
Doi: 10.51224/SRXIV.261  SportR𝜒iv Preprint version 1 

Bayesian Approaches to Quantifying Uncertainty in Sport and 

Exercise Measurements: A Guide for Practitioners and Applied 

Researchers 

Paul A. Swinton 

Doi: 10.51224/SRXIV.261   

SportR𝜒iv hosted preprint version 1 

20/02/2023 

PREPRINT - NOT PEER REVIEWED 

 

School of Health Sciences, Robert Gordon University, Aberdeen, UK. 

Corresponding Author 

Dr. Paul Swinton 

School of Health Sciences, Robert Gordon University 

Garthdee Road 

Aberdeen, UK, 

AB10 7QG 

p.swinton@rgu.ac.uk, +44 (0) 1224 262 3361 

 

Please cite as: Swinton, PA. Bayesian approaches to quantifying uncertainty in sport and exercise measurement: A 

guide for practitioner and applied researchers. Pre-print available from SportRχiv. 

https://doi.org/10.51224/SRXIV.261   

 

 

 

 

 

 

 

https://doi.org/10.31236/osf.io/y7sk6
https://doi.org/10.31236/osf.io/y7sk6
mailto:p.swinton@rgu.ac.uk


Doi: 10.51224/SRXIV.261  SportR𝜒iv Preprint version 1 

Abstract 

Measurement, analysis and communication of data are key requirements of practitioners and applied researchers in sport 

and exercise. Many challenges exist, however, in the analysis and communication of data due primarily to noisy 

measurements and the use of traditional analysis approaches designed for large data acquisitions and long run 

perspectives. The purpose of this review is to provide an introduction and worked examples to Bayesian statistics that 

present an alternative to traditional frequentist approaches and explore the means by which they may ameliorate some of 

the aforementioned limitations. The review focusses on the importance and methods used to include expert knowledge 

within Bayesian analyses through informative prior distributions. Additionally, the review focusses on the use of 

subjective probabilities and the subsequent ability to communicate results in an intuitive and informative manner. The 

review explores both conjugate and sample-based approaches to Bayesian analyses, highlighting their different strengths 

and the contexts where they may best be used. Worked examples show where substantive prior information can be 

incorporated, uncertainty can be decreased to obtain more relevant information and thereby underpin appropriate 

decision making. Given the flexibility afforded by Bayesian approaches and the advantages they can provide, there is a 

need for more resource development and interdisciplinary work between researchers and practitioners to increase their 

use in sport and exercise.  
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1.0 Introduction 

The need for practitioners and applied researchers to consider uncertainty in the data they collect to better select, monitor 

and evaluate interventions is of key importance and has previously been discussed (Swinton et al, 2018). Two primary 

challenges when considering uncertainty include: 1) the amount of noise that generally exists when making measurements 

in sport and exercise; and 2) appropriate interpretations of uncertainty and reconciling these with probabilistic intuitions 

of both those that collect and provide the data. Approaches to reduce uncertainty when dealing with noisy measurements 

were covered in a previous review (Swinton et al, 2023) and focussed on collection of multiple measurements across days 

and throughout any intervention. It was shown that even with noisy measurements, higher frequency data collection 

could potentially reduce uncertainty to obtain relevant information and thereby underpin appropriate decision making. 

There may be situations, however, where high frequency data collection is not possible. In addition, data analysis methods 

covered previously (Swinton et al, 2023), are limited by interpretations that are generally non-intuitive and challenging to 

communicate accurately (Gelman and Greenland 2019).  

 

Challenges in interpretation occur as almost all approaches to analyse data in sport and exercise adopt frequentist 

approaches. Here, probability is defined by the proportion of times an event occurs across a long sequence of repetitions. 

This definition applies well to games of chance (e.g. rolling dice) and situations where we can take large numbers of 

measurements either within or across individuals. The proportions we observe across a large series of measurements (e.g. 

the proportion of individuals with a body fat measurement below a given percentage, or the proportion of times an 

individual’s blood pressure is beyond a given value) begin to align with a frequentist long run perspective and therein the 

associated probabilities. In sport and exercise, however, we generally do not have access to entire populations, let alone 

large samples. Where typically we have access to groups of only seven to ten individuals (Swinton et al, 2022), or a single 

case measured infrequently, a compromise is usually enacted whereby we consider the sample as one in a long run of 

samples that theoretically could be investigated. From this perspective, we can calculate statistics such as the mean or an 

effect size and use frequentist methods to quantify uncertainty that provides insights based on the assumption that we 

will carry out the same process repeatedly on future samples. The main tool to quantify uncertainty under a frequentist 

framework is the confidence interval (CI). Here, an interval such as a 95% CI is constructed around statistics such as the 

mean to indicate that if the procedure was repeated over and over on new samples, then in 95% of instances the interval 

would include the true population value (e.g. the population mean). In principle, the CI provides limited information 

regarding the specific case measured which is the real focus of interest, and is frequently misinterpreted by acting as 

though there is a 95% probability that any given interval contains the true value (Gelman and Greenland 2019). 

Furthermore, in sport and exercise where CI’s are generally wide because of noisy data and small samples, it becomes 

challenging to interpret if values in the middle of the interval are in some sense different from values at the ends of the 

interval. Interpretations partly depend on which terms (e.g. probable, likely, plausible, consistent) are used to discuss the 

values.   

 

An alternative to a frequentist perspective of probability, is subjective, also referred to as personal probability. From a 

subjective perspective, probability represents someone’s degree of belief in an uncertain proposition (O’hagan et al, 2006). 

The terms subjective and personal reinforce the notion that individuals are likely to differ in their probability assessments. 

One major difference is that frequentist probabilities apply to repeatable events whereas subjective probabilities can be 

stated for any uncertain event. When first encountering subjective probability, there may be hesitancy to embrace the 

notion of subjectivity and instead favour traditional approaches that appear to offer less ambiguity and greater  

consistency. It can be argued, however, that all statistical approaches are subjective and in any analysis of the real world 

we do not have access to the ‘true model’ generating the data such that subjective judgements always play a role. It is the 

purpose of Bayesian statistics to make inferences through subjective probabilities (O’hagan et al, 2006). With Bayesian 

approaches, statistical models are selected such that parameters (e.g. the mean, standard deviation or effect size) in a 

model are described by probability distributions. The process is achieved through Bayes theorem (eq.1), which tells us 

how to derive a density function for the unknown parameters 𝜽 after we have observed data 𝒙.  

 

𝜋(𝜽|𝒙) = 𝜋(𝜽)𝑓(𝒙|𝜽)/𝑓(𝒙)                  𝑒𝑞. 1 
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The theorem presented in eq.1 involves four different functions: 1) the prior distribution 𝜋(𝜽), which summarises 

everything an individual believes about the parameters apart from the data; 2) the likelihood 𝑓(𝒙|𝜽) which captures the 

data generating mechanism conditional on the parameters; 3) the posterior distribution 𝜋(𝜽|𝒙) which summarises belief 

regarding the parameters after combining the prior, likelihood and data; and 4) the proportionality constant 𝑓(𝒙) which 

is simply a normalising constant that ensures the posterior distribution integrates to 1 as all probability distributions must.  

 

Much of the subjectivity of Bayesian inference comes from the fact that a prior distribution that describes the probability 

of parameter values must be selected by each individual, and that there is no ‘correct’ distribution. As far as possible, the 

prior distribution selected should accurately quantify an individual’s subjective probabilities before observing the data 

(although a temporal distinction is not necessary). If two individuals agree on the data generating mechanism 𝑓(𝒙|𝜽) but 

select different prior distributions, once the data are observed they are then likely to arrive at different probabilities 

regarding the parameters. Similarly, a single individual may select multiple prior distributions for the same parameters 

which will lead to multiple posterior distributions. Such analyses are commonly referred to as sensitivity analyses and are 

frequently conducted as developing appropriate prior distributions can be challenging (see section 3).  

 

The purpose of this review is to discuss and provide examples of how to use Bayesian methods to quantify uncertainty 

in measurements commonly used by practitioners and applied researchers in sport and exercise. The review will highlight 

how Bayesian approaches can be used to effectively quantify uncertainty and express this in intuitive and easy to 

understand ways. The review will also highlight how practitioners and applied researchers can incorporate their expertise 

and subjective judgements to better interpret baseline values and intervention effectiveness to further deal with the 

challenges of noisy measurements in sport and exercise. The review introduces two classes of methods for performing 

Bayesian analyses, namely conjugate methods that can be performed using simple spreadsheets, and more flexible sample-

based methods that require specialist software. The main text focusses on the broad details and overarching concepts. 

Further mathematical detail and statistical code to implement the analyses in R are provided in the appendices.  
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2.0 Establishing plausible baseline scores 

As identified previously (Swinton et al, 2018), one of the key requirements for practitioners is to establish plausible 

baseline values of their client so that they can select appropriate interventions and obtain benchmarks to evaluate 

subsequent intervention effectiveness. In classical test theory, it is assumed that if it were possible to conduct a large 

number of tests on the same individual then the values observed would follow a normal (Gaussian) distribution, with 

mean equal to the true score and standard deviation (𝜎) describing variability around this mean. In mathematical notation 

we have: 

𝑥𝑖 = 𝜇 + 𝜖𝑖                                                                     𝑒𝑞. 2 

where 𝑥𝑖 is the observed score, 𝜇 is the mean which is the hypothetical true score, 𝜖𝑖 is the measurement error described 

by a normal distribution with mean 0 and standard deviation 𝜎, that is 𝜖~𝑁(0, 𝜎2). 

 

Note from a frequentist perspective the true score is something that is “fixed”, that is, it does not make sense to describe 

the value probabilistically (if we create a CI it is either in the interval [100%] or not [0%]). From this perspective the true 

value is never known but as discussed in the introduction, we can view the measurement process as one instance and 

create CI’s such that over the long run the true value will reside within the interval according to the percentage set. In 

contrast, with the Bayesian perspective, we treat the true score as a random variable that we estimate by combining our 

prior beliefs, our selected data generating model, and the actual data collected in the form of a probability distribution. 

Note, in the model selected above there are two parameters 𝜽 in our data generating model including the mean (true 

score 𝜇) and the measurement error standard deviation 𝜎. With Bayesian methods we generally provide a prior 

distribution that covers all parameters in the data generating model. We start our discussions, however, with the simplest 

models where we consider 𝜎 to be known and only specify a prior distribution for 𝜇. That is, we assume no uncertainty 

in the measurement error standard deviation which is an unrealistic simplification in almost all cases except potentially 

those where we have extensive test-retest data on our own measurement processes with a specific population.  

 

2.1 Model 1: Single data point with conjugate prior and known measurement error 

The simplest model is where we have a single data point 𝑥, which from eq.2 we assume comes from a normal distribution 

and 𝜎 is known. We also select a normal distribution for our prior beliefs of 𝜇, which we express as 𝜋(𝜇)~𝑁(𝑚, 𝑣). 

Here 𝑚 represents what we think is the most likely value for 𝜇, and 𝑣 describes our uncertainty, with larger 𝑣 giving 

greater probability to values further from 𝑚. For this model, the normal distribution is referred to as a conjugate prior 

distribution, as the posterior distribution for 𝜇 (𝜋(𝜇|𝑥, 𝜎)) will also be normally distributed (the derivation can be found 

Appendix 1A). Conjugate models enable us to avoid using specialist software and we can obtain the posterior distribution 

using direct calculation with visuals and probabilities assessed using simple software such as MS Excel. In section 3.1 we 

consider in more detail how the mean (𝑚) and variance (𝑣) for the prior distribution can be selected. Once these values 

are selected, however, the posterior mean (𝑚∗) and posterior variance (𝑣∗) of 𝜇 are calculated as:   

𝑣∗ =
1

1
𝑣 +

1
𝜎2

 

𝑚∗ = 𝑣∗ (
𝑚

𝑣
+
𝑥

𝜎2
) .                                                                                                                                                                    𝑒𝑞. 3 

From eq.3 we can see that the posterior mean (𝑚∗) of 𝜇 is a weighted average of the prior mean and the observed data 

point, such that if we have low measurement error then more weight is given to the data point. Contrastingly, if we 

express a strong prior belief such that 𝑣 is small, then more weight will be given to the prior mean of 𝜇. To see how this 

works in practice, we consider example data where we measure body fat percentage with a value of 17.5% obtained, and 

state that measurement error standard deviation is 𝜎=3%. We consider two different prior distributions, both with the 

same mean (𝑚) of 20%, but one with a standard deviation of 4% (𝑣=16%), and one where we express greater uncertainty 

(8% [𝑣=64%]). Using the first prior distribution, we update and obtain a posterior standard deviation of 2.4%:  
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√𝑣∗ = √
1

1
𝑣
+
1
𝜎2

= √
1

1
42
+
1
32

≈ 2.4.  

We use this value to update and obtain our posterior mean of 18.4%: 

𝑚∗ = 𝑣∗ (
𝑚

𝑣
+
𝑥

𝜎2
) = 2.42. . . (

20

42
+
17.5

32
) ≈ 18.4. 

Using the second prior distribution and the same process as above, we update and obtain a posterior standard deviation 

of 2.8% and a posterior mean of 17.8%. Note in both cases how the posterior mean gets pulled towards the prior mean, 

and the posterior standard deviation is less than the standard deviation of our known measurement error. Also note how 

the posterior mean gets pulled further towards the prior mean with the first distribution where there is less uncertainty 

for 𝜇. The two posterior distributions 𝜋(𝜇|𝑥, 𝜎) generated with the different prior distributions are visualised in Figure 

1. It is also important to remember that we interpret these distributions probabilistically and thus can address probabilistic 

questions. For example, using the first prior distribution we can calculate the (subjective) probability that the true score 

is less than 25%: (𝑃(𝜇 < 25) = 𝑃 (𝑍 <
25−18.4

2.4
) = Φ(2.75) ≈ 0.997), or for example, the probability that the true 

score is between 20 and 25%: (𝑃(𝜇 ≤  25) − 𝑃(𝜇 ≤  20) = 𝑃 (𝑍 <
25−18.4

2.4
) − 𝑃 (𝑍 <

20−18.4

2.4
) = Φ(2.75) −

Φ(0.667) ≈ 0.250). Further details are provided in Appendix 2A. 

 

Figure 1: Posterior distributions of true score estimates from a single measurement of body fat percentage with known 

measurement error and two different prior distributions.  

 
Posterior distributions given the conjugate priors {blue curve was obtained with 𝑵(𝟐𝟎, 𝟒𝟐) as prior distribution; red curve: 

was obtained with 𝑵(𝟐𝟎, 𝟖𝟐) as prior distribution}.  

 

 

2.2 Model 2: Mean of multiple data points with conjugate prior and known measurement error 

As described in a previous review (Swinton et al, 2023), an effective method to reduce uncertainty with noisy data is to 

take the mean of repeated measurements. Where we assume the data generating process is normally distributed 

(𝑓(𝒙|𝜽) = 𝑁(𝜇, 𝜎2)), taking the mean (𝑥̅) of 𝑛 independent measurements results in the following 𝑥̅~𝑁(𝜇, 𝜎2/ 𝑛) (see 

Appendix 1B for details). Combining this distribution and the results from the previous section, we can deduce that the 
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posterior distribution of 𝜇 conditional on 𝑥̅ is normally distributed, but with 𝑣 and 𝑚 updated with 𝜎2 replaced by 𝜎2/𝑛, 

and 𝑥 replaced with 𝑥̅:  

𝑣∗ =
1

1
𝑣
+

1
𝜎2/𝑛

 

𝑚∗ = 𝑣∗ (
𝑚

𝑣
+

𝑥̅

𝜎2/𝑛
) .                                                                                                                                                              𝑒𝑞. 4 

 

Note, a more formal derivation is provided in Appendix 1B. Returning to our previous example, if we select our initial 

prior distribution (𝑁(20,42)) for our true score 𝜇, and calculate for example, that the mean of five data points is 17.5%, 

then we find that the posterior distribution of 𝜇 is 𝑁(17.8, 1.32) (see Appendix 2B for full worked example). Note that 

the posterior mean is closer to the observed value compared to the example with only one data point (17.8 vs. 18.4%), 

which highlights a general feature of Bayesian analyses which is with more data prior distributions becomes less influential. 

Figure 2 illustrates the posterior distributions obtained when the same mean is calculated with progressively more data.  

 

Figure 2: Posterior distributions of true score estimates from mean of multiple measurements of body fat percentage with 

known measurement error and increasing amounts of data.  

 
Posterior distributions given the same conjugate prior {𝑵(𝟐𝟎, 𝟒𝟐)} and the mean of 𝒏 measurements {blue 

curve: 𝒏 = 𝟏, red curve: 𝒏 = 𝟑, green curve: 𝒏 = 𝟓, black curve: 𝒏 = 𝟏𝟎}.  
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3.0 Prior distributions  

Whist prior distributions can be considered to exist on a spectrum, for simplicity they are often characterised as either 

informative or non-informative. The latter characterisation attempts to express ignorance of parameter values that are 

more probable than others, and is often used in attempts to ‘let the data speak for themselves’. Because most non-

informative priors contain some information either on the original scale or following some transformation, a range of 

terms including vague, diffuse, flat and weak are often used interchangeably. Importantly, we frequently deal with cases 

where the selected data generating model includes multiple parameters, some of which provide insight into features of 

interest, and others that influence the data we observe but are not of interest. These latter class of parameters are referred 

to as nuisance parameters and in a Bayesian analysis we may choose to apply non-informative prior distributions 

(Spiegelhalter et al, 2004). In contrast, within the context of this review where a practitioner or applied researcher has 

decided to use somewhat sophisticated methods to analyse their data, it is unrealistic that they will not have knowledge 

or access to information that can be used to develop informative priors for parameters of actual interest. It may be 

challenging to appropriately capture knowledge and information in the form of probability distributions, however, given 

the perspective of subject probabilities it is clear that attempts should be made. For example, when measuring a client’s 

body fat percentage, experienced practitioners will have knowledge of typical values of different populations and are likely 

to be able to refine such knowledge by simply observing the client. Similar population data and initial impressions based 

on previous measurements or simple initial assessments are likely to exit for most domains that interest practitioners and 

applied researchers in sport and exercise. It can be argued, therefore, that a full embrace of Bayesian approaches should 

seek to use informative priors where possible and adopt procedures that enable these to be developed as rigorously as 

possible.   

 

3.1 Methods of prior elicitation  

The process of obtaining knowledge from a source to form a prior distribution in a Bayesian analysis is referred to as 

prior elicitation (Falconer et al, 2022). Three general methods are used to elicit prior distributions and include: 1) historical 

information methods; 2) interrogation methods; and 3) graphical/visual methods. Historical information methods can 

include or refine previous posterior distributions as the next prior distribution, and in this way, we are continually updating 

our estimates in a sequential fashion. The information could be obtained from the client themselves (e.g. from previous 

measurements), similar clients, or from published research. Many studies in sport and exercise report means and standard 

deviations from the participants involved. If we wished to select a normally distributed prior for the mean as shown in 

sections 2.1 and 2.2, we could use these published values. It is important to note, however, that values presented in a 

study are only estimates of the population values. Given recruitment strategies are rarely randomised (Swinton et al, 2022), 

standard deviations may not capture the actual variability in the population and so potentially this value may be inflated 

for the prior distribution. Where multiple studies provide summary data on a similar population, the values may be pooled 

and weighted with greater weights given to studies with larger sample sizes. For example, with 𝑤 studies of sample size 

𝑛1, 𝑛2, … , 𝑛𝑤  the pooled mean and variance would equal:  

𝑚 =
∑ 𝑛𝑖𝑚𝑖
𝑤
𝑖=1

∑ 𝑛𝑖
𝑘
𝑖=1

  

𝑣 =
∑ (𝑛𝑖 − 1)𝑣𝑖
𝑤
𝑖=1

∑ 𝑛𝑖
𝑤
𝑖=1 −𝑤

.                                                                                                                                                                 𝑒𝑞. 5 

 

An alternative approach to the use of historical information is to use so called interrogation methods to elicit experts’ 

knowledge about uncertain quantities in probabilistic form. In many disciplines this takes the form of interviews where 

an analyst with experience in statistics and prior elicitation uses a range of techniques to capture the experts’ knowledge. 

Most often, the analyst uses distribution or probability based questions focusing on observed values and/or the 

parameters of interest. Previous sources have been devoted to the topic of elicitation of expert knowledge (O’Hagan et 

al, 2006). Additionally, prior elicitation tools such as SHELF (Gosling 2018) and MATCH (Morris et al, 2014), have been 

developed to assist in elicitation with instructions and calculations included within easy to use graphical interfaces. Many 

tools also include graphical/visual methods to assist with expert prior elicitation and provide feedback to check 
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probability distributions align with the expert’s beliefs (Falconer et al, 2022). In the case of practitioners in sport and 

exercise using Bayesian methods and informative priors, it is likely that they will take on both the role of analyst and 

expert. That is, the goal will generally be for the practitioner to capture their own subjective probabilities regarding a 

client’s capacity, which entails quantifying their informed prior distributions. With applied researchers in sport and 

exercise there may be a focus on eliciting prior distributions from practitioners and coaches. Alternatively, researchers 

may seek to obtain prior distributions that summarise the beliefs of different ‘types’ of researchers. This may include, for 

example, development of representative sceptical (e.g. assuming a novel intervention has a negative effect), enthusiastic 

(e.g. assuming an intervention has a positive effect), and neutral (e.g. centring an intervention on zero) prior distributions. 

 

An intuitive prior elicitation method that is often used is the quartile method (O’Hagan et al, 2006), which can be 

implemented with the MATCH web-based tool (Morris et al, 2014). For the models discussed in section 2, the practitioner 

would consider the true score of their client and express their uncertainty with a normal distribution. Use of the quartile 

method would require the practitioner to determine their median estimate, and then subsequently their lower and upper 

quartile estimates. These values can be elicited by the following sequence of questions: 1) What do you believe is the most 

likely value for the true score? Select a value such that the actual true score is equally likely to lie above or below your 

value; 2) Suppose you are informed the actual true score is below your initial value selected, now specify an updated value 

such that actual true score is equally likely to lie above or below your updated value; and 3) Suppose you are informed 

the actual true score is above your initial value selected, now specify an updated value such that actual true score is equally 

likely to lie above or below your updated value. These quartile values can then be inputted into the MATCH tool and the 

percentile sliders used to provide feedback and further assess whether the values provided are in accordance with an 

individual’s subjective beliefs. Note, that if the quartiles are not symmetric around the median, the values of the elicited 

distribution will shift to best match the overall beliefs. Returning to the body fat percentage example, Figure 3 shows that 

the practitioner has stated that their 1st, 2nd and 3rd quartile values are 16.5, 20 and 22%, respectively. As a result, the 

distribution elicited has a mean of 19.6 and standard deviation of 4.2%, generating 1st and 3rd quartile values of 16.8 and 

22.4, respectively (Figure 3).  

 

Figure 3: Example using MATCH web based prior elicitation tool to elicit a normal distribution using the quartile method.  

 

Prior elicitation tool (Morris et al, 2014). 
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4.0 More complex models for establishing plausible baseline scores 

In the models presented in section 2, we assumed that the measurement error standard deviation was known and simply 

plugged in this value. In general, this process will underestimate our uncertainty in the true score as there is additional 

uncertainty in error magnitudes that will be influenced by a range of factors including the individual being measured and 

differences in protocols and equipment. How we express our uncertainty in measurement errors will likely be a 

compromise between what we actually believe and our ability to find a representative distributional form, whilst also fits 

with the approach we wish to use (e.g. conjugate or sample-based methods). Here we consider our final conjugate model 

and also highlight why more flexible sample-based approaches are often required.  

 

4.1 Model 3: Mean of multiple data points with conjugate prior and unknown measurement error 

If we wish to estimate both the true score and the measurement error standard deviation, we will have to obtain a joint 

prior distribution that describes the probabilities of both parameters. Using Bayes theorem, we often express joint 

probabilities of two parameters as the product of a conditional distribution and a marginal distribution. The conjugate 

prior distribution commonly used is the normal inverse gamma (𝑁𝐼𝐺) which is expressed as: 

𝜋(𝜽) = 𝜋(𝜇, 𝜎2) = 𝑁𝐼𝐺 (𝜇, 𝜎2|𝑚,
1

𝑘
, 𝑎, 𝑏) = 𝑁 (𝜇|𝑚,

1

𝑘
𝜎2) 𝐼𝐺(𝜎2|𝑎, 𝑏).                                                                  𝑒𝑞. 6 

 

First, we note that the conjugate distribution is expressed in terms of the measurement error variance and not the standard 

deviation. The distribution comprises the marginal inverse gamma distribution for 𝜎2, and somewhat counterintuitively, 

the notion that the uncertainty of our prior knowledge of the true score 𝜇 depends on the unknown measurement variance 

(Cowles 2013). In practice, eliciting the four parameters (𝑚, 1/𝑘, 𝑎, 𝑏) would begin by considering the unknown standard 

deviation 𝜎. When data are generated from the process described in eq.2, the standard deviation provides information 

on the median absolute difference between any two observations (Elfadaly and Garthwaite, 2015). Using this feature of 

the data generating process, an individual can use their knowledge to provide the most likely value for 𝜎 and express their 

uncertainty (e.g. provide 1st and 3rd quartiles). The values obtained would then be squared and the parameters 𝑎, 𝑏 selected 

from the inverse gamma distribution to match this uncertainty. Checks can be made using the distribution (e.g. probability 

𝜎2 lies between two values) with the square root taken to transform values back to the standard deviation scale. Once a 

typical value for 𝜎 and thereby 𝜎2 has been established, this can be plugged in to the normal distribution and 𝑘 set so 

that the variance for the true score prior distribution matches the individual’s beliefs. A final check can then be made on 

how the uncertainty for the true score changes across a range of values for 𝜎2 that are reasonable given the selection of 

parameters 𝑎, 𝑏 (an example illustrating this process in more detail is provided in Appendix 2D). Once we have elicited 

the normal inverse gamma prior distribution, the posterior distribution is also normal inverse gamma with the following 

updates: 

𝑚∗ =
𝑘𝑚 + 𝑛𝑥̅

𝑘 + 𝑛
 

𝑘∗ = 𝑘 + 𝑛 

𝑎∗ = 𝑎 +
𝑛

2
 

𝑏∗ = 𝑏 +
1

2
[∑(𝑥𝑖 − 𝑥̅

2)

𝑛

𝑖=1

+
𝑘𝑛(𝑥̅ − 𝑚)2

𝑘 + 𝑛
] .                                                                                                                          𝑒𝑞. 7 

The derivation of the updating process is provided in Appendix 1C. Returning to our previous example for body fat 

percentage where we initially believe that the majority of the true score distribution is likely to lie around 17 to 23% (e.g. 

the 1st and 3rd quartiles from 𝑁(20,42)). If we also believe that the measurement error standard deviation is most likely 

to be 3%, with the 1st and 3rd quartiles around 2 and 6%, respectively, then as shown in Figure 4A, we may select 

𝑁𝐼𝐺(𝜇, 𝜎2|𝑚 = 20, 𝑘 = 0.625, 𝑎 = 0.6, 𝑏 = 3.1) as our prior distribution. Note the heavier tails for the marginal prior 

distribution of 𝜇 (Figure 4A). If we observe a single measurement of 17.5%, then using eq.7, our joint posterior 
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distribution is 𝑁𝐼𝐺(𝜇, 𝜎2|𝑚 = 18.46, 𝑘 = 1.62, 𝑎 = 1.1, 𝑏 = 4.3). To describe the marginal posterior distribution of  

𝜇 (Figure 4B), we first sample from 𝐼𝐺(𝜎2|𝑎 = 1.1, 𝑏 = 4.3), and then input 𝜎2 to 𝑁(𝜇|18.46,
1

1.62
𝜎2). Alternatively, 

we can use a marginal distribution for 𝜇 which takes the form of a t-distribution (see Appendix 1c for details). Both 

approaches show similar posterior distribution results between the normal and normal inverse gamma distributions, 

except the latter exhibiting heavier tails. Note, if we take repeated measurements then we will obtain more precise 

estimates of the true score, and if of interest, we will obtain updated information regarding the measurement error 

standard deviation (which could also be used for more precise prior distributions of 𝜎2 in the future). As can be seen, 

however, the process of selecting the conjugate normal inverse gamma prior distribution is rather involved and lacks 

flexibility. It is at this point in general, that conjugate methods are forgone and sample-based methods used so that more 

natural prior distributions can be implemented and analyses more easily interpreted.  

 

Figure 4: Comparison of true score prior (A) and posterior (B) distributions using normal prior with known variance, and 

normal inverse gamma distribution with unknown variance. 

 
Blue curves represent distributions obtained with 𝑵(𝟐𝟎, 𝟒𝟐) prior for 𝝁 and 𝝈 = 𝟑%. Red curves represent distributions 

obtained with 𝑵𝑰𝑮(𝝁, 𝝈𝟐|𝒎 = 𝟐𝟎, 𝒌 = 𝟎. 𝟔𝟐𝟓, 𝒂 = 𝟎. 𝟔, 𝒃 = 𝟑. 𝟏) prior for 𝝁 and 𝝈𝟐. 
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5.0 Sampling-based methods  

As we progress to more complex Bayesian models including the use of different prior distributions, we are unable to 

perform exact posterior inferences analytically. Alternative approaches include the use of numerical and simulation 

techniques to perform the required integration steps, however, these generally have limitations when dealing with complex 

models (Cowles 2013). Because of these limitations, Bayesian analyses are most commonly performed using sampling-

based methods with specialist software. The approach allows us to specify a data generating model, independent prior 

distributions for each parameter, and then sample from the joint posterior distribution. We can then use the samples 

from each parameter to estimate characteristics of the distributions including means, standard deviations, quantiles, and 

skewness. These samples are generally large and we can also use them to calculate probabilities, by for example, 

quantifying the proportion of the sample that lies between two values. Different algorithms are used to draw samples 

from joint posterior distributions and readers are directed towards Betancourt (2013) and Wang and Park (2020) for 

further details. Multiple specialist software now exists to perform Bayesian analyses, with the most popular for analyses 

in sport (Santos-Fernandez et al ,2019) including WinBUGS (Lunn et al, 2000), Stan (Stan development team), MATLAB 

(MATLAB 2017), and various R packages (R Core Team 2017). In this review, we use the popular R package brms 

(Bürkner 2017), which uses the probabilistic programming language Stan. Further details and resources for the brms 

package can be obtained from the following sources (Bürkner 2017; Nalborczyk et al, 2019).  

 

5.1 Use of brms to check previous examples  

To introduce the brms package and sampling-based methods in general, we repeat the analyses of sections 2 (see appendix 

2G for further details). Analyses in brms can be considered within a regression framework, where we input our data, and 

specify the data generating model and the prior distributions. Where we have measurements from a participant, we can 

consider these our response variable which is typically expressed as 𝑦. As we wish to estimate the mean which generated 

these observed values, we consider the most basic intercept only regression 𝑦~1.To run the model in R, we load the 

brms package, we incorporate the data into a data frame, and use the brm function. We use the following commands:  

In order, the commands above: 1) load the brms package; 2) create a data frame with a single variable 𝑦 and single entry 

of 17.5; 3) set the prior distributions for the two parameters which include a normal distribution for 𝜇 with mean 20 and 

standard deviation 4, and fix 𝜎 at 3; 4) set the pseudo random number generator to provide reproducible results; and 5) 

run the sampling-based Bayesian model assuming measurement error follows a normal distribution.  

 

Figure 5 shows the results of the analysis which is obtained with the plot command. The results show the posterior 

distribution for 𝜇 (labelled as b_Intercept) and the fixed value of 𝜎. The plot also shows the mixing of the samples from 

four different chains which are obtained using different starting values. For further details on important issues such as 

the number of chains, sample iterations, burn-in and convergence see Roy (2020).  

 

 

 

library(brms) 

 

Data = data.frame(y=17.5) 

 

Prior1 = c( 

         prior(normal(20,4), class = Intercept), 

         prior(constant(3),  class = sigma)) 

 

set.seed(123) 

  

Model1 = brm(y~1, data = Data, prior = Prior1, family = gaussian, 

                  chains = 4, iter = 5000, warmup = 2500) 
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Figure 5: Visual output of true score posterior distribution using informative prior for the mean and known measurement 

error standard deviation with brms.  

 
b_intercept: True score 𝝁. Sigma: known measurement error standard deviation 𝝈. Plots are generated with samples from 
four different chains. 

 

To perform analyses on our posterior distribution for 𝜇 and check the mean, standard deviation, and probabilities (as 

was done in section 2.1), we use the following commands and obtain approximately the same results:  

 

To repeat the analysis of section 2.2 which was conducted on the mean of five data points, we can again include a single 

value and reduce the known standard deviation to 𝜎 = 3/√5, or we can create a new data frame with five entries with 

mean 17.5. The commands for this latter approach are:  

 

 

 

 

library(posterior) 

 

Posterior1 = as_draws_df(Model1) 

Posterior1Mu = Posterior1$b_Intercept 

round(mean(Posterior1Mu),1) 

[1] 18.4 

round(sd(Posterior1Mu),1) 

[1] 2.4 

round(mean(Posterior1Mu<25),3) 

[1]0.996 

round(mean(Posterior1Mu>20&Posterior1Mu<25),3) 

[1]0.245 

 

 

Data2 = data.frame(y=rep(17.5,5)) 

 

set.seed(123) 

  

Model2 = brm(y~1, data = Data2, prior = Prior1, family = gaussian, 

                  chains = 4, iter = 5000, warmup = 2500) 

 

Posterior2 = as_draws_df(Model2) 

Posterior2Mu = Posterior2$b_Intercept 

round(mean(Posterior2Mu),1) 

[1] 17.7 

round(sd(Posterior2Mu),1) 

[1] 1.3 
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5.2 Sampling-based methods with alternative prior distributions 

Now that we are using sampling-based methods we can consider a range of more intuitive prior distributions. One 

common starting point would be to consider a uniform prior distribution for 𝜎. This type of prior distribution (𝑈(𝑎, 𝑏)) 

places flat probabilities across a range of values (𝑎 to 𝑏) and then zero probability for all other values. A practitioner may 

choose this type of prior distribution when they are very confident that the true value is in a specific range, but have no 

real sense of which values within the range are more probable. For example, if a practitioner is very confident that the 

measurement error standard deviation is somewhere between 2 and 6%, and wanted to combine the 𝑈(2,6) prior 

distribution with say five measurements, then we could obtain the posterior samples and make inferences regarding both 

𝜇 and 𝜎. Unlike frequentist approaches where CI’s are centred on a point estimate, Bayesian sample-based analyses lend 

themselves to several methods to summarise credible values. A common approach is the highest density interval (HDI) 

which summarises the distribution by specifying a width (e.g. 75 or 95%), such that every point inside the interval has 

higher credibility than any point outside the interval. The following commands are used to make inferences regarding 

both 𝜇 and 𝜎 using HDI’s: 

 

 

One of the most common distributions used to model uncertainty in measurement error standard deviations is the gamma 

distribution. In section 4.1 we used the inverse gamma distribution for measurement error variance so that the joint 

posterior distribution could be obtained analytically. The gamma distribution, however, is more commonly used as a prior 

distribution for the standard deviation and multiple elicitation methods (Garthwaite and Dickey 1988; Elfadaly and 

Garthwaite 2015) and software (Garthwaite et al, 2013) have been developed to assist. In addition, these elicitation 

methods attempt to express probabilities through the user responding to generated sample data such that revisions in 

parameter estimates after seeing the data are used to reveal underlying uncertainties (Garthwaite and Dickey 1988). Such 

approaches may be more effective than considering parameter values only. Appendix 2H provides examples comparing  

differen prior distributions for the standard deviation measurement error.  

 

Sampling-based methods also offer greater flexibility regarding the data generating process. For example, we may use a 

technology or perform a test in sport and exercise that infrequently generates very large errors. In this case, a normal 

distribution for observed scores may not be appropriate, and instead a t-distribution centred on the true score but with 

heavier tails may be more realistic. Using sampling-based methods it is simple to maintain the same prior distribution for 

the mean, but select either informative or non-informative priors distributions for measurement errors that are now 

modelled according to the t-distribution (see Appendix 2H for worked examples). Note here the important difference 

between stating that our prior beliefs for 𝜇 do not require a distribution with heavy tails, but that the data generating 

process itself, and therefore the observed scores may follow such a distribution.  

set.seed(123) 

Data3 = data.frame(y=rnorm(5,19,3)) 

 

Prior2 = c( 

         prior(normal(20,4), class = Intercept), 

         prior(uniform(2,6),lb=2,ub=6, class = sigma)) 

  

Model3 = brm(y~1, data = Data3, prior = Prior2, family = gaussian, 

                  chains = 4, iter = 5000, warmup = 2500) 

 

library(HDInterval) 

Posterior3 = as_draws_df(Model3) 

Posterior3Mu = Posterior3$b_Intercept 

Posterior3sigma = Posterior3$sigma 

hdi(Posterior3Mu,credMass = 0.75) 

[1] lower 18.0 upper 21.1 

hdi(Posterior3sigma,credMass = 0.75) 

[1] lower 2.0 upper 3.9 
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6.0 Establishing plausible change scores 

We conclude this review by highlighting where Bayesian approaches may have the strongest advantage over frequentist 

approaches, which is through interpreting and expressing uncertainty in intervention effects. As has been shown 

previously (Swinton et al, 2023), interpreting effectiveness can be challenging with traditional methods in sport and 

exercise where we only have a single measurement pre- and post-intervention, and often are faced with relatively low 

improvements and large measurement errors. As we must consider measurement error both pre and post-intervention, 

true score change CI’s are wider than true score baseline CI’s (see Appendix 1D). Given the data generating mechanism 

expressed in eq.2, the distribution of observed change scores can be expressed as:  

𝛿𝑖 = Δ + 𝜔𝑖                                                                     𝑒𝑞. 8 

where 𝛿𝑖 is the observed change score, Δ is the mean which is the hypothetical true change score, 𝜔𝑖 is the measurement 

error described by a normal distribution with mean 0 and standard deviation 𝜎√2, that is 𝜔𝑖~𝑁(0,2𝜎
2). CI’s for change 

scores are thus expanded by a factor of √2, which can as a result, severely limit the ability to interpret intervention 

effectiveness using frequentist methods. To judge if an intervention is effective, we may choose to compare the observed 

change score and associated uncertainty to some threshold value that we denote the smallest worthwhile change (SWC). 

A typical approach would be to calculate for example, a 50 or 75% true score change CI around the observed score and 

state that an intervention is effective if the bounds of the interval lie beyond the SWC (Swinton et al, 2018). From a 

frequentist perspective, we are unable to make probabilistic claims regarding the specific instance we are investigating, 

but simply state that over the long run and adopting the same procedures, the true change score will exceed the SWC on 

the proportion of occasions that match the CI percentage. Here there are limitations in both interpretation and ability to 

appropriately judge intervention effectiveness. Firstly, we deal with the ability to pass judgement on whether or not an 

intervention has been effective.   

 

6.1 Simple Bayesian approach to quantifying uncertainty in change scores 

Returning to our body fat percentage example, previous studies show that over the course of a 12-week resistance training 

intervention, body fat percentage can be expected to reduce by approximately 1.5% (Wewege et al, 2022). If we assume 

that 𝜎=3%, then a 75% true score change interval would equal 𝛿𝑖 ± 1.15 × √2 × 3 (where 1.15 is the 0.875-quantile of 

the standard normal distribution). If we set the SWC to 0.5%, then we would require an observed change score of at least 

0.5 + 4.9 = 5.4% to conclude the intervention was effective. Given that most individuals only experience a 1.5% 

improvement, this example highlights the problem faced by practitioners. We could reduce the CI, but this would mean 

that over the long run we would be “incorrect” more frequently. In a previous review (Swinton et al, 2023), we discussed 

approaches to reduce uncertainty which involved collection of more data. Where this is appropriate, collection of more 

data should be completed, including when adopting Bayesian approaches. A key limitation of the frequentist approach 

outlined is that it fails to include relevant information such as expected changes and also what the practitioner believes 

the change has been based on their experience and observing the individual across the intervention. When adopting a 

Bayesian approach, we can in a principled way incorporate this information. Additionally, we can address the other 

important issue of interpretation and avoid a binary distinction of whether an intervention was effective or not through 

expressing the (subjective) probability that the true score change exceeds the SWC after observing the data.  

 

To begin the process, we are required to specify our prior distribution for the true score change. As outlined in section 

3, we may choose to consult previous research and use published data from an appropriate population. The challenge 

here, is that unlike the baseline case where research routinely presents means and standard deviations, in many areas it is 

rare for researchers to present the standard deviation of change scores. Most studies present pre- and post-intervention 

data but from this we are often unable to appropriately estimate the degree of variation in change scores. Where this 

information is presented, we can incorporate it within a normal distribution for true score change, and where it is 

presented in multiple studies we can use eq.5 to pool data. For body composition values, means and standard deviations 

of change scores are often presented with results frequently reporting standard deviation of change scores of 

approximately 3% (Wewege et al, 2022). We also require a prior distribution for the standard deviation of observed 

change scores (𝜔). Here, however, we can use knowledge regarding measurement error standard deviation (𝜎) and simply 

multiply by √2. If we use the previous example where the practitioner was confident that 𝜎 was between 2 and 6 but was 

https://doi.org/10.31236/osf.io/y7sk6


Doi: 10.51224/SRXIV.261  SportR𝜒iv Preprint version 1 

not confident of which values within the range were more probable, then we could use the uniform prior distribution 

𝑈(2√2, 6√2) for 𝜔. Finally, if we observed a pre- to post-intervention change score of -3.5%, then the analysis would 

be complete using the following commands: 

 

 

The interpretation of this analysis would be that a 75% credible interval for the true score change would be between -4.0 

and 0.3%%, and the probability that the true change score exceeded the SWC of -0.5% is 0.755. This example highlights 

how much more informative and easier it can be to interpret a Bayesian approach compared to traditional approaches.  

If we have access to more data, then we can also be more precise regarding the likely true score change. To highlight this, 

we consider two scenarios, the first where we have access to a limited amount of additional data, and the second where 

we have access to high frequency data. In the first scenario, we consider a situation where a practitioner is able to repeat 

body fat measurements on four occasions both pre- and post-intervention. Using a simple analysis approach, we take the 

average of the four measurements pre-intervention as our baseline score, and the average of the four measurements post-

intervention as our final score. With this simple analysis approach, the measurement error standard deviation of the 

change scores (𝜔) reduces by half (√𝑛) and therefore, equals 𝜎√2/2. We therefore adjust our prior distribution for 𝜔 

accordingly. If we obtained the following data – pre-intervention: 20.2, 21.4, 18.2, 20.9; post-intervention: 

15.2,17.1,16.4,18.0; and carry forward our initial belief regarding 𝜎, then we use the following commands: 

 

Here we can see that the upper bound of the 75% credible interval for the true score change has further reduced and the 

probability that the true score change lies beyond the SWC of -0.5% has increased. 

Data4 = data.frame(y=-3.5) 

 

Prior3 = c( 

         prior(normal(-1.5,3), class = Intercept), 

         prior(uniform(sqrt(2)*2, sqrt(2)*6),lb= sqrt(2)*2,ub= sqrt(2)*6,  

      class = sigma)) 

set.seed(123)  

Model4 = brm(y~1, data = Data4, prior = Prior3, family = gaussian, 

                  chains = 4, iter = 5000, warmup = 2500) 

 

Posterior4 = as_draws_df(Model4) 

Posterior4Mu = Posterior4$b_Intercept 

hdi(Posterior4Mu,credMass = 0.75) 

[1] lower -5.07 upper 0.75 

mean(Posterior4Mu<=-0.5) 

[1]0.733 

 

 

Data5 =data.frame(y=mean(c(15.2,17.1,16.4,18.0))-mean(c(20.2, 21.4, 18.2, 20.9))) 

 

Prior4 = c( 

         prior(normal(-1.5,3), class = Intercept), 

         prior(uniform(sqrt(2)*2/2, sqrt(2)*6/2),lb= sqrt(2)*2/2,ub= sqrt(2)*6/2,  

      class = sigma)) 

set.seed(123)  

Model5 = brm(y~1, data = Data5, prior = Prior4, family = gaussian, 

                  chains = 4, iter = 5000, warmup = 2500) 

 

Posterior5 = as_draws_df(Model5) 

Posterior5Mu = Posterior5$b_Intercept 

hdi(Posterior5Mu,credMass = 0.75) 

[1] lower -5.03 upper -0.45 

mean(Posterior5Mu<=-0.5) 

[1]0.855 
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6.2 Bayesian autoregressive modelling to quantifying uncertainty in change scores 

We finish this review by highlighting a second scenario where we have access to high frequency data. Rather than 

restricting ourselves to gold standard methods such as Dual-energy X-ray absorptiometry or well-trained 

anthropometrists, we could measure body fat percentage with a method such as bioelectrical impedance analysis (BIA). 

This is likely to have higher measurement errors, but can be used on a daily basis to provide unobtrusive measurements. 

Importantly, access to the high-frequency data is likely to make up for increased measurement error and result in 

improved inferences particularly where improvements across interventions are relatively small. Previously we have 

highlighted that an effective model that may be  used to track an individual over a standard intervention period is linear 

regression with an autoregressive AR(1) process used for measurement errors (Swinton et al, 2023). The slope of the 

regression line represents the weekly change in the outcome, with the inherent assumption that this remains constant 

throughout the intervention enabling us to use this value to estimate the overall change. As this is a Bayesian analysis, we 

are required to specify prior distributions for all parameters including: 1) the intercept (baseline score covered in sections 

2); 2) the slope of the regression line; 3) the measurement error standard deviation; and 4) the serial correlation parameter 

which causes measurement errors closer together in time to be stronger associated than those further apart in time (see 

Appendix 1E for further details). A full worked example with explanations of the mock data is presented in Appendix 

2J. We assume that a measurement is made each day with a device that we believe the measurement error standard 

deviation can be described by a gamma distribution with parameters 𝑎=3.9, 𝑏 = 1, such that the 75% HDI lies between 

1.4 and 5.4%. We also assume that the BIA values are compatible with standard anthropometric measurements that are 

available at the beginning of the intervention. This allows us to perform a full Bayesian analysis outlined in section 5.1 to 

produce a posterior distribution that we can use as a prior distribution for the intercept. We also convert our knowledge 

that over the course of a 12-week intervention true score changes can be described by 𝑁(−1.5,32), to develop a prior 

distribution for the weekly regression slope which equals 𝑁(−0.125,0.252). Finally, we express some knowledge of the 

serial correlation parameter and apply the uniform prior distribution 𝑈(0.2,0.5). Figure 6 illustrates the mock data which 

were developed based on the individual actually decreasing their body fat percentage by only 1% across the intervention. 

The  75% HDI for the true change score across the intervention is found to be -3.8 to -0.01%, with a 0.802 probability 

that value is below the SWC of -0.5%. We can contrast this with a frequentist analysis using the arima function in R, 

where the 75% true score change CI is -2.2 (-5.8 to 1.6%), such that we would generally conclude the intervention was 

not successful.  

 

Figure 6: Mock data illustrating daily body fat percentage across an intervention as generated from a linear regression 

with AR(1) process.  

 
Red line illustrates the true change across the intervention which is modelled by an intercept of 19% and a weekly decrease 
of -1/12% leading to a decrease of only 1% over the entire intervention.  
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7.0 Conclusion 

The purpose of this review was to introduce, discuss, and provide examples of how to conduct Bayesian analyses to 

analyse commonly used data from single individuals in sport and exercise. The review highlighted the value of Bayesian 

analyses and therein the importance in developing informative prior distributions that leverage the expertise and 

knowledge contained by practitioners, researchers, and within the broader field. Through principled use of previously 

gained knowledge, Bayesian analyses can provide inferences that better underpin decision making. In addition, the review 

highlights how subjective probabilities can be used to communicate analyses that are easier to understand and fit with 

our probabilistic intuitions. The review introduced both conjugate and more common sample-based analyses. Whilst 

conjugate methods are limited, they may provide simple, and user-friendly analyses that can be implemented in standard 

software used to monitor and provide feedback to clients. In addition, where the same measurements are routinely 

collected and practitioners have accurately quantified measurement error standard deviations, similar results may be 

achieved between conjugate methods and more complex sample-based methods. Where practitioners wish to employ 

more complex models or develop more realistic prior distributions, sample-based analyses provide an extensive  range of 

options. It is here that sensitivity analyses and development with regards to technical issues such as software languages, 

how distributions and parameters are expressed, and diagnostic tools (Depaoli, and Van de Schoot 2017) become 

important. Given the limited use of Bayesian analyses in sport and exercise, more interdisciplinary research is required 

between researchers and practitioners to develop models whose parameters are insightful, and determine how best to 

obtain prior distributions and thresholds values (e.g. SWC) that can be inputted to generate more actionable insight.  
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Bayesian Approaches to Quantifying Uncertainty in Sport and 

Exercise Measurements: A Guide for Practitioners and Applied 

Researchers. Appendices. 

Paul A. Swinton 

 

Appendix 1:  Additional mathematical detail 

 

Appendix 1A (Section 2.1 - Model 1: Single data point with conjugate prior and known measurement error) 

Derivation of posterior distribution for 𝜇 

 

Given the probability distribution function of the normal distribution 

𝑓(𝑥|𝜇, 𝜎) =
1

𝜎√2𝜋
exp [−

1

2𝜎2
(𝑥 − 𝜇)2] , 

and prior beliefs about 𝜇 represented by a normal distribution  

𝜋(𝜇) =
1

√2𝜋𝑣
exp [−

1

2𝑣
(𝜇 −𝑚)2] , 

Then the posterior distribution for a single data point and known 𝜎2 can be expressed as  

𝜋(𝜇|𝑥) =
𝜋(𝜇)𝑓(𝑥|𝜇)

𝑓(𝑥)
. 

We derive the posterior up to proportionality such that  

𝜋(𝜇|𝑥, 𝜎) ∝
𝜋(𝜇)𝑓(𝑥|𝜇)

𝑓(𝑥)
 

              ∝ exp [−
1

2
(
1

𝜎2
(𝑥 − 𝜇)2 +

1

𝑣
(𝜇 −𝑚)2)] 

             = exp [−
𝑄

2
] , 

where  

𝑄 =
1

𝜎2
(𝑥 − 𝜇)2 +

1

𝑣
(𝜇 −𝑚)2. 

If 𝑄 can be re-arranged to be in the form 
(𝜇−𝑎)2

𝑏
+ 𝑐, with 𝑐 not depending on 𝜇, then the posterior distribution of 

𝜇 (𝜋(𝜇|𝑥)) must be 𝑁(𝜃|𝑎, 𝑏). 
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𝑄 =
𝜇2 − 2𝜇𝑥 + 𝑥2

𝜎2
+
𝜇2 − 2𝜇𝑚 +𝑚2

𝑣
 

     = 𝜇2 (
1

𝜎2
+
1

𝑣
) − 2𝜇 (

𝑥

𝜎2
+
𝑚

𝑣
) +

𝑥2

𝜎2
+
𝑚2

𝑣
 

     = 𝜇2/(
1

1
𝜎2
+
1
𝑣

) − 2𝜇 (
𝑥

𝜎2
+
𝑚

𝑣
) +

𝑥2

𝜎2
+
𝑚2

𝑣
. 

. 

Completing the square with 𝑐1𝜇
2 + 𝑐2𝜇 + 𝑐3 = 𝑐1(𝜇 + ℎ)

2 + 𝑐4, where ℎ =
𝑐2

2𝑐1
 and 𝑐4 = 𝑐3 −

𝑐2
2

4𝑐1
, gives 

𝑄 = (
1

1
𝜎2
+
1
𝑣

)

(

 
 
𝜇 −

(

 (
𝑥

𝜎2
+
𝑚

𝑣
)(

1

1
𝜎2
+
1
𝑣

)

)

 

)

 
 

2

+ 𝑐4. 

Therefore  

𝜋(𝜇|𝑥) = 𝑁(𝑚∗, 𝑣∗),where  

𝑣∗ =
1

1
𝑣 +

1
𝜎2

  and 𝑚∗ = 𝑣∗ (
𝑚

𝑣
+
𝑥

𝜎2
).                                                                           

 

Appendix 1B (Section 2.2 - Model 2: Mean of multiple data points with conjugate prior and known measurement error) 

Derivation of distribution of  𝑥̅ 

We show that given 𝑥~𝑁(𝜇, 𝜎2) then 𝑥̅ =
1

𝑛
∑ 𝑥𝑖~𝑁(𝜇, 𝜎

2/𝑛).𝑛
𝑖=1  

The expectation of 𝑥̅ is 

𝐸(𝑥̅) = 𝐸 (
1

𝑛
(𝑥1 + 𝑥2 +⋯+ 𝑥𝑛)) =

1

𝑛
(𝐸(𝑥1) + 𝐸(𝑥2) + ⋯+ 𝐸(𝑥𝑛)) 

            =
1

𝑛
(𝑛𝜇) = 𝜇. 

As each 𝑥𝑖 are assumed independent, then the variance of  𝑥̅ is 

𝑉𝑎𝑟(𝑥̅ ) = 𝑉𝑎𝑟 (
1

𝑛
(𝑥1 + 𝑥2 +⋯+ 𝑥𝑛)) =

1

𝑛2
(𝑉𝑎𝑟(𝑥1) + 𝑉𝑎𝑟(𝑥2) +⋯+ 𝑉𝑎𝑟(𝑥𝑛)) 

                =
1

𝑛2
(𝑛𝜎2) =

𝜎2

𝑛
.  

Therefore, we have 𝑥̅~𝑁(𝜇, 𝜎2/𝑛). 
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Derivation of posterior distribution for 𝜇 

We now provide the derivation of the posterior distribution of 𝜇 given the mean of 𝑛 independent observations and 

assuming normal distributions for the likelihood (with 𝜎2 known) and the prior for 𝜇. For 𝑛 normally distributed 

independent measurements 𝑥𝑖, the likelihood is given by  

𝑓(𝒙|𝜇)  ∝ exp [−
1

2𝜎2
∑(𝑥𝑖 − 𝜇)

2

𝑛

𝑖=1

] . 

Therefore, 

𝜋(𝜇|𝒙) ∝ 𝜋(𝜇)𝑓(𝒙|𝜇) 

                   ∝ exp [−
1

2
(
1

𝜎2
∑(𝑥𝑖 − 𝜇)

2

𝑛

𝑖=1

+
1

𝑣
(𝜇 −𝑚)2)] 

                   = exp [−
𝑄̅

2
] . 

We follow similar steps as with the previous derivation, but first noting that  

∑(𝑥𝑖 − 𝜇)
2

𝑛

𝑖=1

=∑(𝑥𝑖 − 𝑥̅ − 𝜇 + 𝑥̅)
2

𝑛

𝑖=1

, 𝑥̅ =
1

𝑛
∑𝑥𝑖

𝑛

𝑖=1

, 𝑠2 =
1

𝑛
∑(𝑥𝑖 − 𝑥̅)

2,

𝑛

𝑖=1

we have  

𝑄̅ =
∑ ((𝑥𝑖 − 𝑥̅) − (𝜇 − 𝑥̅))

2𝑛
𝑖=1

𝜎2
+
𝜇2 − 2𝜇𝑚 +𝑚2

𝑣
 

    =
∑ ((𝑥𝑖 − 𝑥̅)

2 + (𝜇 − 𝑥̅)2 − 2(𝑥𝑖 − 𝑥̅)(𝜇 − 𝑥̅))
𝑛
𝑖=1

𝜎2
+
𝜇2 − 2𝜇𝑚 +𝑚2

𝑣
 

    =
𝑛𝑠2 + 𝑛(𝜇 − 𝑥̅)2 − 2(𝑛𝑥̅ − 𝑛𝑥̅)(𝑛𝜇 − 𝑛𝑥̅)

𝜎2
+
𝜇2 − 2𝜇𝑚 +𝑚2

𝑣
 

    = 𝜇2 (
𝑛

𝜎2
+
1

𝑣
) − 2𝜇 (

𝑥̅

𝜎2
+
𝑚

𝑣
) +

𝑛(𝑥̅2 + 𝑠2)

𝜎2
+
𝑚2

𝑣
 

    = 𝜇2/(
1

𝑛
𝜎2
+
1
𝑣

) − 2𝜇 (
𝑥̅

𝜎2
+
𝑚

𝑣
) +

𝑛(𝑥̅2 + 𝑠2)

𝜎2
+
𝑚2

𝑣
. 

As previous completing the square gives  

𝑄̅ = (
1

𝑛
𝜎2
+
1
𝑣

)

(

 
 
𝜇 −

(

 (
𝑥̅

𝜎2
+
𝑚

𝑣
)(

1

𝑛
𝜎2
+
1
𝑣

)

)

 

)

 
 

2

+ 𝑐5. 

Therefore  

𝜋(𝜇|𝒙) = 𝑁(𝑚∗, 𝑣∗), where  

𝑣∗ =
1

1
𝑣 +

𝑛
𝜎2

  and 𝑚∗ = 𝑣∗ (
𝑚

𝑣
+
𝑥̅

𝜎2
).                     
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Appendix 1C (Section 4.1 - Model 3: Mean of multiple data points with conjugate prior and unknown measurement 

error) 

Derivation of posterior distribution for 𝜇 and 𝜎2 

 

The inverse gamma (𝐼𝐺) probability distribution can be expressed as 

𝐼𝐺(𝜎2|𝑎, 𝑏) =
𝑏𝑎

Γ(𝑎)
(
1

𝜎2
)
𝑎+1

exp [−
𝑏

𝜎2
] . 

The normal inverse gamma (𝑁𝐼𝐺) probability distribution is a joint distribution used to express prior probabilities for 

the mean 𝜇 and variance 𝜎2. It is the product of the marginal inverse gamma distribution 𝐼𝐺(𝜎2|𝑎, 𝑏) and conditional 

normal distribution 𝑁(𝜇|𝑚, 𝜎2/𝑘). The normal inverse gamma distribution is therefore  

𝑁𝐼𝐺(𝜇, 𝜎2|𝑎, 𝑏,𝑚, 1/𝑘) =
𝑏𝑎

Γ(𝑎)
(
1

𝜎2
)
𝑎+1

exp [−
𝑏

𝜎2
]
√𝑘

𝜎√2𝜋
exp [−

𝑘

2𝜎2
(𝜇 − 𝑚)2] . 

For 𝑛 normally distributed independent measurements 𝑥𝑖 we have  

𝑓(𝒙|𝜇, 𝜎2)  ∝
1

𝜎𝑛/2
exp [−

1

2𝜎2
∑(𝑥𝑖 − 𝜇)

2

𝑛

𝑖=1

] , 

therefore, the posterior distribution using the 𝑁𝐼𝐺 prior distribution can be expressed as 

𝜋(𝜇, 𝜎2|𝒙) ∝ 𝜋(𝜇, 𝜎2)𝑓(𝒙|𝜇, 𝜎2) 

                     ∝
𝑏𝑎

Γ(𝑎)
(
1

𝜎2
)
𝑎+1

exp [−
𝑏

𝜎2
]
√𝑘

𝜎√2𝜋
exp [−

𝑘

2𝜎2
(𝜇 − 𝑚)2]

1

𝜎𝑛/2
exp [−

1

2𝜎2
∑(𝑥𝑖 − 𝜇)

2

𝑛

𝑖=1

] . 

                     ∝
1

(𝜎2)𝑎+
𝑛
2
+1
exp [−

1

𝜎2
(𝑏 +

1

2
∑(𝑥𝑖 − 𝜇)

2

𝑛

𝑖=1

)]
√𝑘

𝜎
exp [−

1

2𝜎2
(𝑘(𝜇 − 𝑚)2)] 

As before with ∑ (𝑥𝑖 − 𝜇)
2𝑛

𝑖=1 = 𝑛𝑠2 + 𝑛(𝜇 − 𝑥̅)2, we have  

𝜋(𝜇, 𝜎2|𝒙) ∝
1

(𝜎2)𝑎+
𝑛
2
+1
exp [−

1

𝜎2
(𝑏 +

𝑛𝑠2

2
)]
√𝑘

𝜎
exp [−

1

2𝜎2
(𝑘(𝜇 − 𝑚)2 + 𝑛(𝜇 − 𝑥̅)2)] . 

We also have that  

𝑘(𝜇 −𝑚)2 + 𝑛(𝜇 − 𝑥̅)2 = (𝑘 + 𝑛)𝜇2 − 2𝜇(𝑘𝑚 + 𝑛𝑥̅) + 𝑘𝑚2 + 𝑛𝑥̅2. 

Completing the square gives  

(𝑘 + 𝑛) (𝜇 −
𝑘𝑚 + 𝑛𝑥̅

𝑘 + 𝑛
)
2

+ 𝑘𝑚2 + 𝑛𝑥̅2 −
(𝑘𝑚 + 𝑛𝑥̅)2

𝑘 + 𝑛
= 

(𝑘 + 𝑛) (𝜇 −
𝑘𝑚 + 𝑛𝑥̅

𝑘 + 𝑛
)
2

+
(𝑘2𝑚2 + 𝑘𝑛𝑚2 + 𝑘𝑛𝑥̅2 + 𝑛2𝑥̅2) − (𝑘𝑚 + 𝑛𝑥̅)2

𝑘 + 𝑛
= 

(𝑘 + 𝑛) (𝜇 −
𝑘𝑚 + 𝑛𝑥̅

𝑘 + 𝑛
)
2

+
𝑘𝑛𝑚2 + 𝑘𝑛𝑥̅2 − 2𝑘𝑚𝑛𝑥̅

𝑘 + 𝑛
= 

(𝑘 + 𝑛) (𝜇 −
𝑘𝑚 + 𝑛𝑥̅

𝑘 + 𝑛
)
2

+
𝑘𝑛(𝑚2 + 𝑥̅2 − 2𝑚𝑥̅)

𝑘 + 𝑛
= 
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(𝑘 + 𝑛) (𝜇 −
𝑘𝑚 + 𝑛𝑥̅

𝑘 + 𝑛
)
2

+
𝑘𝑛(𝑥̅ − 𝑚)2

𝑘 + 𝑛
. 

Inserting this expression back into the previous statement gives  

𝜋(𝜇, 𝜎2|𝒙) ∝
1

(𝜎2)𝑎+
𝑛
2
+1
exp [−

1

𝜎2
(𝑏 +

𝑛𝑠2

2
)] 
√𝑘

𝜎
exp [−

1

2𝜎2
((𝑘 + 𝑛)(𝜇 −

𝑘𝑚 + 𝑛𝑥̅

𝑘 + 𝑛
)
2

+
𝑘𝑛(𝑥̅ − 𝑚)2

𝑘 + 𝑛
)] 

                     ∝
1

(𝜎2)𝑎+
𝑛
2
+1
exp [−

1

𝜎2
(𝑏 +

𝑛𝑠2

2
+
𝑘𝑛(𝑥̅ − 𝑚)2

2(𝑘 + 𝑛)
)] 
√𝑘

𝜎
exp [−

1

2𝜎2
((𝑘 + 𝑛) (𝜇 −

𝑘𝑚 + 𝑛𝑥̅

𝑘 + 𝑛
)
2

)]  

We note that this is the normal inverse gamma distribution with  

𝑎∗ = 𝑎 +
𝑛

2
, 𝑏∗ = 𝑏 +

𝑛𝑠2

2
+
𝑘𝑛(𝑥̅ − 𝑚)2

2(𝑘 + 𝑛)
, 𝑘∗ = 𝑘 + 𝑛,𝑚∗ =

𝑘𝑚 + 𝑛𝑥̅

𝑘 + 𝑛
. 

 

Derivation of marginal posterior distribution for 𝜇 

 

The 𝑡-distribution with a single parameter 𝜈 is a symmetric distribution centred on 0, with probability distribution 

function  

𝑓(𝒙|𝜈) =
Γ (
𝜈 + 1
2 )

Γ (
𝜈
2)√𝜈𝜋

(1 +
𝑥2

𝜈
)

−(𝜈+1)/2

. 

For 𝜈 > 2 the variance equals 
𝜈

𝜈−2
, such that with greater 𝜈 the variance approaches one and resembles the standard 

normal distribution. The 𝑡-distribution can be generalised to a three parameter location-scale family introducing a location 

parameter  𝑢̂ and scale parameter  𝜎̂ through  

𝑋 = 𝑢̂ +𝜎̂𝑇, which has the probability distribution function  

𝑓(𝒙|𝜈, 𝑢̂, 𝜎̂) =
Γ (
𝜈 + 1
2 )

Γ (
𝜈
2)√𝜈𝜋𝜎̂

(1 +
1

𝜈
(
𝑥 − 𝑢̂

𝜎̂
)
2

)

−(𝜈+1)/2

. 

The generalised 𝑡-distribution has mean equal to 𝑢̂ (for 𝜈>1) and variance 𝜎̂2
𝜈

𝜈−2
 (for 𝜈>2). 

 

We can show that the marginal posterior distribution for 𝜇 when using the normal inverse gamma as a prior distribution, 

is a generalised 𝑡-distribution. To show this, first we note that  

Γ(𝑧) = ∫ 𝑥𝑧−1𝑒−𝑥𝑑𝑥.
∞

0

 

To obtain the marginal posterior distribution for 𝜇 we must perform the following integration  

∫ 𝑁(𝜇, 𝜎2|𝒙)
∞

0

𝑑𝜎2 = ∫
(𝑏∗)𝑎

∗

Γ(𝑎∗)
(
1

𝜎2
)
𝑎∗+1

exp [−
𝑏∗

𝜎2
]
√𝑘∗

𝜎√2𝜋
exp [−

𝑘∗

2𝜎2
(𝜇 − 𝑚∗)2]

∞

0

𝑑𝜎2 

                                     =
(𝑏∗)𝑎

∗

Γ(𝑎∗)

√𝑘∗

√2𝜋
∫

1

(𝜎2)𝑎
∗+3/2

∞

0

exp [−(
1

2𝜎2
(𝑘∗(𝜇 − 𝑚∗)2 + 2𝑏∗))]𝑑𝜎2. 
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If we make the substitution 𝜆 = (𝜎2)−1, then 
𝑑𝜆

𝑑𝜎2
= −(𝜎2)−2 → 𝑑𝜎2 = −𝑑𝜆(𝜎2)2, then we have  

∫ 𝑁(𝜇, 𝜎2|𝒙) =
(𝑏∗)𝑎

∗

Γ(𝑎∗)

√𝑘∗

√2𝜋
∫ 𝜆(𝑎

∗+1/2)−1
∞

0

exp [−(
𝜆

2
(𝑘∗(𝜇 − 𝑚∗)2 + 2𝑏∗))] 𝑑𝜆

∞

0

. 

If we make a second substitution 𝜏 =
𝜆

2
(𝑘∗(𝜇 − 𝑚∗)2 + 2𝑏∗), then 𝑑𝜏 =

1

2
(𝑘∗(𝜇 − 𝑚∗)2 + 2𝑏∗)𝑑𝜆, then we have 

∫ 𝑁(𝜇, 𝜎2|𝒙) =
(𝑏∗)𝑎

∗

Γ(𝑎∗)

√𝑘∗

√2𝜋
∫ (

𝜏

𝑘∗(𝜇 −𝑚∗)2 + 2𝑏∗

2

)

(𝑎∗+1/2)−1
∞

0

exp(−𝜏)
𝑑𝜏

𝑘∗(𝜇 − 𝑚∗)2 + 2𝑏∗

2

 
∞

0

 

                              =
(𝑏∗)𝑎

∗

Γ(𝑎∗)

√𝑘∗

√2𝜋 [
𝑘∗(𝜇 − 𝑚∗)2 + 2𝑏∗

2 ]
𝑎∗+

1
2

∫ 𝜏
(𝑎∗+

1
2
)−1

∞

0

exp(−𝜏)𝑑𝜏 

                               =
(𝑏∗)𝑎

∗

Γ(𝑎∗)

√𝑘∗

√2𝜋

Γ (𝑎∗ +
1
2
)

[
𝑘∗(𝜇 − 𝑚∗)2 + 2𝑏∗

2 ]
𝑎∗+

1
2

. 

Further rearranging gives  

∫ 𝑁(𝜇, 𝜎2|𝒙) =
(𝑏∗)𝑎

∗

Γ(𝑎∗)

√𝑘∗

√2𝜋

Γ (𝑎∗ +
1
2)

(
1
2)
𝑎∗+

1
2
(2𝑏∗)𝑎

∗+
1
2 [1 +

𝑘∗

2𝑏∗
(𝜇 − 𝑚∗)2]

𝑎∗+
1
2

 
∞

0

 

                              =
Γ (𝑎∗ +

1
2)

Γ(𝑎∗)√2√𝑏∗/𝑘∗ [1 + (
𝜇 −𝑚∗

√2√𝑏∗/𝑘∗
)

2

]

𝑎∗+
1
2

. 

We can see that the above is a t-distribution with mean 𝑚∗, degrees of freedom 2𝑎∗, and scale parameter given by √𝜈𝜎̂ =

√2√𝑏∗/𝑘∗, such that 𝜎̂ = √
𝑏∗

𝑎∗𝑘∗
. 

 

 

Appendix 1D (Section 6.0 – Establishing plausible change scores)  

If we have observed scores pre-intervention of the form 𝑥𝑝𝑟𝑒𝑖 = 𝜇𝑝𝑟𝑒 + 𝜖𝑝𝑟𝑒𝑖 , and post-intervention of the form 

𝑥𝑝𝑜𝑠𝑡𝑖 = 𝜇𝑝𝑜𝑠𝑡 + 𝜖𝑝𝑜𝑠𝑡𝑖 , where 𝜖𝑝𝑟𝑒 and 𝜖𝑝𝑜𝑠𝑡  are independent and both come from the same distribution 𝑁(0, 𝜎2); 

then our change score 𝛿𝑖 = 𝑥𝑝𝑜𝑠𝑡𝑖 − 𝑥𝑝𝑟𝑒𝑖 is also normally distributed with mean  

𝐸(𝑥𝑝𝑜𝑠𝑡𝑖 − 𝑥𝑝𝑟𝑒𝑖) = 𝐸(𝑥𝑝𝑜𝑠𝑡𝑖) − 𝐸(𝑥𝑝𝑟𝑒𝑖) = 𝜇𝑝𝑜𝑠𝑡 − 𝜇𝑝𝑟𝑒 = Δ, 

and standard deviation  

√𝑉𝑎𝑟(𝑥𝑝𝑜𝑠𝑡𝑖 − 𝑥𝑝𝑟𝑒𝑖) = √𝑉𝑎𝑟(𝑥𝑝𝑜𝑠𝑡𝑖) + 𝑉𝑎𝑟(𝑥𝑝𝑟𝑒𝑖) = √2𝜎
2 = √2𝜎. 
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Appendix 1E (Section 6.2 – Bayesian autoregressive modelling to quantifying uncertainty in change scores) 

 

The final model discussed in this review is simple linear regression where the measurement errors follow an AR(1) 

process. The model can be expressed as 𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜉𝑖 , with errors 𝜉𝑖 autocorrelated such that 𝜉𝑖 = 𝜃𝜉𝑖−1 + 𝜓, 

where |𝜃| < 1  is the serial correlation parameter, 𝜓 is normally distributed with mean 0 and variance 𝜁2. To derive the 

properties of the AR(1) errors it is best to express the series in-terms of an infinite-order moving average process 

𝑀𝐴(∞) where 𝜉𝑖 = 𝜃𝜉𝑖−1 + 𝜓𝑖 = 𝜃(𝜃𝜉𝑖−2 + 𝜓𝑖−1) + 𝜓𝑖 = 𝜃(𝜃[𝜃𝜉𝑖−3 + 𝜓𝑖−2] + 𝜓𝑖−1) + 𝜓𝑖 = ⋯ = 𝜃
𝑖𝜉0 +

∑ 𝜃𝑗𝑖−1
𝑗=0 𝜓𝑖−𝑗 → ∑ 𝜃𝑖∞

𝑗=0 𝜓𝑖−𝑗 as 𝑖 → ∞ if |𝜃| < 1 and 𝜉0 is finite. By expressing the AR(1) series in this way we have 

𝑉𝑎𝑟(𝜉𝑖) = ∑ 𝜃2𝑖∞
𝑗=0  𝜁2 which from an infinite geometric series ∑ 𝑎𝑟𝑘 =

𝑎

1−𝑟
∞
𝑗=0  for |𝑟| < 1 and for series containing 

only even powers of 𝑟, ∑ 𝑎𝑟2𝑘 =
𝑎

1−𝑟2
∞
𝑗=0 . Thus 𝑉𝑎𝑟(𝜉𝑖) = ∑ 𝜃2𝑖∞

𝑗=0 𝜁2 =
𝜁2

1−𝜃2
, |𝜃| < 1. 

If we set 𝜎2 =
𝜁2

1−𝜃2
, then the linear regression model with AR(1) errors 𝒚 = 𝑿𝜷 + 𝝃 is distributed as 𝑁𝑛(𝑿𝜷,𝑹𝜎

2), 

where 𝑹 is a 𝑛 × 𝑛 correlation matrix with entry 𝑖, 𝑗 = 𝜃|𝑗−𝑖|.  

Given data we believe may be reasonably modelled with an AR(1) process, we can use the arima function in R. Using 

a frequentist approach, the function will estimate the intercept, slope, 𝜃 and 𝜁2 and produce standard errors which can 

be used to generate confidence intervals around the point estimates. From a Bayesian perspective we must place prior 

distributions around each of the parameters (𝛽0, 𝛽1, 𝜁, 𝜃), and then when we combine with our data and use the 

appropriate commands in brms (see Appendix 2J), we will then obtain posterior distributions for each of the 

parameters.  
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Appendix 2:  Example problems with R code 

 

# load R packages 
library(ggplot2) 

library(invgamma) 

library(cowplot) 

 

# Appendix 2A 
# Worked Example 1: Section 2.1 Single data point with conjugate prior and known measurement error 
 

# Write function for Bayesian updating, which takes as argument:  
# single data point, 
# sigma = known measurement error standard deviation 
# mean = prior mean for mu  
# variance= prior variance for mu 
 
# Function returns posterior distribution for mu which is normally distributed 
# with mean and sd. 
 
Singlenormalf = function(datapoint,sigma,mean,variance){ 

  vstar = 1/((1/variance)+(1/(sigma^2))) 

  mstar = vstar*((mean/variance)+(datapoint/(sigma^2))) 

  Out = c(round(mstar,1),round(sqrt(vstar),1)) 

  names(Out)=c("Posterior Mean","Posterior Sd") 

  return(Out)} 

 

# Complete the examples in text 
# Example 1: Data point = 17.5, known sd = 3, prior mean = 20, prior variance = 16 
 
Singlenormalf(17.5,3,20,16) 

 

# Posterior Mean   Posterior Sd  
#        18.4                    2.4 
 

# Example 2: Data point = 17.5, known sd = 5, prior mean = 20, prior variance = 64 
 
Singlenormalf(17.5,3,20,64) 

 

# Posterior Mean   Posterior Sd  
#        17.8                   2.8 
 

# Probabilities: Calculate probability that with the first prior distribution,  
# mu is less than 25%, and that mu is between 20 and 25% 
 
round(pnorm(25,18.4,2.4),3) 

 

# 0.997 
 
round(pnorm(25,18.4,2.4)-pnorm(20,18.4,2.4),3) 

 

# 0.250 
 

# Draw Figure 1 which illustrates the different posterior distributions 
 
ggplot(data.frame(x = c(10, 30)), aes(x = x)) + 

  stat_function(fun = dnorm, args = list(18.4, 2.4),colour="blue") + 

  stat_function(fun = dnorm, args = list(17.8, 2.8),colour="red")+theme_classic() +  

  labs(x="Body fat(%)",y="Density")+ 

  geom_segment(aes(x = 18.4, y = 0, xend = 18.4, yend = 0.163), colour = 

"blue",linetype="dashed")+ 

  geom_segment(aes(x = 17.8, y = 0, xend = 17.8, yend = 0.142), colour = 

"red",linetype="dashed")+ 

  annotate(geom="text", x=22.4, y=0.16,color="blue",  
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           label=expression(paste(pi*"(",mu*"|x,",sigma*")=N(18.4,",2.4^2,")")))+ 

  annotate(geom="text", x=13, y=0.125, color="red",  

           label=expression(paste(pi*"(",mu*"|x,",sigma*")=N(17.8,",2.8^2,")"))) 

 

# Appendix 2B 
# Worked Example 2: Section 2.2 Mean of multiple data points with conjugate prior and known measurement error 
# Create similar function as to that previously, except now we input a vector of data 
 
Multiplenormalf = function(data,sigma,mean,variance){ 

  n = length(data) 

  xbar = mean(data) 

  vstar = 1/((1/variance)+(1/((sigma^2)/n))) 

  mstar = vstar*((mean/variance)+(xbar/((sigma^2)/n))) 

  Out = c(round(mstar,1),round(sqrt(vstar),1)) 

  names(Out)=c("Posterior Mean","Posterior Sd") 

  return(Out)} 

 

 

# five values with mean of 17.5, sigma = 3, and prior distribution N(20,4^2) 
 
Multiplenormalf(c(17.5,18.5,19.5,16.5,15.5),3,20,16) 

 

# Posterior Mean   Posterior Sd  
#        17.8                     1.3 
 
# Draw figure 2, where posterior distribution is calculated with mean of  
# 1, 3, 5, and 10 data points.  
 
Mean1 = Multiplenormalf(17.5,3,20,16) 

Mean3 = Multiplenormalf(rep(17.5,3),3,20,16) 

Mean5 = Multiplenormalf(rep(17.5,5),3,20,16) 

Mean10 = Multiplenormalf(rep(17.5,10),3,20,16) 

 

ggplot(data.frame(x = c(10, 30)), aes(x = x)) + 

  stat_function(fun = dnorm, args = list(Mean1[1], Mean1[2]),colour="blue") + 

  stat_function(fun = dnorm, args = list(Mean3[1], Mean3[2]),colour="red") + 

  stat_function(fun = dnorm, args = list(Mean5[1], Mean5[2]),colour="green") + 

  stat_function(fun = dnorm, args = list(Mean10[1], Mean10[2]),colour="black") + 

  labs(x="Body fat(%)",y="Density")+ theme_classic()+ 

  geom_segment(aes(x = Mean1[1], y = 0, xend = Mean1[1], yend = 0.168), colour = 

"blue",linetype="dashed")+ 

  geom_segment(aes(x = Mean3[1], y = 0, xend = Mean3[1], yend = 0.25), colour = 

"red",linetype="dashed")+ 

  geom_segment(aes(x = Mean5[1], y = 0, xend = Mean5[1], yend = 0.305), colour = 

"green",linetype="dashed")+ 

  geom_segment(aes(x = Mean10[1], y = 0, xend = Mean10[1], yend = 0.44), colour = 

"black",linetype="dashed")+ 

  annotate(geom="text", x=25, y=0.075,color="blue",  

           label=expression(paste(pi*"(",mu*"|x,",sigma*")=N(18.4,",2.4^2,")")))+ 

  annotate(geom="text", x=22, y=0.22,color="red",   

           label=expression(paste(pi*"(",mu*"|x,",sigma*")=N(17.9,",1.6^2,")")))+ 

  annotate(geom="text", x=21.5, y=0.29,color="green",  

           label=expression(paste(pi*"(",mu*"|x,",sigma*")=N(17.8,",1.3^2,")")))+ 

  annotate(geom="text", x=21, y=0.42,color="black",  

           label=expression(paste(pi*"(",mu*"|x,",sigma*")=N(17.6,",0.9^2,")"))) 

 

qnorm(0.75,20,4) 

 

# Appendix 2C 
 
# Here we calculate the pooled mean and standard deviation from a hypothetical data  
# set comprising different sample sizes.  
# The sample sizes are  
 
SampleN = c(7,12,20,40,75) 
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# The sample means are 
 
SampleMeans = c(22.4, 26.9, 20.8, 23.5, 22.9) 

 

# The sample standard deviations are  
 
SampleSds = c(3.4, 4.1, 3.6, 2.9,3.0) 

 

# Function to calculate pooled mean, variance, sd 
 
PooledMVarf = function(N,means,sds){ 

  w = length(means) 

  PooledM = sum(N*means)/sum(N) 

  PooledVar = sum((N-1)*sds^2)/(sum(N)-w) 

  PooledSd = sqrt(PooledVar) 

  Out = c(round(PooledM,1),round(PooledVar,1),round(PooledSd,1)) 

  names(Out)=c("Pooled Mean","Pooled Variance","Pooled Sd") 

  return(Out)} 

 

PooledMVarf(SampleN,SampleMeans,SampleSds) 

 

# Pooled Mean     Pooled Variance       Pooled Sd  
#       23.1                    10.0                         3.2  
 

# Appendix 2D 
# Here we develop a normal inverse gamma prior distribution for mu and sigma^2 
 
# We start be identifying that we believe sigma is likely to lie between 2 and 6, 
# with median at 3. This equates to variances of 4, 9, and 36 respectively.  
# So we want to fit an inverse gamma distribution where the 0.25-, 0.5-, and 0.75-quantiles 
# are 4, 9 and 36.  
 
# As a relatively simple means of identifying parameter values which create this distribution  
# we create a grid and fit sum of squares to find the lowest values.  
 
# Create grid  
 
IGGrid = expand.grid(seq(0.2,3,0.1),seq(1,20,0.1)) 

 

IGGridSS = c(NULL) 

for(i in 1:length(IGGrid[,1])){ 

  IGGridSS[i] = sqrt((pinvgamma(4,shape=IGGrid[i,1],rate=IGGrid[i,2])-0.25)^2 + 

                       (pinvgamma(9,shape=IGGrid[i,1],rate=IGGrid[i,2])-0.5)^2 + 

                       (pinvgamma(36,shape=IGGrid[i,1],rate=IGGrid[i,2])-0.75)^2) 

} 

 

# Find minimum 
 
IGGridSSMin = IGGrid[order(IGGridSS)[1],] 

IGGridSSMin  

 

# a = 0.6  b= 3.1 
 
# Check actual quantiles 
 
pinvgamma(4,shape=IGGridSSMin[[1]],rate=IGGridSSMin[[2]]) 

pinvgamma(9,shape=IGGridSSMin[[1]],rate=IGGridSSMin[[2]]) 

pinvgamma(36,shape=IGGridSSMin[[1]],rate=IGGridSSMin[[2]]) 

 

 

# Plot curve for variance 
 
set.seed(123) 

GammaVardf=data.frame(x=rinvgamma(10000,shape=IGGridSSMin[[1]],rate=IGGridSSMin[[2]])

) 
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ggplot(GammaVardf, aes(x=x)) +  geom_density(adjust=1.5) +  

  scale_x_continuous(limits=c(0,100),breaks=seq(0,100,25))+ theme_classic() 

 

# Plot curve for sd 
 
set.seed(123) 

SdDist=data.frame(x=sqrt(rinvgamma(10000,shape=IGGridSSMin[[1]],rate=IGGridSSMin[[2]]

))) 

 

ggplot(SdDist, aes(x=x)) +  geom_density(adjust=2) +  

  scale_x_continuous(limits=c(0,20),breaks=seq(0,20,5))+ theme_classic() 

 

quantile(SdDist$x,seq(0.1,0.9,0.1)) 

 

# Now that we are happy with the distribution for sigma, we want to select a typical value 
# to scale k. We investigate the quantiles  
 
quantile(GammaVardf$x,seq(0.4,0.6,0.01)) 

 

# We select median value of 10, and set 10/k = 16, hence k =  
 
10/16 

 

# 0.625 
 

# We compare our marginal prior for mu using the NIG, with our original normal prior distribution N(20,4^2) 
# First we sample from the marginal 
 
set.seed(123) 

NIGMu = rnorm(10000,20,sqrt(GammaVardf$x/0.625)) 

NormalNIGDF = data.frame(Mu=c(NIGMu,rnorm(10000,20,4)), 

                         Distribution=c(rep("NIG",10000),rep("Normal",10000))) 

 

NIGPrior = ggplot(NormalNIGDF, aes(x=Mu,color=Distribution)) +  geom_density(adjust=3) 

+  

  scale_x_continuous(limits=c(0,60),breaks=seq(0,60,5))+  

  labs(x="Mean body fat(%)",y="Density")+ theme_classic() 

NIGPrior 

 

# We can see a large amount of overlap but heavier tails with NIG compared to Normal 
 
# Appendix 2E 
# Given the NIG prior and data we update for NIG posterior 
# First we write our update function 
 
# NIG Update 
 
NIGUpdate = function(a,b,m,k,data){ 

  n = length(data) 

  xbar = mean(data) 

  aupdate = a + (n/2) 

  bupdate = b + 0.5*(sum((data-xbar)^2) + ((k*n*(xbar-m)*(xbar-m))/(k+n))) 

  mupdate = (k*m + n*xbar)/(k+n) 

  kupdate = k + n 

  Out = c(aupdate,bupdate,mupdate,kupdate) 

  names(Out)=c("a*","b*","m*","k*") 

  return(Out)} 

 

 

NIGU = NIGUpdate(a=0.6,b=3.1,m=20,k=0.625,data=17.5) 

round(NIGU,2) 

 

#   a*        b*        m*        k*  
# 1.10     4.30     18.46     1.62 
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# We compare our marginal posterior for mu, with our original normal posterior distribution N(18.4,2.4^2) 
# First we sample from the marginal 
 
set.seed(10000) 

GammaVarpost = rinvgamma(10000,shape=NIGU[[1]],rate=NIGU[[2]]) 

NIGPostMu = rnorm(10000,NIGU[[3]],sqrt(GammaVarpost/NIGU[[4]])) 

NormalNIGPostDF = data.frame(Mu=c(NIGPostMu,rnorm(10000,18.4,2.4)), 

                             Distribution=c(rep("NIG",10000),rep("Normal",10000))) 

 

NIGPosterior =ggplot(NormalNIGPostDF, aes(x=Mu,color=Distribution)) +  

geom_density(adjust=3) +  

  scale_x_continuous(limits=c(0,40),breaks=seq(0,40,5))+  

  labs(x="Mean body fat(%)",y="Density")+ theme_classic() 

 

NIGPosterior 

 

# Combine prior and posterior comparison plots  
 

plot_grid(NIGPrior+theme(legend.position = "none"), NIGPosterior, labels = c('A', 

'B')) 

 

# Appendix 2F 
# Here we show that the marginal for mu with a NIG prior is a t-distribution  
# with parameters mean = m*, df = 2a*, scale = sqrt(b*/(a*k*)) 
# We compare with the data above (NIGPostMu) 
 
# First an intro to the generalised t-distribution which has a mean (mu), degrees of freedom (df) 
# and scale parameter (sigma_hat) such that sd = sigma_hat*sqrt(df/df-2) 
 
# demonstrate the above 
 
set.seed(123) 

t3 = rt(100000,3) 

round(mean(t3),1) 

round(sd(t3),1) 

round(sqrt(3/(3-2)),1) 

 

# Shift t distribution by 100 and multiply by sigma_hat = 10 
 
t3.100.10 = 100+ 10*t3 

round(mean(t3.100.10),1) 

round(sd(t3.100.10),1) 

round(10*sqrt(3/(3-2)),1) 

 

# Show this is the same from brms t-distribution sampler 
 
library(brms) 

set.seed(123) 

t3.100.10.sim = rstudent_t(100000, df=3, mu = 100, sigma = 10) 

round(mean(t3.100.10.sim),1) 

round(sd(t3.100.10.sim),1) 

 

# Calculate the marginal t-distribution given updated NIG parameters 
 
Marginalt= function(a,b,m,k,data){ 

  Posterior = NIGUpdate(a,b,m,k,data) 

  mean = Posterior[[3]] 

  df = 2*Posterior[[1]] 

  scale = sqrt(Posterior[[2]]/ 

                 (Posterior[[1]]*Posterior[[4]])) 

  Out = c(mean,df,scale) 

  names(Out)=c("Mean","df","Scale") 

  return(Out)} 

 

TMarginat = Marginalt(a=0.6,b=3.1,m=20,k=0.625,data=17.5) 

https://doi.org/10.31236/osf.io/y7sk6


Doi: 10.51224/SRXIV.261  SportR𝜒iv Preprint version 1 

set.seed(123) 

TMarginatsim = rstudent_t(10000, df=TMarginat[[2]], mu = TMarginat[[1]], sigma = 

TMarginat[[3]]) 

 

 

# compare distributions 
 
NIGPostMarginalTDF = data.frame(Mu=c(NIGPostMu,TMarginatsim), 

                             Distribution=c(rep("NIG",10000),rep("T",10000))) 

 

ggplot(NIGPostMarginalTDF, aes(x=Mu,color=Distribution)) +  geom_density(adjust=3) +  

  scale_x_continuous(limits=c(0,40),breaks=seq(0,40,5))+  

  labs(x="Mean body fat(%)",y="Density")+ theme_classic() 

 

 

# Appendix 2G 
# Here we use brms to recalculate results from section 2.  
# Single data point known measurement error 
# Create data frame 
 
Data = data.frame(y=17.5) 

 

# create normal prior for mu and set sigma to known 3% 
 
Prior1 = c( 

  prior(normal(20,4), class = Intercept), 

  prior(constant(3),  class = sigma)) 

 

# Run model 
 
set.seed(123) 

Model1 = brm(y~1, data = Data, prior = Prior1, family = gaussian, 

             chains = 4, iter = 5000, warmup = 2500) 

# Plot results 
plot(Model1) 

 

# Load library to obtain draws from posterior distribution 
 
library(posterior) 

 

# obtain posterior sample  
 
Posterior1 = as_draws_df(Model1) 

Posterior1Mu = Posterior1$b_Intercept 

 

# calculate mean of mu 
 
round(mean(Posterior1Mu),1) 

 

# 18.4 
# calculate sd of mu 
 
round(sd(Posterior1Mu),1) 

 

# 2.4 
# calculate probability mu is less than 25 
 
round(mean(Posterior1Mu<25),3) 

 

# 0.996 
# calculate probability mu is between 20 and 25 
 
round(mean(Posterior1Mu>20&Posterior1Mu<25),3) 

 

# Next example with multiple data points and known measurement error 
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Data2 = data.frame(y=rep(17.5,5)) 

 

set.seed(111) 

Model2 = brm(y~1, data = Data2, prior = Prior1, family = gaussian, 

             chains = 4, iter = 5000, warmup = 2500) 

 

Posterior2 = as_draws_df(Model2) 

Posterior2Mu = Posterior2$b_Intercept 

round(mean(Posterior2Mu),1) 

 

# 17.7 
 
round(sd(Posterior2Mu),1) 

 

# 1.3 
 

# Next example with multiple data points and uniform prior for sigma 
# First we load HDInterval to calculate credible intervals 
 
library(HDInterval) 

set.seed(123) 

Data3 = data.frame(y=rnorm(5,19,3)) 

 

Prior2 = c( 

  prior(normal(20,4), class = Intercept), 

  prior(uniform(2,6),lb=2,ub=6, class = sigma)) 

 

Model3 = brm(y~1, data = Data3, prior = Prior2, family = gaussian, 

             chains = 4, iter = 5000, warmup = 2500) 

 

Posterior3 = as_draws_df(Model3) 

Posterior3Mu = Posterior3$b_Intercept 

Posterior3sigma = Posterior3$sigma 

hdi(Posterior3Mu,credMass = 0.75) 

 

#    lower    upper  
# 18.00440 21.10619  
 
hdi(Posterior3sigma,credMass = 0.75) 

#lower      upper  
# 2.000478  3.947395  
 

# Appendix 2H  
# Here we give multiple examples with different prior elicitations and different data generating mechanisms  
# (e.g. errors distributed according to Gaussian or t-distributions).  
# First we start with the gamma prior for measurement error standard deviation. 
# Software exists to elicit this parameter and can be  downloaded from  
#https://www.open.ac.uk/stem/mathematics-and-statistics/research/research-groups/statistics/bayesian-statistics/elicitation-
prior-distributions 
# Here we start with a simple example where we believe the 1st, 2nd and 3rd quartiles are 1.5, 3, 6 
# We find suitable parameters with a grid search with a = 1 to 6; b = 0.1 to  5 
# We use the pgamma function and calculate sum of squares 
 
# Create grid  
 

IGGrid2 = expand.grid(seq(1,6,0.1),seq(0.1,5,0.1)) 

 

IGGrid2SS = c(NULL) 

for(i in 1:length(IGGrid2[,1])){ 

  IGGrid2SS[i] = sqrt((pgamma(1.5,shape=IGGrid[i,1],rate=IGGrid[i,2])-0.25)^2 + 

                       (pgamma(3,shape=IGGrid[i,1],rate=IGGrid[i,2])-0.5)^2 + 

                       (pgamma(6,shape=IGGrid[i,1],rate=IGGrid[i,2])-0.75)^2) 

} 
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# Find minimum 
 
IGGrid2SSMin = IGGrid2[order(IGGrid2SS)[1],] 

IGGrid2SSMin 

 

# a = 1.3, b = 0.3 
 
# Now we actually check the quantile values with the parameters and  
# they should be close to 0.25, 0.5 and 0.75.  
 
pgamma(1.5,shape=IGGrid2SSMin[[1]],rate=IGGrid2SSMin[[2]]) 

pgamma(3,shape=IGGrid2SSMin[[1]],rate=IGGrid2SSMin[[2]]) 

pgamma(6,shape=IGGrid2SSMin[[1]],rate=IGGrid2SSMin[[2]]) 

 

# We can see that the parameter values give us the desired quartiles.  
# We can then graph the distribution and check further quantiles for feedback 
 

set.seed(123) 

GammaSDdf=data.frame(x=rgamma(10000,shape=IGGrid2SSMin[[1]],rate=IGGrid2SSMin[[2]])) 

ggplot(GammaSDdf, aes(x=x)) +  geom_density(adjust=1.5) +  

  scale_x_continuous(limits=c(0,20),breaks=seq(0,20,2))+ theme_classic() 

 

# Checking toward the ends of the distribution 
 
qgamma(0.1,shape=IGGrid2SSMin[[1]],rate=IGGrid2SSMin[[2]]) 

qgamma(0.9,shape=IGGrid2SSMin[[1]],rate=IGGrid2SSMin[[2]]) 

 

# Based on this feedback, say we want to pull the upper end in slightly then we  
# can refit the distribution but set the value of 6% sd to 0.85 and not 0.75 
# refit 
 
IGGrid2 = expand.grid(seq(1,6,0.1),seq(0.1,5,0.1)) 

 

IGGrid2aSS = c(NULL) 

for(i in 1:length(IGGrid2[,1])){ 

  IGGrid2aSS[i] = sqrt((pgamma(1.5,shape=IGGrid[i,1],rate=IGGrid[i,2])-0.25)^2 + 

                        (pgamma(3,shape=IGGrid[i,1],rate=IGGrid[i,2])-0.5)^2 + 

                        (pgamma(6,shape=IGGrid[i,1],rate=IGGrid[i,2])-0.85)^2) 

} 

 

 

 

# Find minimum 
IGGrid2aSSMin = IGGrid2[order(IGGrid2aSS)[1],] 

IGGrid2aSSMin 

 
# a = 1.8, b = 0.5 
 
# Now we actually check the quantile values with the parameters and  
# they should be close to 0.25, 0.5 and 0.85.  
 
pgamma(1.5,shape=IGGrid2aSSMin[[1]],rate=IGGrid2aSSMin[[2]]) 

pgamma(3,shape=IGGrid2aSSMin[[1]],rate=IGGrid2aSSMin[[2]]) 

pgamma(6,shape=IGGrid2aSSMin[[1]],rate=IGGrid2aSSMin[[2]]) 

 

# We can see that the parameter values give us the desired quantiles.  
# We can then graph the distribution and check further quantiles for feedback 
 

set.seed(123) 

GammaSDadf=data.frame(x=rgamma(10000,shape=IGGrid2aSSMin[[1]],rate=IGGrid2aSSMin[[2]]

)) 

ggplot(GammaSDadf, aes(x=x)) +  geom_density(adjust=1.5) +  

  scale_x_continuous(limits=c(0,20),breaks=seq(0,20,2))+ theme_classic() 
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# Checking toward the ends of the distribution 
 
qgamma(0.1,shape=IGGrid2aSSMin[[1]],rate=IGGrid2aSSMin[[2]]) 

qgamma(0.9,shape=IGGrid2aSSMin[[1]],rate=IGGrid2aSSMin[[2]]) 

 

# We now use this distribution and combine with repeated data to obtain inferences 
# for both true score and measurement error standard deviation 
 

set.seed(123) 

Data4 = data.frame(y=rnorm(5,19,3)) 

 

Prior3 = c( 

  prior(normal(20,4), class = Intercept), 

  prior(gamma(1.8,0.5),class = sigma)) 

 

Model4 = brm(y~1, data = Data4, prior = Prior3, family = gaussian, 

             chains = 4, iter = 5000, warmup = 2500) 

 

Posterior4 = as_draws_df(Model4) 

Posterior4Mu = Posterior4$b_Intercept 

hdi(Posterior4Mu,credMass = 0.75) 

 

#    lower    upper  
#     18.31   20.97  
 

Posterior4sigma = Posterior4$sigma 

hdi(Posterior4sigma,credMass = 0.75) 

 

#    lower    upper  
#    1.62     3.64 
 

# As a second example we now look at observational data where we obtain some large errors 
 
set.seed(123) 

Data5 = data.frame(y=c(16.5,17.5,17.5,18.5,29,30)) 

Model5 = brm(y~1, data = Data5, prior = Prior2, family = gaussian, 

             chains = 4, iter = 5000, warmup = 2500) 

 

Posterior5 = as_draws_df(Model5) 

Posterior5Mu = Posterior5$b_Intercept 

hdi(Posterior5Mu,credMass = 0.75) 

 

#    lower    upper  
#     19.1   23.1 
 

# Because of these large errors, we want to update our data generating mechanism from 

# a normal distribution to a t-distribution. This is achieved by changing the family 

# from gaussian to student. We also have to update our prior distributions. 

# However, first we use the default weakly informative priors for the degrees of 

freedom and scale.  

 

Prior4 = c( 

  prior(normal(20,4), class = Intercept), 

  prior(gamma(2,0.1),class = nu), 

  prior(student_t(3, 0, 3.1),class = sigma)) 

set.seed(123) 

Model6 = brm(y~1, data = Data5, prior = Prior4, family = student, 

             chains = 4, iter = 5000, warmup = 2500) 

           

Posterior6 = as_draws_df(Model6) 

Posterior6Mu = Posterior6$b_Intercept 

hdi(Posterior6Mu,credMass = 0.75) 

 

#    lower    upper  
#     18.1   23.1 
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Posterior6sigma = Posterior6$sigma 

hdi(Posterior6sigma,credMass = 0.75) 

 

#    lower    upper  
#    3.5     7.2 
 

Posterior6df = Posterior6$nu 

hdi(Posterior6df,credMass = 0.75) 

 

#    lower  upper  
#    1.7    27.4 
 

# Finally we include an informative prior distribution for sigma, the scale parameter 
 
Prior5 = c( 

  prior(normal(20,4), class = Intercept), 

  prior(gamma(2,0.1),class = nu), 

  prior(gamma(1.8,0.5),class = sigma)) 

set.seed(123) 

Model7 = brm(y~1, data = Data5, prior = Prior5, family = student, 

             chains = 4, iter = 5000, warmup = 2500) 

 

Posterior7 = as_draws_df(Model7) 

Posterior7Mu = Posterior7$b_Intercept 

hdi(Posterior7Mu,credMass = 0.75) 

 

#    lower    upper  
#     18.4   23.3 
 

Posterior7sigma = Posterior7$sigma 

hdi(Posterior7sigma,credMass = 0.75) 

 

#    lower    upper  
#    3.7     7.2 
 

Posterior7df = Posterior7$nu 

hdi(Posterior7df,credMass = 0.75) 

 

#    lower  upper  
#    1.1    26.7 
 

# Appendix 2I 
# Here we give multiple examples to model true change scores. 
# Simple Bayesian approach to quantifying uncertainty in change scores 
 
# observed change score of -3.5% 
 
Data7 = data.frame(y=-3.5) 

 
# Informative priors that on average participants reduce body fat percentage by  
#1.5% and the standard deviation of the change score is 3% 
# Also we believe that the measurement error standard deviation is somewhere between  
# 2 and 6, such that the change score standard deviation is between sqrt(2)*2 and sqrt(2)*6 
 
Prior6 = c( 

  prior(normal(-1.5,3), class = Intercept), 

  prior(uniform(sqrt(2)*2, sqrt(2)*6),lb= sqrt(2)*2,ub= sqrt(2)*6,  

        class = sigma)) 

set.seed(123)  

Model8 = brm(y~1, data = Data7, prior = Prior6, family = gaussian, 

             chains = 4, iter = 5000, warmup = 2500) 

 

Posterior8 = as_draws_df(Model8) 

Posterior8Mu = Posterior8$b_Intercept 
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hdi(Posterior8Mu,credMass = 0.75) 

 

#      lower      upper  
# -5.0695250  0.7481412  
 
mean(Posterior8Mu<=-0.5) 

 

# 0.7334 
 

# We now perform the above analysis but with more data and adjusting the informative prior  
# on the change standard deviation 
 
Data8 =data.frame(y=mean(c(15.2,17.1,16.4,18.0))-mean(c(20.2, 21.4, 18.2, 20.9))) 

 

Prior7 = c( 

  prior(normal(-1.5,3), class = Intercept), 

  prior(uniform(sqrt(2)*2/2, sqrt(2)*6/2),lb= sqrt(2)*2/2,ub= sqrt(2)*6/2,  

        class = sigma)) 

set.seed(123)  

Model9 = brm(y~1, data = Data8, prior = Prior7, family = gaussian, 

             chains = 4, iter = 5000, warmup = 2500) 

 

Posterior9 = as_draws_df(Model9) 

Posterior9Mu = Posterior9$b_Intercept 

hdi(Posterior9Mu,credMass = 0.75) 

 

#      lower      upper  
# -5.0281567 -0.4545785  
 
mean(Posterior9Mu<=-0.5) 

 

# 0.8548 
 

# Appendix 2J 
# Autoregressive Modelling  
 

# We assume that a single measurement is made each day for 12 weeks and we model errors from   
# AR(1) with autocorrelation of 0.3 and sd equal to 3.5 
# Note that this causes an overall variation of  
 
sqrt(3.5^2/(1-0.3^2)) 

 

# 3.668997 
 
# Build AR(1) 
 
set.seed(112) 

UBF0.3 = WBF0.3 =rnorm(85,0,3.5) 

for(i in 2:85){ 

  UBF0.3[i] = 0.3*UBF0.3[i-1] + WBF0.3[i]} 

sd(UBF0.3) 

 

# Add linear regression to AR(1) Errors 
# We assume that the individual starts with a BF of 19% and over the  
# course of the 12 weeks looses 1%. 
 
BFPercent0.3 = c(NULL) 

 

for(i in 1:85){ 

  BFPercent0.3[i]=19 - ((i-1)*(1/84)) + UBF0.3[i] 

} 

 

# Plot data 
 
BFPercentDF = data.frame(Obs0.3 = BFPercent0.3, 
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                         Week = seq(0,12,1/7), 

                         True = seq(19,18,-(1/84))) 

 

ggplot(BFPercentDF, aes(x=Week,Obs0.3)) +  

  geom_point() + theme_classic() +  

  geom_abline(intercept = 19, slope = -1/12,color="red")+ 

  scale_x_continuous(limit = c(0,12), breaks = seq(0,12,1))+ 

  scale_y_continuous(limit = c(5,35),breaks = seq(5,35,5))+ 

  theme_classic()+ xlab("Week") + ylab("Body fat (%)")  

 

# First we analyse the data using a frequentist approach and the arima function in R for AR(1) models 
 

arima(BFPercentDF$Obs0.3, xreg=seq(0,12,1/7), order=c(1,0,0)) 

# Coefficients: 
#         ar1           intercept       seq(0, 12, 1/7) 
#       0.3610        20.2548          -0.1796 
# s.e.  0.1011       1.1076             0.1589 
 
# sigma^2 estimated as 11.2 
 

# Using the point estimate and standard error we calculate a 95% true score change CI  
 
-0.1796*12 

12*(-0.1796-(qnorm(0.975)*0.1589)) 

12*(-0.1796+(qnorm(0.975)*0.1589)) 

 

# We now complete our Bayesian analysis. We believe that the intercept is normally distributed according to  
# N(18.4,2.4^2). We believe that the weekly change can be described by the normal distribution N(-0.125, 0.25^2) 
# We believe that the measurement error standard deviation can be described by gamma(a=3.9, b=1) 
# Finally we believe that the serial correlation parameter lies between 0.2 and 0.5 and use a uniform prior.  
 
 
Prior8 = c( 

  prior(normal(18.4,2.4), class = Intercept), 

  prior(normal(-0.125,0.25), class = "b", coef="Week"), 

  prior(gamma(3.9, 1),class = sigma), 

  prior(uniform(0.2, 0.5),lb= 0.2,ub= 0.5,class="ar")) 

 

set.seed(123)  

Model10 = brm(Obs0.3 ~Week + ar(p = 1),data=BFPercentDF, 

             prior = Prior8, family = gaussian, 

             chains = 4, iter = 5000, warmup = 2500) 

 

plot(Model10) 

Posterior10 = as_draws_df(Model10) 

Posterior10Mu = Posterior10$b_Intercept 

hdi(Posterior10Mu,credMass = 0.75) 

 

#    lower    upper  
#    19.0   21.3 
 
Posterior10Week = Posterior10$b_Week 

hdi(Posterior10Week,credMass = 0.75) 

 

#    lower        upper  
# -0.319         -0.000  
 
Posterior10Total = 12*Posterior10Week 

hdi(Posterior10Total,credMass = 0.75) 

 

#      lower      upper  
#    -3.83      -0.004  
mean(Posterior10Total<=-0.5) 

 

# 0.8018 
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hdi(Posterior10$sigma,credMass = 0.75) 

 

#    lower    upper  
#  3.092     3.703 
 
hdi(Posterior10$`ar[1]`,credMass = 0.75) 

 

#  lower     upper  
# 0.294     0.473  
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