and retrospective 173 
design. 174 
 175 
2.1. Selection protocol 176 
The selection protocol for the studies to be included in the z-curve analysis is based on the Selection Protocol for 177 
Replication in Sports and Exercise Science (Murphy et al., 2022). Hence, only applied sports and exercise science 178 
studies in the subdisciplines of biomechanics, injury prevention, nutrition, physical activity, physiology, 179 
psychology and sports performance published in the Journal of Sports Sciences (from Volume 39 (Issue 12) to 180 
Volume 37 (Issue 16)) were selected. Furthermore, applied studies had to use either an experimental or quasi-181 
experimental design. Studies were selected if they tested a hypothesis and contained an inference test such as a t-182 
test and F-test. Studies that test a hypothesis are especially sensitive to publication bias, compared to studies that 183 
only report descriptive statistics or effect size estimates, as both authors and scientific journals value significant 184 
results more than non-significant results (Greenwald, 1975). The z-curve method uses all p-values regardless of 185 
whether the p-value is yielded by a non-parametric test (i.e., Wilcoxon Rank-Sum tests, Mann-Whitney-U-Tests 186 
or Kruskal-Wallis one-way ANOVA). Therefore, p-values derived from the above non-parametric tests were also 187 
included. A total of 523 studies were screened of which 349 were excluded for not meeting the above criteria. 89 188 
studies met the above criteria and were included in the z-curve analysis (Figure 1).  189 
 190 
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Figure 1. PRISMA flow diagram for inclusion of studies in z-curve analysis 220 
 221 
2.2. Extracting p-values 222 
After study selection, only one p-value per independent experiment was extracted in order to meet the 223 
independence criteria (Bartoš & Schimmack, 2022). The extracted p-value corresponded to the first or primary 224 
dependent variable stated in the hypothesis. In cases where there were multiple hypotheses, the first or primary 225 
hypothesis was considered. If the selected hypothesis included multiple dependent variables, the first or primary 226 
dependent variable was considered. In case the selected dependent variable was operationalized using several 227 
outcome measures of the same construct (i.e., to be measured in several alternative ways), the first outcome 228 
measure reported was selected. Extracted p-values were recomputed when sufficient information was available 229 
(i.e., degrees of freedom and F-ratio or t-statistic) using the functions T.DIST.2T or F.DIST.RT for t-tests and F-230 
tests in Microsoft Excel for Mac (Version 16.45). P-values were discarded under 5 circumstances; a) when the p-231 
value was reported relatively (e.g., p < 0.05) and it could not be recomputed due to lack of sufficient information; 232 
b) when studies tested an hypothesis for non-significance; c) the described statistical test in the methods did not 233 
match the statistical test reported in the results section of the study; d) the study did not report the effect of interest 234 
given the hypothesis stated in the introduction; and e) the study expected to find a significant difference in one 235 
direction but observed an effect in the other direction; the inclusion of this category of significant p-values in z-236 
curve would be problematic because it could create bias in favor of statistical significance. A disclosure table 237 
containing all extracted information for the z-curve analysis can be found at https://osf.io/e3rab/. A total of 174 238 
studies were screened of which 85 did not meet the above criteria. Thus, 89 studies were included in the z-curve 239 
analysis. A secondary z-curve performed on 119 p-values obtained from studies that aimed to test a hypothesis (n 240 
= 89) and studies that were considered to be descriptive because no hypothesis was tested (n = 30) can be found 241 
in supplemental material at https://osf.io/e3rab/ . 242 
 243 

Records screened 
(n = 523) 

Records excluded (n = 349) 
No Null Hypothesis Significance Testing (9)    
Retrospective studies (11)           
Non-experimental and non-quasi- 
experimental studies (98)          
Non-applied studies (171)                
Outpatients (3) 
Other statistics (57) 
 

Reports assessed for eligibility 
(n = 174) 

Records excluded (n = 85)      
Studies did not test a hypothesis (30)              
Studies reported relative p-values (45)                                              
Studies did not report p-values (2)          
Studies tested for no difference (4)           
Studies reported ANOVA as chi-squared (1)   
Studies did not report the effect of interest 
given the hypothesis tested (1)                
Studies reported that the effect of interest 
occurred in the other direction (2) 

Records included in z-curve 
analysis (n = 89) 
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2.2. Publication bias and statistical power 244 
Z-curve is based on the idea that the average power of a set of studies can be derived from the distribution of z-245 
scores (Bartoš & Schimmack, 2022; Brunner & Schimmack, 2020). Z-curve converts significant and non-246 
significant p-values reported in a literature into z-scores, and uses the distribution of z-scores within the range of 247 
0 to 6 to calculate two estimates of average statistical power. First, the conditional mean power is computed by 248 
using only the significant results in the published studies. By using this estimate of average power, it is possible 249 
to calculate the Expected Replication Rate, that is, the expected success rate (in the long run) if these studies 250 
would be exactly replicated. If there is no true effect, the Expected Replication Rate equals the Type 1 error rate 251 
and if there is a true effect, it equals the average power estimate. Second, the unconditional average power is 252 
computed, which is an estimate of the power in studies that were not published because these studies yielded 253 
statistically non-significant findings, and remained in the file-drawer. The presence of publication bias can be 254 
examined by comparing the Observed Discovery Rare to the Expected Discovery Rate. If the point estimate of 255 
the Observed Discovery Rate lies within the 95% CI of the Expected Discovery Rate, there is no evidence of 256 
publication bias. The z-curve method also provides other estimates of publication bias such as the file-drawer ratio 257 
which is the ratio between the Expected Discovery Rate and the Observed Discovery Rate and is expressed as the 258 
number of unpublished studies that are predicted to exist for every published study. However, one should note the 259 
file-drawer ratio is simply a transformation of the Expected Discovery Rate.  260 
 261 
2.3 Pre-study power analysis and their reporting practices 262 
To investigate the frequency of usage of pre-study power analysis and their reporting practices, the sample of 263 
studies was expanded to include those studies that did not meet the criteria for the z-curve analysis (see Figure 264 
1). Thus, a total sample of 174 studies was used for the second aim of this study. Two strategies were used to 265 
detect the use of pre-study power analyses. First, a visual inspection was performed. The author C.M. searched 266 
for any mention of a pre-study power analysis or implicit suggestions of power reported within the methods section 267 
(i.e., Participants and Statistical analysis) of an article. If the first strategy was unsuccessful, the article was then 268 
downloaded as a PDF and a search was conducted by using keywords “power”, “sample”, “size” and 269 
“participants” or “subjects”. In case the study reported the use of a pre-study power analysis, the following 270 
information was retrieved when available: type of power analysis (i.e., pre-study  or post-study), software, 271 
statistical test, variable of interest, magnitude of the effect size and its type (e.g., Cohen’s d, Hedge’s g, Cohen’s 272 
f), effect size justification (i.e., previous study, pilot study, Cohen’s d benchmarks, smallest effect size of interest 273 
(SESOI) and meta-analysis), alpha level, intended power, and the sample size required to achieve the intended 274 
power. Once this information was retrieved, each category was scored dichotomously as either one or zero (1 = 275 
present, 0 = not present). The use of a post-study power analysis or implicit suggestions of its use were also coded, 276 
but no information regarding the reporting practices of such analysis was retrieved. This is because post-study 277 
power analyses are considered bad practice (Christogiannis et al., 2022; Yuan & Maxwell, 2005). Moreover, the 278 
author C.M. coded whether each one of the sampled 174 studies that tested a hypothesis included a pre-study 279 
power analysis because studies that have the goal to test a hypothesis (compared to studies that have a descriptive 280 
or estimation goal) should be designed to explicitly control the Type 2 error rate by collecting sufficient data 281 
(Lakens & Evers, 2014). We also attempted to reproduce the sample size obtained from pre-study power analyses 282 
that reported effect size magnitude and type, statistical test and intended statistical power using the original 283 



 

 

statistical software. For the studies that included this information, all studies used G*Power. We therefore 284 
attempted to reproduce the sample size calculations using G*Power (version 3.1.9.6). 285 
 286 
2.4. Reporting practices of statistical results 287 
To investigate the reporting practices of statistical results, the same sample of studies as described above was used 288 
(n = 174). To select the statistical result, the same procedures applied to extract the p-value for the z-curve analysis 289 
were followed. Thus, the statistical result selected was chosen in relation to the first or primary study 290 
hypothesis/aim as well as the first or primary dependent variable stated within. The following statistics were 291 
retrieved from results section of an article when available: mean ± standard deviation (SD) or mean ± standard 292 
error of mean (SEM), t- or F-statistic, degrees of freedom, p-value, standardized effect sizes (e.g., eta squared 293 
(η!) and Cohen’s d family) and its CI. For the purpose of this study, only standardized effect sizes were considered 294 
because such effect sizes allow researchers to conduct pre-study power analyses for follow-up studies. For studies 295 
in which the study hypothesis was linked to a factorial analysis, we only considered the effect size (e.g., partial 296 
eta squared (η"!), eta squared (η2)) for the omnibus effect of interest (i.e., main or interaction effect). For instance, 297 
if a study using a one-way between-subject ANOVA with 4 levels only reported pairwise effect size but not the 298 
omnibus effect, the pairwise effect size was not considered. A pairwise effect size was only considered if the 299 
omnibus effect of interest was a main effect and with only two levels. This is because a main effect with only one 300 
degree of freedom would be equivalent to a statistical test of mean differences (e.g., one-sample and two-sample 301 
t-test), and therefore the correct effect size to report would be part of Cohen’s d family. Once the above 302 
information was retrieved, each category was scored dichotomously as either one or zero (1 = present, 0 = not 303 
present).  304 
 305 
2.5. Statistical analysis 306 
The R package zcurve 2.0 was used to conduct the z-curve analysis (Bartoš & Schimmack, 2022). Descriptive 307 
statistics in the form of count and frequency (%) were used to evaluate the prevalence of both pre-study and post-308 
study power analyses, and reporting practices for both power analysis and statistical results. Two two-tailed 309 
Welch’s t-tests were performed to determine whether a) studies that performed a pre-study power analysis had 310 
different sample sizes compared to studies without a pre-study power analysis, and b) amongst studies that tested 311 
a hypothesis, studies that performed a pre-study power analysis had different sample sizes compared to those that 312 
did not perform a pre-study power analysis. Hedges’ gs effect size and its 95% CI was calculated to present the 313 
magnitude of the difference using the R package deffectsize (Delacre et al., 2021; see also 314 
https://effectsize.shinyapps.io/deffsize/). Alpha level was set to α < 0.05. Statistical tests were conducted using R 315 
(Version 4.1.2; R Core Team, 2021). To reproduce the pre-study power analyses reported in the set of studies, we 316 
used G*Power (Version 3.1.9.6). 317 

3. Results 318 
A total of 89 independent p-values (including 65 significant and 24 non-significant p-values) were converted into 319 
z-scores to fit the z-curve model. The Expected Discovery Rate was 0.53 [0.13; 0.71] indicating an average power 320 
of 53% for studies reporting both significant and non-significant results (see Figure 2). The Expected Replication 321 
Rate was 0.61 95% CI [0.42; 0.75] indicating that studies reporting significant results have an average power of 322 



 

 

60%. This suggests that if we were going to conduct direct replications (with the same statistical power, effect 323 
size and sample size) of the studies reporting significant findings, only 60% of these studies would yield another 324 
significant effect. Publication bias can be examined by comparing the Observed Discovery Rate (the percentage 325 
of significant results in the set of studies) to the expected discovery rate (the proportion of the area under the curve 326 
on the right side of the significance criterion). The point estimate of the Observed Discovery Rate (0.73) lies 327 
outside the 95% CI of the Expected Discovery Rate of 0.53 [0.13; 0.71] suggesting that we can statistically reject 328 
the null hypothesis that there is no publication bias. This conclusion is also supported by a visual inspection of 329 
the obtained results, which suggest there is a potential indication of publication bias (see Figure 2); there is a 330 
steep drop from the frequency of just statistically significant values (i.e., z > 1.96) relative to the frequency of 331 
non-significant values. This figure suggests that, even when publication bias might not be extreme (i.e., a 332 
reasonable proportion of non-significant findings are published in this literature) there are still relatively less p-333 
values just above the traditional alpha level of 5% (i.e., z = 1.96) than below this threshold. 334 
 335 

 336 
 337 
 338 
 339 
 340 
 341 
 342 
Out of 174 sampled studies, only 46 (26%) included a pre-study power analysis and 10 studies (6%) reported a 343 
post-study power analysis. The result of the two-tailed Welch t-test indicated that there was no statistically 344 
significant difference in sample sizes between studies that performed a pre-study power analysis (median = 24) 345 
and studies which did not (median = 19) (t (131) = -0.94, p = 0.35, 95% CI for the mean difference [-68; 24], 346 
Hedge’s gs effect size corrected for bias = –0.12, 95% CI [–0.36; 0.13]. Out of 174 studies, 129 (74%) tested a 347 
hypothesis. Of those, only 39 studies (30%) included a pre-study power analysis and 8 studies (6%) included a 348 
post-power analysis. Amongst studies that tested a hypothesis, the result of the two-tailed Welch t-test indicated 349 

Figure 2. Distribution of z-scores over [0-6] interval. The 
vertical red line refers to a z-score of 1.96, the critical value for 
statistical significance when using a two-tailed alpha of 0.05. 
The dark blue line is the density distribution for the inputted p-
values (represented in the histogram as z-scores). The dotted 
lines represent the 95% CI for the density distribution. Range 
represents the minimum and maximum values of z-scores used 
to fit the z-curve. 
 



 

 

that there was no statistically significant difference in sample sizes between studies that performed a pre-study 350 
power analysis (median = 21) and studies which did not (median = 19) (t (106) = 0.47, p = 0.63, 95% CI for the 351 
mean difference [-5; 9], Hedge’s gs effect size corrected for bias = –0.08, 95% CI [–0.43; 0.26]. Table 1 presents 352 
the frequency of usage of reporting practices in studies with pre-study power calculations. Results indicate that 353 
most studies did not report all components required to allow a full assessment of the pre-study analysis. The 354 
minimum components required to computationally reproduce a pre-study power analysis are the statistical test, 355 
the magnitude and type of effect size and the intended power, which, with the exception of the latter, were often 356 
nonreported. Thus, only 9 out of 46 (20%) studies that reported a pre-study analysis could be computationally 357 
reproduced. We could fully reproduce the sample size reported in 8 out of 9 pre-study power analysis. The pre-358 
study power analysis that could not be fully reproduced reported a sample size of 61, whereas our analysis yielded 359 
a sample size of 58.  360 
 361 
 362 
 363 
 364 
 365 
 366 
 367 
 368 
 369 
 370 
 371 
 372 
 373 
 374 
 375 
 376 
 377 
The types of justification for the effect size estimate used to conduct the pre-study power analyses are presented 378 
in Table 2. The most used justifications to select the effect size of interest were based on a previous study, 379 
followed by Cohen’s d benchmark and a pilot study. The use of the two justifications considered best practice 380 
including a meta-analytic effect size and SESOI was almost non-existent.  381 
 382 
 383 
 384 
 385 
 386 
 387 
 388 

Table 1. Reporting frequencies of pre-study 
power analysis (n = 46) 

Component reported Frequency (%)      

Software 27 (59) 

Statistical test 10 (22) 

Dependent variable 26 (57) 

Effect size magnitude 30 (65) 

Effect size type 25 (54) 

Effect size justification 31 (67) 

Alpha level 43 (93) 

Intended power 45 (98) 

Required sample size 41 (89) 

All components 5 (11) 



 

 

Table 2. Justifications of the selected effect size 
used in the pre-study power analysis (n = 46) 

Justification presented Frequency (%) 

Previous study 28 (61) 

Pilot study 4 (9) 

Meta-analysis 1 (2) 

Cohen’s d benchmark 7 (15) 

SESOI 0 (0) 

No justification 6 (13) 
                                                SESOI = smallest effect size of interest 389 
 390 
The reporting practices of inferential tests are presented in Table 3. The most reported components were mean ±  391 
SD or mean ± SEM for both inferential tests. Other components such as test statistics and degrees of freedom 392 
were usually nonreported, although the frequency of reporting is lower for t-tests. Contrarily, effect sizes were 393 
reported more often for F-tests than for t-tests. CI for effect sizes were not reported in studies using F-tests, 394 
whereas in studies using t-tests CI were seldom reported.  395 
 396 

Table 3. Frequency of reporting practices for both F-tests and t-tests 

  Frequency (%) 

Component F-tests (n = 122) t-test (n = 52) 

Mean ± SD / mean ± SEM 85 (70%) 40 (77%) 

Test statistic  59 (48%) 10 (19%) 

Degrees of freedom 46 (38%) 5 (10%) 

Effect size 54 (44%) 41 (79%) 

CI for effect size 0 (0%) 4 (8%) 

Exact p-value 73 (60%) 30 (58%) 

Relative p-value 37 (30%) 22 (42%) 

No p-value 12 (10%) 0 (0%) 
                        SD = standard deviation; SEM = standard error of mean; CI = confidence interval  397 

4. Discussion 398 
The first aim of this study was to investigate the presence of publication bias and studies with underpowered 399 
designs in a set of studies published in the Journal of Sport Sciences. The statistical power estimates observed in 400 
our sample of studies are not as low as in other disciplines such as psychology and neuroscience (Bakker et al., 401 
2012; Button et al., 2013; Stanley et al., 2018; Szucs & Ioannidis, 2017). For instance, Stanley et al., (2018) 402 
reported an average power of 36% in studies included in a sample of 200 meta-analyses. The observed 73% of 403 
studies reporting a significant finding is in agreement with Twomey et al., (2021) who similarly observed that 404 
approximately 70% of the studies published in three flagship sports science journals reported significant findings. 405 



 

 

The percentage of non-significant results is slightly higher than in many other disciplines (Fanelli, 2010; Scheel 406 
et al., 2021). For instance, Scheel et al., (2021) compared the number of significant findings reported in a sample 407 
of registered reports with a sample of standard studies in psychology and they found that 96% of significant 408 
findings in standard studies but only 44% in registered reports. The extent of publication bias in sports and exercise 409 
science is unknown. However, one estimate can be derived from investigating the difference between the 410 
percentage of significant findings and the statistical power. Assuming an average power of 61%, only about 60% 411 
of the studies investigated in our sample would detect the investigated effect as statistically significant. Yet, if we 412 
consider our study sample, we find that 73% of studies report statistically significant findings, which is at least 12 413 
percentage points more than we should expect suggesting the presence of a biased literature. However, it is 414 
theoretically possible that the estimate of 73% significant results emerges when all studies that are performed are 415 
submitted for publication and published, or in other words, when there is no publication bias. To explain the 73% 416 
of significant results (Positive Result Rate (PRR)), we must assume some combination of statistical power and 417 
proportion of true hypotheses that researchers test (Scheel et al., 2021). The percentage of observed significant 418 
results can be computed as PRR = α × (1 − t) + (1 − β) × t, where α is the Type 1 error rate, t is the proportion of 419 
true hypotheses and 1 − β is the power of a test (Scheel et al., 2021). Assuming no publication bias, and fixing the 420 
alpha level to 0.05, a PRR = 0.73 can be achieved with, for example, a statistical power of 96% when 75% of the 421 
hypotheses that are tested are true hypotheses. However, we observed relatively low power estimates in the 422 
sampled studies (i.e., 53% for both significant and non-significant studies, and 61% for significant studies). If we 423 
assume the upper bound (75%) of the 95% CI (0.42, 0.75) for significant findings as the true power estimate, 424 
researchers would need to test almost exclusively true hypotheses (> 95%) to observe a 73% of significant 425 
findings. Yet, these estimates of power and the proportion of true hypotheses seem overly optimistic and might 426 
not be supported by empirical evidence (Szucs & Ioannidis, 2017; Wilson & Wixted, 2018). Altogether, our results 427 
indicate the presence of some publication bias and studies with underpowered designs, which are likely to increase 428 
the number of false positives in a body literature (Ioannidis, 2005) and produce overestimated effect sizes (Bakker 429 
& Wicherts, 2011; Button et al., 2013; Kvarven et al., 2020).  430 
 431 
The second aim was to examine the frequency of reported pre-study power analysis and their reporting practices. 432 
The low prevalence of studies with pre-study power analysis is concerning because researchers should aim to 433 
perform studies that yield informative results when they test hypotheses (as was the goal in 129 out of the 174 434 
studies we examined). A pre-study power analysis is one important way to design studies that have a high 435 
probability to yield informative results. First, a study with an underpowered design that reports a non-significant 436 
effect is barely informative because it lacked power to find a significant effect if there was one to be found. This 437 
makes it especially difficult to publish null-findings, which contributes to publication bias. Second, studies with 438 
high-power designs yield more precise effect size estimates and reduce the uncertainty around CI. Therefore, the 439 
adoption of pre-study power analysis is one way to move the field forward (for other approaches to sample size 440 
justifications that do not rely on power analysis, see Lakens, 2022). Surprisingly, there was no significant 441 
difference in sample size between studies which included a pre-study power analysis and studies which did not 442 
include it. It is possible that this is a coincidence, but it also raises the possibility that power analyses were 443 
performed following the ‘sample size samba’ where researchers choose an ‘expected’ effect size for their power 444 
analysis that yields the sample size they wanted to collect to begin with  (Schulz & Grimes, 2005). Furthermore, 445 



 

 

the similar sample sizes observed (n = 21 and n = 19 for studies with and without a pre-study power analysis that 446 
tested a hypothesis, respectively) might indicate that the effect size estimates included in the pre-study power 447 
analyses are overestimated and if all things equal, the sample size required to achieve the intended power will be 448 
smaller (Anderson et al., 2017).  449 

We found that some studies included a post-study or ‘retrospective’ power analysis. This form of power analysis 450 
uses the observed effect size, the alpha level and the actual sample size to evaluate power of the study after it has 451 
been completed. However, this is not a good practice because treating the observed effect size as the true effect 452 
size in a power analysis is simply a transformation of the observed p-value (Hoenig & Heisey, 2001; Yuan & 453 
Maxwell, 2005; see Christogiannis et al., 2022 for a non-technical explanation). For a t-test, whenever the p-value 454 
= 0.05, post-study power will always be 50%, regardless of the combination of sample size and study effect size 455 
(Yuan & Maxwell, 2005). If a non-significant p-value is observed, retrospective power will always be low, 456 
regardless of the true (always unknown) power of the study (Yuan & Maxwell, 2005). These reasons render post-457 
study power analyses uninformative, and it is better to interpret non-significant results with equivalence tests. 458 

When pre-study power analyses were reported, the reporting practices were often suboptimal. Effect size type and 459 
magnitude, the statistical test and intended statistical power are key components to ensure reproducibility of pre-460 
study power analysis because otherwise any attempt to reproduce such analysis would require a large amount of 461 
guesswork. For instance, omitting the statistical test used is problematic because often studies perform multiple 462 
statistical tests and thus researchers might not be able to evaluate which statistical test the power analysis was 463 
conducted for. Furthermore, power is impacted by the study design and the statistical test used (Maxwell et al., 464 
2017). For example, within-subject statistical tests such as a paired t-test and a one-way within-subject ANOVA 465 
will achieve higher power in comparison to their between-subject counterparts (Maxwell et al., 2017). The 466 
omission of the dependent variable would not be problematic if studies tested only one single hypothesis that 467 
predicted the effect of a treatment or intervention on one dependent variable. However, this is far from reality 468 
because studies often test multitude of hypotheses, and a multitude of dependent variables are measured. The non-469 
reporting of the magnitude of the effect size of interest prevents other researchers and reviewers from reproducing 470 
and evaluating the pre-study power analysis. Finally, reporting the type of effect size is important because there 471 
are several effect sizes within the same family (Goulet-Pelletier & Cousineau, 2018; Lakens, 2013; Morris & 472 
DeShon, 2002). For example, considering the simple case of a one-sample design, Cohen’s d can be computed as 473 
dz, drm, and dav (see Lakens, 2013). Researchers should include a detailed description and justification of the steps 474 
followed to conduct the pre-study power analysis that allows other researchers and reviewers to reproduce its 475 
content and ultimately evaluate the validity of the analysis.   476 

The process of planning the study sample size based on an effect size estimate is not as straightforward as it might 477 
seem (Bakker et al., 2016; Collins & Watt, 2021). Researchers are faced with the dilemma of justifying the effect 478 
size estimate they are interested in. This is a critical step because the magnitude of the effect size determines the 479 
sample size given an intended power. However, despite its importance in a pre-study power analysis, there is 480 
empirical data suggesting researchers have difficulties in justifying the effect size estimate for a pre-study power 481 
analysis (Bakker et al., 2016; Collins & Watt, 2021). When the effect size estimate is obtained from a previous 482 
underpowered study, it is likely that the original effect size estimate is overestimated (Bakker et al., 2012; Button 483 



 

 

et al., 2013; Simmons et al., 2011). Similarly, pilot studies are also likely to provide overestimated effect sizes 484 
(Albers & Lakens, 2018). This is problematic because the use of overestimated effect sizes for pre-study power 485 
analyses will result in studies with underpowered designs unless adjusting methods are used (see Anderson et al., 486 
2017).  The use of fixed effect sizes based on Cohen’s benchmarks may not match well with the typical effect size 487 
observed in another research area because Cohen’s benchmarks were derived from effects observed in behavioural 488 
science (Cohen, 1988). For instance, Swinton et al., (2022) conducted a Bayesian hierarchical meta-analysis to 489 
identify specific effect size benchmarks in strength and conditioning interventions and reported that the 490 
benchmarks for small, medium and large effect sizes were 0.12, 0.43 and 0.78, respectively. A better practice 491 
would be to obtain the effect size of interest based on a meta-analysis which can provide more accurate effect size 492 
estimates than single studies. However, to further compound the problem, some caution is needed as the quality 493 
of a meta-analysis is related to the quality of individual studies (Kvarven et al., 2020). Best practice would be to 494 
power a study based on the smallest effect size of interest (SESOI; see Anvari & Lakens, 2021; Lakens, 2022). 495 
Thus, instead of conducting a pre-study power analysis based on the effect size estimate that the researcher expects 496 
to observe, researchers should rely on the smallest effect that they consider theoretically or practically meaningful. 497 
However, none of the studies sampled did so. Researchers might benefit from consulting a statistician if they find 498 
it challenging to determine the required sample size for a future study, and researchers in sports and exercise 499 
science might want to start a discussion about which effect sizes are deemed large enough to matter, so that future 500 
studies can be designed to detect the presence or absence of the smallest effect size of interest.  501 

The third aim was to investigate the reporting practices of inferential tests. Overall, reporting practices of statistical 502 
results were suboptimal and journals and researchers should adopt the journal article reporting standards 503 
recommended by APA (Appelbaum et al., 2018). Following APA standards, results of inferential tests should be 504 
reported in the following order: the F-ratio or t-statistic and degrees of freedom (in parentheses) followed by the 505 
exact p-value (e.g., F(1,35) = 5.45, p = 0.001 or t(85) = 2.86, p = 0.025). This would be beneficial for a few 506 
reasons. First, the reporting of the F-ratio or t-statistic and degrees of freedom allow to recompute the p-value 507 
reported and therefore verify the reported p-value. This and data sharing is of importance when there is evidence 508 
that one in eight papers contained errors in the reported p-value that may have affected the statistical conclusion 509 
of the study (Nuijten et al., 2016; see also Artner et al., 2021 for a summary of studies on this topic). From an 510 
epistemological point of view, reproducibility should be assessed before replicability because it makes little sense 511 
to try to replicate a prior finding if the results supporting the finding are numerically incorrect.  Second, both the 512 
F-ratio and t-statistic can be used to compute the effect size estimate (see Lakens, 2013). For instance, the 513 
reporting of the F-ratio and degrees of freedom allows computation of eta partial squared (η"! ; e.g., F(1,35) = 5.45, 514 
η"! 	= 5.45 × 1/(5.45 × 1 + 35)). Third, it would facilitate machine readability and data usability enabling the 515 
analysis of large sets of data containing p-values. Methods such as p-curve and z-curve that can be used to address 516 
meta-scientific questions require the input of exact p-values, which are not always reported. Therefore, researchers 517 
should fully report the statistical results of inferential tests with the goal of facilitating computational 518 
reproducibility and allow other researchers to assess the veracity of published results. 519 

The omission of (standardized) effect size estimates and their CI is concerning for a few reasons. First, effect size 520 
estimates allow researchers to make a judgement on the practical significance of the magnitude of the studied 521 



 

 

effect (Asendorpf et al., 2013; Kelley & Preacher, 2012; Schäfer & Schwarz, 2019). Second, effect size estimates 522 
can be used to conduct pre-study power analysis for follow-up studies (Cohen, 1988; Lakens, 2022; Schäfer & 523 
Schwarz, 2019). Third, (standardized) effect size estimates permit direct comparison across similar studies that 524 
collected dependent variables on different raw scales, and can be used in meta-analysis to draw meta-analytic 525 
conclusions. Fourth, when researchers report effect sizes estimates, researchers should acknowledge and quantify 526 
the uncertainty in these estimates. CIs provide information of how accurately a true effect size was estimated 527 
(Asendorpf et al., 2013; Kelley & Preacher, 2012). This is especially of interest if studies have small sample sizes 528 
because such studies suffer from large sampling error which leads to substantial uncertainty around the true effect 529 
size. For instance, imagine a researcher that conducted a study with a two-cell design where there are 10 530 
participants per condition, and reported a significant Cohen’s dS of 0.5 omitting its 95% CI [0.05; 1.05]. Although 531 
the observed effect size and p-value were reported, the uncertainty around the estimate makes clear that the test 532 
was not very informative about the true effect size. Therefore, researchers should follow the journal article 533 
reporting standards recommended by APA (Appelbaum et al., 2018) and report both effect sizes estimates and 534 
their CI. 535 

Our investigation has a few limitations that should be addressed herein. Firstly, our selection is a pilot sample of 536 
original studies published in only one sports science journal. Thereby, our findings are far from a complete picture 537 
of the field of sports and exercise science, and should be considered a pilot study for a more comprehensive 538 
examination in the future. Furthermore, the small sample of studies included (n = 89) increased the uncertainty 539 
around the parameter estimates (Brunner & Schimmack, 2020). Secondly, the z-curve analysis included only 540 
studies that tested a hypothesis but the distinction between the former and descriptive studies was sometimes 541 
ambiguous. This could be resolved if authors stated explicitly whether the study was intended to be hypothesis-542 
testing or hypothesis-generating in the methods section. Thirdly, the protocol followed to select p-values for z-543 
curve required us to make multiple subjective decisions because selected studies usually: a) tested vague and 544 
multiple hypotheses, b) measured dependent variables that were often operationalized using additional constructs 545 
of the same measure and c) used dependent variables that were measured in several alternative ways (see Wicherts 546 
et al., 2016 for researchers’ degrees of freedom). Fourthly, although two secondary authors undertook some 547 
random verification of the data selected (D.L. verified some coded data for z-curve analysis and J.W. verified 548 
some coded data for the reporting practices and reproducibility of the pre-study power analysis), only the primary 549 
author extracted and coded data. This and the fact that data extraction was often difficult due to the researchers’ 550 
degrees of freedom might have been a source of bias. Finally, the leading author acknowledges that this study 551 
should have been preregistered despite its exploratory nature. 552 
 553 
Overall, our results suggest that there are substantial barriers that would hinder both computational reproducibility 554 
and replicability. First, the point estimate of the Observed Discovery Rate (0.73) lies outside the 95% CI of the 555 
Expected Discovery Rate [0.13; 0.71] suggesting the presence of publication bias. Second, the two power 556 
estimates indicate that the sampled studies had, on average, inadequately powered designs (as a Type 2 error rate 557 
of 40% should be considered too high). Third, the low usage of pre-study power analyses as well as the use of 558 
effect size estimates obtained from previous studies or pilot studies is problematic given the small samples 559 
observed in the field of sport and exercise science (Abt et al., 2020) and the issues with overestimated effect sizes 560 



 

 

as a result (Albers & Lakens, 2018; Anderson et al., 2017). Fourth, the reporting practices of pre-study power 561 
analyses and inferential tests were often suboptimal preventing researchers from assessing the validity of the 562 
results. Therefore, it seems there is substantial opportunity to improve researchers’ behaviours through the 563 
adoption of Open Science practices such as sample size planning based on a pre-study power analysis and full 564 
reporting of statistical results, if the scientific community is to improve these factors in the future. 565 
 566 
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