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ABSTRACT 

Quantifying uncertainty in measurements is essential to inform, monitor and evaluate interventions in sport and 

exercise. Many commonly used tests, particularly those that measure maximum performance or fitness exhibit large 

measurement errors creating uncertainty that complicates interpretations and decision making. Uncertainty in 

measurements can be especially problematic where expected changes across an intervention are relatively small. The 

purpose of the present review is to describe statistical approaches to reduce uncertainty in measurements and therein 

improve interpretation and decision making. These approaches include increased data collection and the use of 

relatively simple calculations including means and linear regression to reduce uncertainty. The review provides detailed 

information on the assumptions underlying each approach and the relevant statistical properties. Visuals and worked 

examples including R code are provided to solidify concepts and better enable practitioners and applied researchers 

to adopt the approaches.    
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1. INTRODUCTION 

Practitioners and applied researchers in sport and exercise routinely select and deliver interventions for individuals 

and groups with the intention of improving one or more physical attributes. The suitability of measurements to inform, 

monitor and evaluate interventions is dependent on obtaining plausible estimates of the stable state of the underlying 

attributes. Providing an accurate estimate of a physical attribute is not, however, as simple as taking the numerical 

score observed via a standard test at face value. These so-called “observed scores” generally comprise some 

instrumentation and biological noise, collectively known as measurement error (Swinton et al, 2018). As a result, 

practitioners and applied researchers should consider a range of approaches to appropriately quantify measurement 

error in observed test scores, and where possible, reduce this error and subsequently reflect on the uncertainty when 

selecting, monitoring and evaluating interventions.  

 

Several approaches exist to reduce the magnitude of errors within observed measurements. For example, 

standardisation of set-up, calibration, and robust testing protocols may reduce instrumentation noise. Similarly, 

standardisation of external factors (e.g. time of testing, nutritional intake, and activity performed prior to testing) may 

reduce error due to biological noise (Swinton et al, 2018). These approaches, however, are unlikely to eradicate 

measurement error completely. Whilst there are clear statistical approaches to conceptualise and ultimately estimate 

uncertainty in observed scores (Swinton et al, 2018; Hopkins, 2000; Hopkins, 2004), often in sport and exercise the 

methods used create such large measurement errors that they are of limited practical use. Previously (Swinton et al, 

2018), we described a statistical framework to investigate response to an intervention that focussed on: 1) establishing 

baseline scores and the degree of measurement error around these scores; and 2) establishing whether or not 

meaningful change occurred across an intervention using change scores and confidence intervals (CI’s). The purpose 

of the present review is to describe extensions to this framework, in order to enhance its practical application. 

Throughout the article, we will briefly recap on core concepts previously described, before expanding with methods 

to reduce measurement error. We encourage interested readers to familiarise themselves with the previous review to 

better follow the information described herein (Swinton et al, 2018). The extensions described will be contextualised 

with example scenarios and data. The approaches outlined are pragmatic in nature, employing relatively simple 

statistical models such that most calculations can be incorporated into standard spreadsheets and all can be run in R. 

Throughout the review a number of practical examples with mock data will be followed with R code available in the 

supplementary files.  
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2. ESTABLISHING PLAUSIBLE BASELINE SCORES 

2.1 Classical test theory, observed score assumptions, and measurement error.  

Initial measurements (baseline scores) can establish the necessity and scope of an intervention prior to time and 

monetary investment. Additionally, without accurate initial reference points, meaningful statements regarding the 

occurrence or magnitude of change across an intervention cannot be made. Quantifying measurement error is required 

to appropriately interpret baseline information. Briefly, an individual’s true score (𝑇𝑠) in a test is regarded as their 

current stable level, and is always inaccessible, as measurements incorporate some error (𝜖). Therefore, any 

measurement from a test is referred to as an observed score (𝑂𝑠) and is considered an estimate of the true score, with 

𝑂𝑠 = 𝑇𝑠 + 𝜖. A primary assumption under classical test theory is that if it were possible to conduct a very large number 

of non-interacting tests on the same individual, then the values observed would follow a normal (Gaussian) 

distribution with mean equal to the true score, and standard deviation (𝜎) describing dispersion around the mean. 

This measurement generating process is therefore described by the distribution 𝑂𝑠~𝑁(𝑇𝑠, 𝜎2).  

 

Tests that frequently produce large measurement errors increase the likelihood that observed scores will be inaccurate 

such that conclusions drawn and interventions adopted, may be unnecessary, ineffective or indeed inappropriate. 

Under the framework proposed in Swinton et al, (2018), measurement error is separated into two primary sources 

including instrumentation noise and biological noise. Instrumentation noise is error in observed scores caused solely 

by the set-up, mechanisms, or use of measurement apparatus. Biological noise is error in observed scores created by 

biological processes, including, but not limited to, phenomena such as circadian rhythm, nutritional intake, sleep and 

motivation (Hopkins, 2000). 

 

2.2 Methods of calculating typical error 

Typical error describes the variation in observed scores caused by measurement error when an individual performs 

repeated tests (Hopkins, 2000). Typical error is an estimate of the standard deviation (𝜎) around the true score (𝑇𝑠), 

assuming that observed scores are normally distributed for an individual or sample from a population. We typically 

denote typical error by the notation TÊ, to reinforce that it is an estimate of the standard deviation describing the 

spread of scores centred on the true score. There are three primary methods for obtaining a value for typical error in 

practice: (1) calculating the standard deviation of multiple repeated tests performed by a single individual; (2) using 
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test-retest difference scores from a moderate to large group over time periods where true scores are not expected to 

change; (3) using reliability statistics presented in previous research conducted on a sample from a matching 

population. Each of these methods is briefly summarised in Figure 1, and readers are referred to section 1.1. of 

Swinton et al, (2018) for a more in-depth discussion of the typical error estimate for each method. Regardless of the 

method implemented, each observed score collected at baseline is considered as a draw from a sampling distribution 

with standard deviation approximately equal to the typical error estimate obtained. 

 

Figure 1: Decision diagram for selecting the appropriate typical error estimation (TÊ) method. 
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2.3 Constructing true score confidence intervals  

Once an observed score(s) has been obtained and an appropriate procedure used to calculate typical error of the test, 

a CI can be constructed. CI’s around observed scores quantify uncertainty and provide a plausible range within which 

the true score may lie. Given the approximation of the true score as the mean of a large number of independent tests 

and observed scores following a normal distribution, error in any single measurement is equally likely to be positive 

or negative. As a result, true score CI’s are built by adding and subtracting a multiple of the typical error to each 

observed score (i.e. 𝑂𝑠 ± 𝑀 ∙ 𝑇𝐸̂). The multiple (𝑀) selected is dependent on the width of the CI desired (for 

example, 68% or 95%) and the likely precision of 𝑇𝐸̂. CI’s are a property of a procedure, and when used repeatedly, 

the percentage of intervals that include the true value will match the CI used. Individual CI’s should not be interpreted 

probabilistically, as it is possible the true score may lie substantially outside the bounds calculated.  

 

To highlight the process of constructing true score intervals we now introduce the mock data that will be used 

throughout this review. The data comprise measurements of peak mechanical power measured in Watts collected 

during a vertical jump test. Data are generated for 100 individuals over a pre intervention period of two weeks, and 

across an intervention phase of 12 weeks. The R code and explanations of the data generation process are presented 

in the supplementary files. Figure 2 illustrates the baseline data comprising daily measurement for the two week period, 

with the widths and symmetric nature of boxplots reflecting the assumptions of normally distributed data with 

measurement error consistent across participants.  

 

Figure 2: Illustration of mock baseline power data generated for 100 participants

 

True scores are simulated 

from 𝑵(𝟑𝟎𝟎𝟎, 𝟕𝟓𝟎𝟐), 
with 14 observed scores 
obtained for each 
participant with 
measurement error 

distributed as 𝑵(𝟎, 𝟐𝟎𝟎𝟐). 
Each box-plot illustrates 
the distribution of the 
observed scores from a 
single participant, with 
data ordered based on the 
median value.  
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We can use this baseline data to calculate 𝑇𝐸̂ from either individual participant standard deviations, or from group 

test-retest. Using the standard deviation of the fourteen data points across the different participants, we can see (Figure 

3A) the middle of the distribution is close to the actual measurement error standard deviation (𝜎 = 200 Watts), with 

the sample median [IQR] equal to 193 [166 to 223 Watts]). Even with fourteen data points, however, calculated 𝑇𝐸̂ 

can be limited (range: 109 to 289). Using the single test-retest method, we can see that 𝑇𝐸̂ improves and distributions 

become tighter around the actual measurement error with increasing sample size (Figure 3B). 

 

Figure 3: Visualisations of typical error calculations using standard deviation of individual participant data (A) and 
test-retest data (B). 

 
 

Plot A: Histogram with superimposed normal curve showing sample distribution of typical errors calculated from 
participant standard deviation. Plot B: Boxplot showing sample distribution of typical errors calculated from test-retest 
data from sample sizes ranging from 10 to 100 participants. 

 

For typical error calculated with both individual participant standard deviation and sample test-retest, we see that 

when calculating true score CI’s the proportion that contain the true scores match the corresponding percentage. 

Figure 4A and 4B illustrate this process, but also highlight how wide intervals are when we have appreciable 

measurement error. If we wish to obtain 95% true score CI’s with for example a test-retest 𝑇𝐸̂ from 20 individuals, 

then our intervals using the data generated here (𝜎 = 200 Watts) will typically equal 𝑂𝑠 ± 420 Watts. This value is 

obtained using the multiplier 𝑀=2.1 (see supplementary files). Given some participants in the population have true 

scores ~1500 Watts, we can see that this process may be of limited practical use and therefore approaches to reduce 

uncertainty are warranted.   
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Figure 4: Visualisations of true score confidence intervals calculated using standard deviation of individual participant 
data (A) and test-retest data (B). 

 
 
Circles represent true scores from 100 participants sampled from the population. Intervals represent 95% true score 
confidence intervals. Intervals are centred on observed scores and those that do not include the true score are 
highlighted in red. Note that intervals on test-retest data in plot B are all of same magnitude. 

 

2.4 Framework extension 1 – Mean of multiple measurements to reduce confidence interval widths.  

The first extension we introduce to reduce uncertainty is the simple practice of taking the mean of multiple test scores 

from the same individual. We start by ignoring potential differences in variation of observed scores obtained within 

and between testing sessions (e.g. intra- and inter-day reliability). With the proposed statistical model presented in 

section 2.1, the mean of multiple independent test scores (𝑂̅𝑠) collected from a single individual (𝑂𝑠1
, 𝑂𝑠2

, … , 𝑂𝑠𝑛
) 

have their own normal sampling distribution with mean equal to 𝑇𝑠 and standard deviation equal to 
𝜎

√𝑛
, where 𝑛 is the 

number of measurements made to calculate the mean (details provided in the supplementary files). To construct CI’s 

with the mean observed score from an individual the calculation becomes 𝑂̅ ± 𝑀 ∙
𝑇𝐸̂

√𝑛
, where 𝑀 is the same multiple 

determined previously for the desired CI width and expected accuracy of TÊ.  If for example, a test is repeated four 

times and the mean calculated, then the CI width will be halved (
𝑇𝐸̂

√4
=

𝑇𝐸̂

2
). In figure 5 we can see the substantive 

decrease in 95% true score CI’s with the mock data as the number of measurements increases.   
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It is often easier to make repeated measurements within a testing session compared with repeating the entire testing 

procedures across different days. This distinction, however, is important given variation in observed scores will 

generally be greater across testing sessions compared to within a session. A simple model to capture this difference is 

the hierarchical model 𝑂𝑠𝑖𝑗
= 𝑇𝑠 + 𝑏𝑖 + 𝜖𝑖𝑗 , where 𝑖 refers to the day of the measurement, 𝑗 is the specific 

measurement on day 𝑖, 𝑏𝑖 is the random effect offset for day 𝑖, and 𝜖𝑖𝑗 is the random within-day measurement error 

that is independent of 𝑏𝑖. This hierarchical model assumes that on a given day, observed scores will systematically 

deviate from the true score by an amount (random offset 𝑏𝑖) that can be described by a normal distribution with mean 

0, and standard deviation 𝜎𝑏 . If repeated measurements are made on this day, they will then be distributed around the 

mean 𝑇𝑠 + 𝑏𝑖, which can be modelled by a normal distribution with standard deviation 𝜎𝜖 . As stated above, we expect 

𝜎𝑏 > 𝜎𝜖 . Using this model, the total measurement error is 𝜎 = √𝜎𝑏
2 + 𝜎𝜖

2, and we can show that taking the mean of 

single measurements across 𝑛 days is distinct from taking the mean of 𝑚 measurements within a single day (or 𝑚 

measurements within each 𝑛 days). For a single measurement across 𝑛 days the typical error is equal to √
𝜎𝑏

2+𝜎𝜖
2

𝑛
 (see 

supplementary files). A lower reduction in the typical error equal to √𝜎𝑏
2 +

𝜎𝜖
2

𝑚
 is obtained for the mean of 

𝑚 measurements within a single day. Finally, the greatest reduction is obtained with taking the mean of 𝑚 

measurements in a single day and then repeating this process across 𝑛 days and taking the overall mean (e.g. grand 

mean), which provides a typical error equal to √
𝜎𝑏

2

𝑛
+

𝜎𝜖
2

𝑛𝑚
 (see supplementary files). In our mock data set we assume 

that 𝜎𝑏= 160 Watts and 𝜎𝜖=120 Watts, such that √𝜎𝑏
2 + 𝜎𝜖

2 = 200 Watts. For simplicity we assume that the 

practitioners knows the inter- and intra-day measurement errors and we consider three scenarios: 1) mean of four 

measurements on a single day; 2) mean of four single measurements across four days; and 3) grand mean of four 

different measurements made on four different days. In scenario 1 the 95% true score CI equals (𝑂𝑠11
+ 𝑂𝑠12

+

𝑂𝑠13
+ 𝑂𝑠14

)/4 ± 1.96 × 171 Watts; in scenario 2 the 95% true score CI equals (𝑂𝑠11
+ 𝑂𝑠21

+ 𝑂𝑠31
+ 𝑂𝑠41

)/4 ±

1.96 × 100 Watts; in scenario 3 the 95% true score CI equals 

(𝑂𝑠11
+ … + 𝑂𝑠14

+ 𝑂𝑠21
+ … + 𝑂𝑠24

+ 𝑂𝑠31
+ … + 𝑂𝑠34

+ 𝑂𝑠41
+ … + 𝑂𝑠44

)/16 ± 1.96 × 85.4 Watts. In the 

above example it is easy to see that if 𝜎𝑏 is substantively greater than on 𝜎𝜖 then there may be minimal improvement 

in the width of true score CI’s when taking multiple measurements in a single day.    
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Figure 5: Visualisation of true score confidence intervals calculated using the mean of different numbers of 
observations assuming a standard model (A) and a hierarchical model differentiating between inter- and intra-day 
reliability (B).  

 
 
Data from 20 randomly selected participants (P1 to P20) are presented and grouped. Circles represent true scores and 
intervals represent 95% true score confidence intervals. Plot A: Intervals are calculated from the mean of 1, 4, 7 and 14 

observations assuming a standard model with 𝑻𝑬 of 200 Watts. Plot B: Intervals are calculated across four scenarios (1: 
single observation; 2: mean of four measurements on a single day; 3: mean of a single measurement on four different 
days; 4: grand mean of four different measurements made on four different days) assuming a hierarchical model with 
inter-day measurement error of 160 Watts and intra-day measurement error of 120 Watts. For each cluster of points 
(participants), the shrinking magnitude of intervals can be observed. Intervals are centred on the mean of the observed 
scores and those that do not include the true score are highlighted in red. 
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3. ESTABLISHING PLAUSIBLE CHANGE SCORES 

 
A key outcome process in sport and exercise is to investigate intervention efficacy, via assessing pre- to post-

intervention change. This requires accounting for uncertainty in observed scores due to measurement error across all 

testing occasions (e.g. pre and post). In sport and exercise, improvements in physical qualities resulting from targeted 

interventions are often small in magnitude and measurement errors relatively large (Mengersen et al, 2016; Maughan 

et al, 2018; Hall and Kahan 2019). Therefore, it is important that uncertainty in observed change scores are accounted 

for to avoid misinterpretations of the data. Similar to methods used for quantifying uncertainty around baseline values, 

CI’s can also be used to express uncertainty in pre-post change scores. In the following sub-sections, we will briefly 

recap methods outlined in Swinton et al. (2018), and then detail how intermediate (within-intervention) testing can be 

used to obtain more precise estimates of change across an intervention. Additionally, we will outline how intermediate 

testing can also be combined with the mean of multiple measurements to further enhance precision of estimates. 

 

3.1 True score change confidence intervals 

Within the examples provided herein we assume that measurement error is consistent across individuals in a group, 

and across the intervention, such that observed score variation is the same for both pre- and post-intervention scores. 

Under these assumptions, observed change scores (𝑂𝑆𝑐ℎ𝑎𝑛𝑔𝑒 = 𝑂𝑆𝑝𝑜𝑠𝑡 − 𝑂𝑆𝑝𝑟𝑒) follow a normal distribution with 

mean equal to the true score change and standard deviation equal to √2σ (which is estimated by √2TÊ). Readers are 

referred to supplementary files for further explanation of this derivation. True score change CI’s are obtained by 

applying an estimate of typical error around the observed pre- to post-score difference, such that the CI is generated 

from  𝑂𝑆change ± (𝑀 × √2TÊ). We can see from this equation that if we want to have the same coverage for true 

score change that we used for baseline true scores (e.g. 95% CI’s), then the intervals will be wider by a factor of √2.  

Within sport and exercise, an improvement just beyond zero for most biological markers or measures of physical 

capacity is practically meaningless. Therefore, it is recommended that a threshold value beyond zero is identified to 

judge whether an intervention is effective (Swinton et al, 2018). Whilst there is debate on how best to generate such a 

threshold (Bernards et al, 2017; Harvey 2019), one common method is the use of a smallest worthwhile change (SWC) 

value. This value is either selected subjectively based on prior experience with a particular group and delivering similar 

interventions, or obtained via more objective methods such as effect size calculations (e.g. Cohen’s D) (Hopkins, 

2004). Readers are directed to several sources for further information regarding SWC values (Copay et al, 2007; Ferreira 
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et al, 2012). Once a threshold is selected, an intervention is considered successful if both tails of the change score CI 

lie beyond the threshold in the desired direction. We recommended previously that a CI calculated with 𝑂𝑆change ±

TÊ was appropriate and provided an approximate 50% true score change CI (Swinton et al, 2018). In many instances 

in sport and exercise, however, change score CI’s (including that recommended) will be so wide, that individuals will  

be required to make improvements substantially beyond the threshold to reliably state an intervention was successful. 

As an example, research has demonstrated that with healthy individuals a strength and power training intervention 

may be expected to improve an individual’s concentric vertical jump power by approximately 100 W (Oliver et al, 

2013; Taylor et al, 2016). Research has also demonstrated, however, that TÊ of mean vertical jump power is expected 

to be in the range of 50-200 W (Cormack et al, 2008; Taylor et al, 2016). Therefore, if a threshold of 100 W was selected 

to judge the intervention as a success, then the observed change score using our previous recommendation would 

have to exceed 150 Watts (using TÊ =50 Watts) or as much as 300 Watts (using TÊ =200 Watts). Furthermore, if we 

selected a 95% true score change CI with TÊ =200 Watts, then we would require an improvement of approximately 

100 + 1.96√2 × 200~650 Watts. This example highlights the need for methods that can reduce change score CI 

widths. 

 

3.2 Framework extension 2 – Intermediate (within-intervention) testing 

The second extension to the existing framework proposes collection of observed test scores at intermediate points 

(such as the mid-point) across an intervention. As will be demonstrated, by including intermediate testing points the 

observed change required to be confident that an intervention has resulted in true score change beyond the threshold 

selected can be reduced. Across many moderate to long-duration interventions in sport and exercise (i.e. 3-6 months), 

it may be reasonable to include for example two to ten intermediate testing occasions. In the following extension that 

we present, we make three key assumptions: 1) true score change across the intervention period is linear; 2) 

measurement error across the intervention remains consistent and is described by the same normal distribution with 

mean 0 and standard deviation 𝜎; and 3) measurement errors at each testing occasion are independent. Later, however, 

we will discuss an approach that does not require the final assumption, which is most relevant when many intermediate 

measurements are made. Each of these modelling assumptions can be appropriate within a single intervention; 

however, the first assumption is perhaps the most challenging given response to many interventions may not be linear 

or follow a simple dose-response profile. To account for violations in each of these assumptions the analysis process 

becomes substantially more complex, and the purpose of this review is to present a set of relatively simple and intuitive 
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methods that can be used and clearly understood by practitioners and applied researchers. Like all statistical analyses, 

simplifications and modelling assumptions are used, and so the user must assess the extent to which the assumptions 

are appropriate within their own interventions and contexts.  

 

3.3 Monte Carlo simulation 

We start by providing a more conceptual overview of the extension. If the assumptions of linearity, and consistent 

and independent errors are accepted, we can conceptualise fitting a regression line through the observed 

measurements to estimate the rate of change and subsequently the absolute change over an interpolated interval. 

Based on the assumptions outlined, each observed measurement follows a distribution based on the rate of change 

and the typical error. With each additional data point there will be less influence of measurement error and 

subsequently more precise estimates of the true underlying rate of change can be made.  

 

The simplest way to conceptualise the extension is to view the process as a Monte Carlo simulation. Monte Carlo 

approaches represent flexible experimental tools that can artificially create and thereby study and estimate sampling 

distributions (Myers, Ahn and Jin 2011). If we consider an individual completing a resistance training intervention to 

improve power with measurements taken each week, we can estimate any change with a regression line of the form: 

Power= 𝑚 × 𝑤𝑒𝑒𝑘 + 𝑐; where 𝑚 is the weekly change in power (the gradient) and 𝑐 is the power at week 0 (the 

intercept). Given our assumptions each measurement comprises the true score and measurement error from a normal 

distribution which can be modelled with mean zero and standard deviation represented with a known standard 

deviation for simplicity. The Monte Carlo approach is executed by simply adding random error values from our 

distribution to each observed point and then fitting a new regression line. By repeating this process again and again 

(each time adding new random draws from the normal distribution), a sample of regression lines will be obtained 

(Figure 6). The smaller the measurement error and the more data points that are included, the more consistent the 

regression lines will be. For each regression line we multiply the gradient by the number of weeks to obtain the 

estimated change score. We then obtain a CI for this change by arranging the estimates in order and selecting for 

example the middle 68% or the middle 95%.  

 

In Figure 6 we illustrate the case where we have an individual with a true baseline value of 3000 Watts, a true change 

score of 30 Watts per week and known measurement error of 200 Watts. The red points in Figure 6 are the values we 

observe at each time point and the regression line they create over the ten weeks. Figure 6 also illustrates ten 

https://doi.org/10.31236/osf.io/y7sk6


Doi:| SportR𝜒iv Preprint version 1 

 

 

simulations around each observed score and the new regression lines they create. If we perform the Monte Carlo 

simulation for 10,000 iterations we that find that close to a 75% CI will exceed 100 Watts which we select as the SWC 

(75% CI: 75 to 628 Watts). In the following section we provide an analytical method that provides the same results as 

the Monte Carlo simulation and can be used to help determine how many intermediate testing points may be required 

to match likely changes, the SWC, and assumed typical errors.  

 
Figure 6: Visualisation of Monte Carlo simulation quantifying uncertainty in true score change using intermediate 
testing.  

 
 
Data from a single participant. Red points represent observed data and all other points represent Monte Carlo 
simulation with normal distribution and TE of 200 Watts around observed. Red line represents linear regression 
estimate of true score change across intervention from observed data. Other lines represent regression lines from 
simulated data. Different slopes of regression lines illustrate uncertainty in estimate using observed data.    
 

3.3 Least squares regression calculations  

Whilst the previous section provides an intuitive approach to uncertainty in regression modelling, a more practical 

and potentially useful approach is obtained analytically using ordinary least squares estimators. First, we  introduce 

notation used for linear regression. The standard linear regression model is generally expressed as 𝒚 = 𝑿𝜷 + 𝝐, where 

𝒚 is the vector of observed scores, 𝑿 is referred to as the design matrix and includes information regarding the time 

points of each measurement, 𝜷 is the regression coefficients which include the origin and slope, and 𝝐 refers to the 

error variable describing the expected spread of values from the regression line. To obtain a straight line the design 
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matrix requires two columns, the first is a series of 1’s to obtain the intercept, and the second is the time points of the 

measurements (e.g. 0, 2, 4, …10 for weeks). The ordinary least squares estimator of 𝜷 is given by 𝜷̂ = (𝑿𝑇𝑿)−1𝑿𝑇𝒚, 

and has sample variance 𝜎2(𝑿𝑇𝑿)−1 (see supplementary files for more details). Therefore, once we have our data 

and typical error estimate, we can estimate the regression slope 𝜷̂1,2 (2nd row of the column vector) and its standard 

error √𝜎2(𝑿𝑇𝑿)2,2
−1  (square root of 2nd row 2nd column of 2x2 matrix). We then calculate a CI by replacing 𝜎2 with 

TÊ and selecting the same multiple as outlined in section 2.3 to obtain a given CI width. As a practical example, we 

use ordinary least squares regression on the data obtained in the previous Monte Carlo simulation and show their 

correspondence (Figure 7). The six observed score values were: 𝒚 = [2874, 3097, 2953, 3499, 3305, 3136]𝑇 and 

we have the design matrix  

𝑿 = [
1 1 1 1 1 1
0 2 4 6 8 10

]
𝑇

. Plugging in 𝜎2 = 200 Watts gives 𝜷̂ = [2967 35.4]𝑇 and  𝜎2(𝑿𝑇𝑿)−1 =

[
20952 2857.1

−2857.1 571.4
]. To obtain an approximate 75% CI we have 10 × (35.4 ± 1.15√571.4) = 79.4 to 629 

Watts, which we can see aligns with the Monte Carlo simulation.  

 

Figure 7: Visualisation of 95% true score change confidence intervals calculated using ordinary least squares regression 
combined with Monte Carlo simulation (A) or direct standard error calculation (Right).  

 
One hundred 95% true score change confidence are created from each set of regressions featuring increasing number 
of data points from top to bottom. Clusters are obtained from data generated with 3, 6, 11, and 21 data  points and 

visualise shrinking magnitudes with increasing data. Calculations are made assuming the 𝑻𝑬 of 200 Watts is known. 
Vertical lines show the true score change across the intervention. Intervals that do not include the true score are 
highlighted in red. Extreme similarity in results highlight equivalence in approaches.  
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3.4 Autoregressive modelling  

In some instances, we may be able to collect data at high frequencies such that multiple measurements are collected 

weekly or multiple times per week. For example, it has become relatively common to perform tests such as the vertical 

jump prior to each training session (Greig et al, 2020). Tests such as the vertical jump are non-fatiguing and can be 

used to collect a range of variables to monitor readiness and fitness attribute including power, rate of force 

development and force production at high velocities (Greig et al, 2020). Similarly, body composition measurements 

including the use of bioelectrical impedance to assess fat and fat-free mass can be completed multiple times each day. 

In these instances, the assumption that measurement errors are independent is less tenable, and capturing associations 

may lead to more robust CI estimates. A relatively simple model that can be used is linear regression 𝒚 = 𝑿𝜷 + 𝝃, 

where errors 𝝃 follow an autoregressive process such that the magnitude and direction are associated with those 

obtained previously. The simplest autoregressive process is the AR(1) model with serial correlation parameter 𝜃 (|𝜃| <

1), which sets correlations among errors equal to 𝜃𝑘, where 𝑘 is the difference in time between the two errors (see 

supplementary files for further details). In more detail, the AR(1) process for errors can be expressed as 𝜉𝑖 = 𝜃𝜉𝑖−1 +

𝜓𝑖, where 𝜓𝑖 is normally distributed with mean 0 and variance 𝜁2. Additionally, it can be shown that the overall 

variance of the AR(1) process 𝑉𝑎𝑟(𝜉𝑖) is equal to 
𝜁2

1−𝜃2. And so, if we set 
𝜁2

1−𝜃2 = 𝜎2 then under the AR(1) model 

with 𝑛 measurements, the observed scores 𝒚 are distributed as 𝑁(𝑿𝜷, 𝑹𝜎2), where 𝑹 is a 𝑛 × 𝑛 correlation matrix 

with entry 𝑖, 𝑗 = 𝜃|𝑗−𝑖|. There are two potential options when using linear regression with an AR(1) model, the user 

can: 1) use specialist software to fit the model directly and estimate all parameters including 𝜃 and 𝜁; or 2) input the 

estimated typical error and assume a value for 𝜃 that is likely to be reasonable. In Figure 8 we illustrate daily power 

measurements from a single participant simulated from an AR(1) model with weekly increase of 30 Watts, 𝜎=200 

Watts, and 𝜃=0.2 and 𝜃=0.8 (e.g. 𝜁2 is set accordingly). As 𝜃 increases, Figure 8 illustrates greater association between 

random errors and subsequent slower ‘walk’ that occurs as observed scores oscillate around true scores. Using the 

arima function in R, the estimated improvement and 95% CI for the two models equal 284 [95% CI: 77 to 490 Watts] 

and 320 [95% CI: -80 to 720 Watts] for 𝜃=0.2 and 𝜃=0.8, respectively. To obtain direct calculations we use ordinary 

least squares estimators as they provide formula-based statistics and avoid generalized least squares estimation that 

gives the best and unbiased estimators but requires an iterative process (Tang and Landes 2020). The ordinary least 

squares estimator for the slope  𝛽̂1 remains unchanged from the standard model (𝜷̂ = (𝑿𝑇𝑿)−1𝑿𝑇𝒚), whereas the 

sample variance changes to 𝜎2(𝑿𝑇𝑿)−1𝑿𝑇𝑹𝑿(𝑿𝑇𝑿)−1 (see supplementary files for further details). Plugging in the 
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known measurement error variance and calculating 𝑹 from the known serial correlation values, we obtain similar 

estimated improvements and 95% CI’s of 273 [95% CI: 80 to 466 Watts] and 263 [95% CI: -166 to 694 Watts] for 

𝜃=0.2 and 𝜃=0.8, respectively. From the example above, we can see that true score change CI’s will generally be lower 

for lower values of 𝜃 when using the AR(1) model.  

 

Figure 8: Visualisation of linear regression modelling increase in power over intervention with autoregressive errors 
and correlations equal to 0.2 (A) and 0.8 (B) 

 
Red regression lines show true scores and the linear improvement across the intervention. Observed scores are 
illustrated by data points. Section in each plot highlighted with dashed line illustrates the autoregression of errors with 

a slower ‘walk’ either side of the regression line when 𝜽=0.8 (B) compared with 𝜽=0.2 (A).  

 

3.3 Combining framework extensions 1 and 2  

In the previous sections we have shown that two different methods including taking the average of multiple 

measurements and completing intermediate testing with regression modelling via Monte Carlo simulations, least 

squares estimators or autoregressive modelling, can substantively reduce uncertainty in measurements, thus allowing 

for better informed decisions regarding intervention selection, monitoring and evaluation. We finish this review, by 

highlighting that further reductions in uncertainty can be made if the two methods are combined. In section 3.3 we 

showed that intermediate testing can still result in relatively wide CI’s if measurement error is large and especially if 

we were to generate large true score change % CI’s such as 95% CI’s. In the example in section 3.3, we would obtain 
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a 95% true score change CI of 10 × (35.4 ± 1.96√571.4) = −115 to 823 Watts if we were to fit a regression with 

one measurement every two weeks (Note this is an improvement on the 95% CI = -200 to 908 Watts that would be 

obtained with only a pre and post measurement). If in addition to the intermediate testing, a practitioner for example 

duplicated the testing sessions across two daily sessions and took the average of four measurements within each 

session (assuming 𝜎𝑏= 160 and 𝜎𝜖=120 Watts), then 𝜎 reduces from 200 Watts to 121 Watts and so our 95% true 

score change CI reduces to 10 × (35.4 ± 1.96√208.6) = 71 to 637 Watts (see supplementary files for full details).  

 

As a final note, the examples above highlight the importance in differentiating between selecting the peak value within 

a test, and the maximum value obtained across a series of tests. The former is often appropriate where the temporal 

nature of a test is pertinent and peak values describe a unique phenomenon that is not captured well with the mean. 

Here a trade-off may occur with improved information on the client, but increased measurement error (e.g. 

measurement error is likely to be larger when measuring peak power during a vertical jump compared to mean power). 

In contrast, the latter (selecting maximum value across a series of tests) is not appropriate if we assume that test 

performance is suitably modelled with a normal distribution centred on the true score. Despite the goal of many tests 

in sport and exercise to quantify maximum performance, if the maximum value of a series of tests is selected as the 

measure for evaluation, this will almost certainly be an overestimate generated from a positive random error. In 

contrast, the mean of multiple test measurements is unbiased and has the advantageous property that measurement 

error is reduced to 
𝜎

√𝑛
. For these reasons, practitioners should not for example select the ‘peak of peaks’ when 

evaluating a client.  
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       4 SUMMARY 

Measurement to inform the selection, monitoring and evaluation of interventions has become integral in sport and 

exercise. Frequently, however, uncertainty in measurements are not captured such that the above processes are likely 

to be limited leading to erroneous conclusions and poor decision making in too many cases. Even when attempts are 

made to rigorously quantify uncertainty in practice, basic approaches such as the use of typical error combined with a 

single measurement or the use of pre- and post-intervention data only, may lead to limited information and subpar 

decision making. This is due to many measurements commonly used in sport and exercise encompassing large errors 

due to instrumentation and biological noise. In these situations, the answer should not be to abandon attempts at 

quantifying uncertainty, but instead to adopt measurement practices that lower measurement error to levels that 

facilitate good decision making. In this review, we have discussed two such general approaches that are likely to be 

effective in many circumstances, namely repeated testing and regression modelling. We have also attempted in this 

review to balance statistical rigour and the need to adopt practices that are pragmatic, easy to use, and relatively easy 

to understand. More complex and in some circumstances more rigorous statistical procedures could be used and 

“hidden” behind software that the user does not have to fully appreciate. Despite the trade-offs, we believe that the 

simpler approaches presented here provide a strong foundation and will be of use to many practitioners. Based on the 

text provided and additional detail in supplementary files, practitioners and applied researchers can implement these 

procedures using simple spreadsheets and adapt the R code provided for greater flexibility. 
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Supplementary file 1:  Additional mathematical detail 

 

Section 2.2. Estimating standard deviation of measurement error.  

 

Given 𝑂𝑠~𝑁(𝑇𝑆, 𝜎2), where 𝑂𝑠 is an observed score, 𝑇𝑆 is the true score, and 𝜎 is the standard deviation of the 

measurement error, then the sample standard deviation √
1

𝑛−1
∑ (𝑂𝑠𝑖 − 𝑂̅𝑠)2𝑛

𝑖=1  is close to an unbiased estimator of 

𝜎2 and can be used for  𝑇𝐸̂ when we are able to collect many repeated measurements on an individual across a time 

period where the true score is not expected to change.  

 

More likely, 𝑇𝐸̂ is obtained by a test retest procedure on a group of individuals. Here we assume that individuals 

possess different true scores, but experience the same measurement error standard deviation. If we take the 

difference between two observed scores 𝑂𝑠2
− 𝑂𝑠1

 and we assume that the errors are independent, then  

𝑂𝑠2 − 𝑂𝑠1
~𝑁(0,2𝜎2) from 𝑉𝑎𝑟(𝑋2 − 𝑋1) = 𝑉𝑎𝑟(𝑋2) + 𝑉𝑎𝑟(𝑋1) = 2𝜎2. 

 

Calculating the standard deviation of the observed difference scores provides an estimate of √2𝜎. Hence to obtain 

an estimate of 𝜎, we divid the standard deviation of the observed difference scores by √2. 

 

 

Section 2.3 Constructing true score confidence intervals 

For the calculation of CI’s it is useful to introduce additional notation and concepts. The first is the notation: 

100(1 − 𝛼)%, which describes the width of the CI. Here, 𝛼 is a variable that we choose to set the interval and 

importantly link the width of the CI to the correct multiple of 𝜎 if known, or our estimate of 𝜎 which is expressed 

as  𝑇𝐸̂. To set a 90% CI for example, then 𝛼 must be set to 𝛼 = 0.1 to give 100(1 − 0.1)% = 90%. Given the 

typical assumption that observed scores are normally distributed we evoke the relevant properties of the distribution, 

such that a 100(1 − 𝛼)% CI for true score is obtained with 𝑂𝑠 ± 𝜎 × 𝑍(1−𝛼/2). The coefficient 𝑍(1−𝛼/2) is referred 

to as the (1 − 𝛼/2)-th quantile of the standard normal distribution. In our example where we set 𝛼 to 0.1 (i.e. for a 

90% confidence interval), we require 𝑍(1−0.1/2), or the 0.95th quantile of the standard normal distribution. To obtain 

this value we can look up standard statistical tables or use the following code in R qnorm(1 − 𝛼/2). Using these 
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methods, we find that 𝑍0.95 is equal to 1.64 (qnorm(0.95)) and so a 90% true sore CI for an individual would equal 

𝑂𝑠 ± 𝜎 × 1.64.  

 

It is important to acknowledge that in practice we never know 𝜎 and studies only report imperfect estimates TÊ, 

where accuracy will depend primarily on the number of individuals (or number of repeated trials) used in a test-retest. 

To account for this additional uncertainty, we use the (1 − 𝛼/2)-th quantile value from a t-distribution which is 

similar in shape to the normal distribution but has heavier tails (i.e. greater proportion of values away from the centre). 

The specific t-distribution is based on numbers used in our 𝜎 estimate and we say that it has degrees of freedom equal 

to 𝑛 − 1. For example, if we estimate 𝜎 using 20 participants (𝑛 = 20), we would obtain a 90% true score CI with 

𝑂𝑠 ± 𝑇𝐸̂ × 𝑡19,0.95, (i.e. the 0.95th quantile of the t-distribution with 19 degrees of freedom). Looking up statistical 

tables or using the R code (qt(1 − 𝛼/2,df) or here qt(0.95,19), we find that 𝑡19,0.95 = 1.73 and so our 90% true score 

CI is calculated with 𝑂𝑠 ± 𝑇𝐸̂ × 1.73.  Alternatively for example, if we wanted to calculate a 50% true score CI with 

the t-distribution, we would set 𝛼 = 0.5, 𝑡19,0.75 = 0.69 to give 𝑂𝑠 ± 𝑇𝐸̂ × 0.69. What is important to note, is that 

as the number of individuals increases the t-distribution approaches the normal distribution such that the coefficients 

used to multiply the 𝑇𝐸̂ converge.  

 

Section 2.4 Framework extension 1 – Mean of multiple measurements to reduce confidence interval widths 

Given 𝑂𝑠~𝑁(𝑇𝑆, 𝜎2) and the assumption that observed scores are independent, then taking the mean of 𝑛 

observed scores will give expectation  

𝐸(𝑂̅𝑠 ) = 𝐸 (
1

𝑛
(𝑂𝑠1

+ 𝑂𝑠2
+ ⋯ + 𝑂𝑠𝑛

)) =
1

𝑛
(𝐸(𝑂𝑠1

) + 𝐸(𝑂𝑠2
) + ⋯ + 𝐸(𝑂𝑠𝑛

)) =
1

𝑛
(𝑛𝑇𝑆) = 𝑇𝑆. 

We will also have variance  

𝑉𝑎𝑟(𝑂̅𝑠 ) = 𝑉𝑎𝑟 (
1

𝑛
(𝑂𝑠1

+ 𝑂𝑠2
+ ⋯ + 𝑂𝑠𝑛

)) =
1

𝑛2 (𝑉𝑎𝑟(𝑂𝑠1
) + 𝑉𝑎𝑟(𝑂𝑠2

) + ⋯ + 𝑉𝑎𝑟(𝑂𝑠𝑛
)) =

1

𝑛2
(𝑛𝜎2) =

𝜎2

𝑛
. 

 

As a result we have 𝑂̅𝑠~𝑁 (𝑇𝑆,
𝜎2

𝑛
), such that the standard deviation will equal 

𝜎

√𝑛
 and CI’s are constructed with   

𝑂̅ ±
𝜎

√𝑛
× 𝑍(1−𝛼/2) or in practice 𝑂̅ ±

𝑇𝐸̂

√𝑛
× 𝑡(1−𝛼/2,𝑑𝑓).  

 

Section 2.4 Framework extension 1 – Mean of multiple measurements in hierarchical model 

In section 2.4 we set out the hierarchical model 𝑂𝑠𝑖𝑗
= 𝑇𝑠 + 𝑏𝑖 + 𝜖𝑖𝑗, where 𝑖 refers to the day of the measurement, 𝑗 

is the specific measurement on day 𝑖, 𝑏𝑖 is the random effect offset for day 𝑖, and 𝜖𝑖𝑗 is the random within-day 

measurement error that is independent of 𝑏𝑖. This hierarchical model assumes that on a given day, observed scores 

will systematically deviate from the true score by an amount that can be described by a normal distribution with mean 

0, and standard deviation 𝜎𝑏 . If repeated measurements are made on this day, they will then be distributed around the 

mean 𝑇𝑠 + 𝑏𝑖, which can be modelled by a normal distribution with standard deviation 𝜎𝜖 . We expect 𝜎𝑏 > 𝜎𝜖 .  

We can see that the expectation is  

𝐸 (𝑂𝑠𝑖𝑗
) = 𝐸(𝑇𝑠 + 𝑏𝑖 + 𝜖𝑖𝑗) = 𝑇𝑠. 
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We also have variance  

𝑉𝑎𝑟 (𝑂𝑠𝑖𝑗
) = 𝑉𝑎𝑟(𝑇𝑠 + 𝑏𝑖 + 𝜖𝑖𝑗) = 𝑉𝑎𝑟(𝑏𝑖) + 𝑉𝑎𝑟(𝜖𝑖𝑗) = 𝜎𝑏

2 + 𝜎𝜖
2. 

If we take two measurements on separate days then we have 𝐶𝑜𝑣(𝑂𝑖𝑗, 𝑂𝑖′𝑗) = 0, and if we take two measurements 

on the same day we have 𝐶𝑜𝑣(𝑂𝑖𝑗 , 𝑂𝑖𝑗′) = 𝜎𝑏
2. 

 

And so, if we collect a single data point on 𝑛 separate days and take the mean we have 

𝑉𝑎𝑟 (
1

𝑛
∑ 𝑂𝑖𝑗

𝑛

𝑖=1
) =

𝑉𝑎𝑟(𝑂𝑖𝑗)

𝑛
=

𝜎𝑏
2 + 𝜎𝜖

2

𝑛
. 

 

If we take 𝑚 data points on a single day and take the mean we have  

𝑉𝑎𝑟 (
1

𝑚
∑ 𝑂𝑖𝑗

𝑚

𝑗=1
) =

1

𝑚2
[∑ 𝑉𝑎𝑟(𝑂𝑖𝑗)

𝑚

𝑗=1
+ ∑ ∑ 𝐶𝑜𝑣(𝑂𝑖𝑗 , 𝑂𝑖𝑘)

𝑚

𝑘=𝑗+1

𝑚−1

𝑗=1
] = 

1

𝑚2 [𝑚𝑉𝑎𝑟(𝑂𝑖𝑗) + (𝑚2 − 𝑚)𝐶𝑜𝑣(𝑂𝑖𝑗 , 𝑂𝑖𝑘)] =
𝜎𝑏

2 + 𝜎𝜖
2

𝑚
+

(𝑚 − 1)

𝑚
𝜎𝑏

2 = 𝜎𝑏
2 +

𝜎𝜖
2

𝑚
. 

 

If we take the mean of 𝑚 measurements over 𝑛 days, and then take the mean of this (e.g. the grand mean), the 

variance can be expressed as  

𝑉𝑎𝑟 (
1

𝑛
(∑ (

1

𝑚
∑ 𝑂𝑖𝑗

𝑚

𝑗=1
)

𝑛

𝑖=1
)). 

Note that  𝑂̅𝑖𝑗 is independent from 𝑂̅𝑖′𝑗 (e.g. mean of measurements on one day is independent from another),  and 

so  

𝑉𝑎𝑟 (
1

𝑛
(∑ (

1

𝑚
∑ 𝑂𝑖𝑗

𝑚

𝑗=1
)

𝑛

𝑖=1
)) =

1

𝑛2
(𝑛 𝑉𝑎𝑟 (

1

𝑚
∑ 𝑂𝑖𝑗

𝑚

𝑗=1
)) =

𝜎𝑏
2

𝑛
+

𝜎𝜖
2

𝑛𝑚
. 

 

 

Section 3.1 True score change confidence intervals 

If we observed pre- (𝑂𝑆𝑝𝑟𝑒) and post-intervention (𝑂𝑆𝑝𝑜𝑠𝑡) scores distributed as 𝑂𝑆𝑝𝑟𝑒~𝑁(𝑇𝑆𝑝𝑟𝑒 , 𝜎2) and 

𝑂𝑆𝑝𝑜𝑠𝑡~𝑁(𝑇𝑆𝑝𝑜𝑠𝑡 , 𝜎2) and we assume that errors are independent, then 𝑂𝑆𝑐ℎ𝑎𝑛𝑔𝑒 = 𝑂𝑆𝑝𝑜𝑠𝑡 − 𝑂𝑆𝑝𝑟𝑒 . The variance 

can be expressed as 𝑉𝑎𝑟(𝑂𝑆𝑐ℎ𝑎𝑛𝑔𝑒) = 𝑉𝑎𝑟(𝑂𝑆𝑝𝑜𝑠𝑡) + 𝑉𝑎𝑟(𝑂𝑆𝑝𝑟𝑒) = 2𝜎2. Hence the standard deviation is √2𝜎 

which we estimate as √2TÊ. From our derivation in section 2.3, we would then create confidence intervals with 

𝑂𝑆𝑐ℎ𝑎𝑛𝑔𝑒 ± √2𝜎 × 𝑍(1−𝛼/2) or in practice 𝑂𝑆𝑐ℎ𝑎𝑛𝑔𝑒 ± √2TÊ × 𝑡(1−𝛼/2,𝑑𝑓). 

Note, if our pre- and post-intervention scores were obtained as the mean of 𝑛 repeated measurements, then we would 

have  𝑂𝑆̅̅̅̅
𝑝𝑟𝑒~𝑁(𝑇𝑆𝑝𝑟𝑒 ,

𝜎2

𝑛
) and 𝑂𝑆̅̅̅̅

𝑝𝑜𝑠𝑡~𝑁(𝑇𝑆𝑝𝑜𝑠𝑡 ,
𝜎2

𝑛
) such that our confidence intervals would be created with  

( 𝑂𝑆̅̅̅̅
𝑝𝑜𝑠𝑡 −  𝑂𝑆̅̅̅̅

𝑝𝑟𝑒) ±
√2𝜎

√𝑛
× 𝑍(1−𝛼/2) or in practice ( 𝑂𝑆̅̅̅̅

𝑝𝑜𝑠𝑡 −  𝑂𝑆̅̅̅̅
𝑝𝑟𝑒) ±

√2𝜎

√𝑛
× 𝑡(1−𝛼/2,𝑑𝑓). 
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Section 3.3 Least squares regression calculations  

If we wish to fit a simple linear model to data with a dependent variable 𝑦, and a single independent variable 𝑥 we 

express the relationship as 𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜖𝑖 such that 𝛽0 is the intercept (the predicted value of 𝑦 when 𝑥 = 0), 

𝛽1 is the slope (the change in 𝑦 for a unit increase in 𝑥), and 𝜖𝑖 is the random error component allowing for variation 

in 𝑦 for identical values of 𝑥. In order to fit this simple model we need at least two data points (𝑥1, 𝑦1) and (𝑥2, 𝑦2). 

Usually, however, we have more than two points and we describe the data using column vectors denoted in bold 𝒙 =

(𝑥1, … , 𝑥𝑛)𝑇, 𝒚 = (𝑦1, … , 𝑦𝑛)𝑇. If we define 𝟏𝑛 to be a column vector of 𝑛 ones, we can write the simple regression 

model as 𝒚 = 𝛽0𝟏𝑛 + 𝛽1𝒙 + 𝝐. More compactly, if we define the parameter vector 𝜷 = (𝛽0, 𝛽1)𝑇 and the 𝑛 × 2 

matrix 𝑿 defined to have 𝟏𝑛 as the first column and 𝒙 as the second, then we can write the model as  𝒚 = 𝑿𝜷 + 𝝐. 

Note, for a single measurement at for example weeks 0,2, … ,10 we would have the matrix 𝑿 =

(
1 1 1 1 1 1
0 2 4 6 8 10

)
𝑇

. 

The distribution of 𝝐 is multivariate normal such that each observation in 𝒚 is independent and variance constant and 

equal to 𝜎2, to give 𝒚~𝑁𝑛(𝑿𝜷, 𝑰𝜎2). The process of least squares allows us to estimate 𝜷 with  𝜷̂. This process 

requires us to define residuals 𝑒𝑖 = 𝑦𝑖 − 𝛽̂0 + 𝛽̂1𝑥𝑖. Residuals 𝑒𝑖 are distinct from errors 𝜖𝑖, however, they allow us 

to estimate the variability of the error terms and they are used to obtain 𝜷̂. In this latter case, we obtain 𝜷̂ such that it 

minimises the sum of the residuals squared. This sum of squares is expressed as 𝑆(𝜷̂) = ∑ 𝑒𝑖
2𝑛

𝑖=1 = 𝒆𝑇𝒆 =

(𝒚 − 𝑿𝜷̂)
𝑇

(𝒚 − 𝑿𝜷̂).  

We find the least squares estimator by first differentiating  𝑆(𝜷̂) with respect to 𝜷̂. This gives 

𝜕𝑆(𝜷̂)

𝜷̂
= −2𝑋𝑇𝒚 + 2𝑋𝑇𝑿𝜷̂. It follows that 

𝜕𝑆(𝜷̂)

𝜷̂
= 0,  when 𝜷̂ = (𝑿𝑇𝑿)−1𝑿𝑇𝒚. 

The variance properties of 𝜷̂ are contained in its covariance matrix, which in the case of simple linear regression is a 

2 × 2 matrix. Here we have 𝑉𝑎𝑟(𝜷̂) = 𝑉𝑎𝑟((𝑿𝑇𝑿)−1𝑿𝑇𝒚) = (𝑿𝑇𝑿)−1𝑿𝑇𝑉𝑎𝑟(𝒚)((𝑿𝑇𝑿)−1𝑿𝑇)𝑇 =  

(𝑿𝑇𝑿)−1𝑿𝑇𝜎2𝑰𝒏𝑿(𝑿𝑇𝑿)−1 = 𝜎2(𝑿𝑻𝑿)
−1

.  

We can obtain an unbiased estimator of 𝜎2 with  𝜎̂2 =
1

𝑛−2
∑ 𝑒𝑖

2𝑛
𝑖=1 . 

When using the least squares regression approach to quantify improvement across an intervention under the 

assumptions that measurement error standard deviation remains constant and uncorrelated, and change is linear, we 

estimate improvement per unit time (e.g. per week) with  𝛽̂1 which is the second row entry of 𝜷̂. If we have included 

time point 0 in 𝑿, then change across the intervention is calculated with multiplying 𝛽̂1 by the final time point (e.g. 

10 × 𝛽̂1  if week 10 was the final time point). We obtain a CI on the weekly improvement using the 2,2 entry of 

𝜎2(𝑿𝑻𝑿)
−1

and using the appropriate multiple. Where we assume 𝜎 is known, we have 𝛽̂1 ±  𝜎2(𝑿𝑻𝑿)
2,2

−1
×

𝑍(1−𝛼/2). We can then multiply our estimate and the lower and upper bounds by the final time point to obtain a true 

score change CI. Typically where we don’t assume 𝜎 is known, we use our estimate TÊ and 𝛽̂1 ±

 TÊ(𝑿𝑻𝑿)
2,2

−1
× 𝑡(1−𝛼/2,𝑑𝑓). With enough data, we may prefer to estimate 𝜎 directly and therefore use 𝛽̂1 ±

 𝜎̂2(𝑿𝑻𝑿)
2,2

−1
× 𝑡(1−𝛼/2,𝑛−2), where 𝑛 is the number of data points used for the regression.  
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Section 3.3 Autoregressive model.  

The final model discussed in this review is simple linear regression where the measurement errors follow an AR(1) 

process. In sport and exercise, if we are using this model we are potentially considering taking measurements 

multiple times per week, and so we can index according to days rather than weeks. The model can be expressed as 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜉𝑖 , with errors 𝜉𝑖 autocorrelated such that 𝜉𝑖 = 𝜃𝜉𝑖−1 + 𝜓, where |𝜃| < 1  is the serial 

correlation parameter, 𝜓 is normally distributed with mean 0 and variance 𝜁2. To derive the properties of the AR(1) 

errors it is best to express the series in-terms of an infinite-order moving average process 𝑀𝐴(∞) where 𝜉𝑖 =

𝜃𝜉𝑖−1 + 𝜓𝑖 = 𝜃(𝜃𝜉𝑖−2 + 𝜓𝑖−1) + 𝜓𝑖 = 𝜃(𝜃[𝜃𝜉𝑖−3 + 𝜓𝑖−2] + 𝜓𝑖−1) + 𝜓𝑖 = ⋯ = 𝜃𝑖𝜉0 + ∑ 𝜃𝑗𝑖−1
𝑗=0 𝜓𝑖−𝑗 →

∑ 𝜃𝑖∞
𝑗=0 𝜓𝑖−𝑗 as 𝑖 → ∞ if |𝜃| < 1 and 𝜉0 is finite. By expressing the AR(1) series in this way we have 𝑉𝑎𝑟(𝜉𝑖) =

∑ 𝜃2𝑖∞
𝑗=0  𝜁2 which from an infinite geometric series ∑ 𝑎𝑟𝑘 =

𝑎

1−𝑟
∞
𝑗=0  for |𝑟| < 1 and for series containing only 

even powers of 𝑟, ∑ 𝑎𝑟2𝑘 =
𝑎

1−𝑟2
∞
𝑗=0 . Thus 𝑉𝑎𝑟(𝜉𝑖) = ∑ 𝜃2𝑖∞

𝑗=0 𝜁2 =
𝜁2

1−𝜃2, |𝜃| < 1. 

If we set 𝜎2 =
𝜁2

1−𝜃2, then the linear regression model with AR(1) errors 𝒚 = 𝑿𝜷 + 𝝃 is distributed as 

𝑁𝑛(𝑿𝜷, 𝑹𝜎2), where 𝑹 is a 𝑛 × 𝑛 correlation matrix with entry 𝑖, 𝑗 = 𝜃|𝑗−𝑖|. The ordinary least squares estimator of 

𝜷 is again given by 𝜷̂ = (𝑿𝑇𝑿)−1𝑿𝑇𝒚 as derived in the previous section. The sample variance is equal to 

𝑉𝑎𝑟(𝜷̂) = 𝑉𝑎𝑟((𝑿𝑇𝑿)−1𝑿𝑇𝒚) = (𝑿𝑇𝑿)−1𝑿𝑇𝑉𝑎𝑟(𝒚)((𝑿𝑇𝑿)−1𝑿𝑇)𝑇 =  

(𝑿𝑇𝑿)−1𝑿𝑇𝑹𝜎2𝑿(𝑿𝑇𝑿)−1 = 𝜎2(𝑿𝑇𝑿)−1𝑿𝑇𝑹𝑿(𝑿𝑇𝑿)−1. 

Given data we believe may be reasonably modelled with an AR(1) process, we can use the arima function in R 

where for example daily values can be modelled with arima(data, xreg=seq(start,end,1), order=c(1,0,0)). The 

function will estimate the intercept, slope, 𝜃 and 𝜁2 and produce standard errors. With frequent data this is likely to 

be the best option. With less data and some reasonable assumptions regarding 𝜎 and 𝜃, we can use the least squares 

estimators and create confidence intervals using the same methods as previous.   
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`1Supplementary file 2:  R Code 

# load packages 
library(ggplot2) 
library(cowplot) 
 
 
############ Generate baseline data 
# Baseline power data of a sample of 100 individuals are simulated from a hypothetical 
# population with mean 3000 Watts and SD 750 Watts. These values represent the true scores  
# at time 0.  
 
# Model parameters 
PopMean = 3000 
PopSd = 750 
SampleN = 100 
set.seed(123) 
 
# Simulate true scores 
TS0Power = rnorm(SampleN,PopMean,PopSd) 
 
# Check distribution of true scores  
quantile(TS0Power, seq(0,1,0.1)) 
 
# Now we generate observed scores 
 
# Data 1: We generate daily observed scores for a pre-intervention period of two weeks  
# with noise set with a measurement error standard deviation (Typical Error [TE]) of 200 Watts 
TE = 200 
 
PowerBaseline = matrix(NA, nrow=SampleN, ncol=14) 
for(i in 1:14){ 
  PowerBaseline[,i]=TS0Power + rnorm(SampleN,0,TE) 
} 
 
# Data 2: We generate daily observed scores that are repeated four times each day.  
# We assume that the inter-session TE is 160 Watts and the intra-session TE is 120 Watts. 
# We then have that sqrt(160^2+120^2) = 200 Watts 
TEInter = 160 
TEIntra = 120 
 
# We save this data as an array 
PowerBaselineTrueDay = matrix(NA,nrow=SampleN,ncol=14) 
PowerBaselineIntraInter = array(NA, dim=c(SampleN,14,4)) 
for(i in 1:14){ 
  PowerBaselineTrueDay[,i]=TS0Power + rnorm(SampleN,0,TEInter) 
  for(j in 1:4){ 
    PowerBaselineIntraInter[,i,j] = PowerBaselineTrueDay[,i]+rnorm(SampleN,0,TEIntra) 
  }} 
 
############ Visualise data 1 at baseline  
MedianBaseline = apply(PowerBaseline, 1,median) 
MedianBaselineOrder = order(MedianBaseline) 
BaselineData = c(NULL) 
for(i in 1:SampleN){ 
  BaselineData = c(BaselineData, PowerBaseline[MedianBaselineOrder[i],]) 
} 
PowerBaselineDF = data.frame(Values = BaselineData, 
                             Individual = factor(rep(1:SampleN,each=14))) 
 
ggplot(PowerBaselineDF, aes(y=Values, fill=Individual))+ geom_boxplot() + 
  ylab("Power (Watts)") + theme_classic() +    
  theme(legend.position="none",axis.title.x=element_blank(), 
        axis.text.x=element_blank(), 
        axis.ticks.x=element_blank()) 
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# 1000 by 700 
 
############ Visualise typical error calculations 
 
# We now want to visualise typical error values that will be estimated when using 
# 1) the SD from individual participants;  
# 2) test retest from samples of different sizes. 
 
# Case1: Plot of typical error estimated from SD of individual participant baseline data 
# The typical error estimates will be different for different participants due to sampling error. 
TESD = apply(PowerBaseline, 1,sd) 
TESDDF = data.frame(Value=TESD) 
n = 100 
mean = mean(TESDDF$Value) 
sd = sd(TESDDF$Value) 
binwidth = 20  
 
SDTEPlot = ggplot(TESDDF, aes(x = Value, mean = mean, sd = sd, binwidth = binwidth, n = n)) + 
  theme_classic() + 
  geom_histogram(binwidth = binwidth,  
                 colour = "white", fill = "cornflowerblue", size = 0.1) + 
  stat_function(fun = function(x) dnorm(x, mean = mean, sd = sd) * n * binwidth, 
                color = "darkred", size = 1) +  
  xlab("Typical error (Watts)") + ylab("Count") +  
  geom_vline(xintercept = TE,linetype="dashed", size =1.5) 
SDTEPlot 
 
quantile(TESD, c(0,0.25,0.5,0.75,1)) 
 
# Case 2: Plot of typical error from test-retest data 
 
# We can calculate TE from different pairwise combinations of days, e.g.  
# day 1 v.s. day 2 or day 2 v.s. day 14 and so on. So we list the pairwise combinations.  
Pairwise14 = combn(1:14,2) 
 
# We can also calculate TE from different samples from our 100 participants.  
# Here we calculate test-retest TE from first 10,20,30,...100 across  
# all pairwise combinations 
Pairwise14TE = matrix(NA,nrow=10,ncol=91) 
for(i in 1:10){ 
  for(j in 1:91) 
    Pairwise14TE[i,j] =sd(PowerBaseline[(1:seq(10,100,10)[i]), 
                                        Pairwise14[2,j]] -   
                            PowerBaseline[(1:seq(10,100,10)[i]), 
                                          Pairwise14[1,j]])/sqrt(2) 
} 
 
BaselineTestRetestData = c(NULL) 
for(i in 1:10){ 
  BaselineTestRetestData = c(BaselineTestRetestData,Pairwise14TE[i,])} 
 
BaselineTestRetestDataDF = data.frame(Values = BaselineTestRetestData, 
                                      Group = factor(rep(seq(10,100,10),each=91))) 
 
TestRetestTEPlot = ggplot(BaselineTestRetestDataDF, aes(y=Values,x=Group, fill=Group))+ geom_boxplot() + 
  ylab("Typical error (Watts)") + theme_classic() +    
  scale_y_continuous(limits=c(100,300),breaks=seq(100,300,50))+ 
  theme(legend.position="none") + xlab("Number of participants") +  
  geom_hline(yintercept = 200,linetype="dashed", size =1.5) 
TestRetestTEPlot 
 
# Combine Plots 
plot_grid(SDTEPlot, TestRetestTEPlot,labels = c('A', 'B'), hjust=-1.5,label_size = 12) 
# 1000 by 650 
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############ Test true score proportions  
# Now that we have our typical error calculations we want to visualise and assess the  
# true score confidence intervals that we generate.  
# Here we generate 95% confidence intervals using case 1: sd of participant scores 
 
# We assess the proportion of intervals that contain the true score based on  
# centring our intervals around day 1 observed values 
Day1SDDF = data.frame(True = TS0Power, 
                      LB = PowerBaseline[,1]-1.96*TESD, 
                      UB = PowerBaseline[,1]+1.96*TESD) 
mean(Day1SDDF$LB<Day1SDDF$True& 
       Day1SDDF$UB>Day1SDDF$True) 
# 0.95  
 
# We now create a plot of the intervals and true scores  
Day1SDDFOrder = Day1SDDF[order(Day1SDDF$True),] 
Day1SDDFOrder$X = 1:SampleN 
Day1SDDFOrder$C = Day1SDDFOrder$LB<Day1SDDFOrder$True& 
  Day1SDDFOrder$UB>Day1SDDFOrder$True 
 
SDPlot = ggplot(Day1SDDFOrder, aes(X, True)) +         
  geom_point() + 
  geom_errorbar(aes(ymin = LB, ymax = UB,color=C)) +  
  ylab("Power (Watts)") + theme_classic() +    
  scale_y_continuous(breaks=seq(1000,5000,1000))+ 
  theme(legend.position="none",axis.title.x=element_blank(), 
        axis.text.x=element_blank(), 
        axis.ticks.x=element_blank(), 
        axis.line.x=element_blank()) 
SDPlot 
 
# We repeat a similar process using case 2: test-retest typical error estimates.  
# Here we generate 95% confidence intervals using test-retest data with 20  
# participants from observed data from day 1 and day 2.The intervals are 
# then applied to day 3 scores. We use the adjusted multiplier from sample of 20  
# which for 95%CI is 2.1  
Day1TestRetestDF = data.frame(True = TS0Power, 
                              LB = PowerBaseline[,3]-2.1*Pairwise14TE[2,1], 
                              UB = PowerBaseline[,3]+2.1*Pairwise14TE[2,1]) 
mean(Day1TestRetestDF$LB<Day1TestRetestDF$True& 
       Day1TestRetestDF$UB>Day1TestRetestDF$True) 
# 0.91  
 
# We now create a plot of the intervals and true scores  
Day1TestRetestDFOrder = Day1TestRetestDF[order(Day1TestRetestDF$True),] 
Day1TestRetestDFOrder$X = 1:SampleN 
Day1TestRetestDFOrder$C = Day1TestRetestDFOrder$LB<Day1TestRetestDFOrder$True& 
  Day1TestRetestDFOrder$UB>Day1TestRetestDFOrder$True 
 
TestRetestPlot =ggplot(Day1TestRetestDFOrder, aes(X, True)) +         
  geom_point() + 
  geom_errorbar(aes(ymin = LB, ymax = UB,color=C)) +  
  ylab("Power (Watts)") + theme_classic() +    
  scale_y_continuous(breaks=seq(1000,5000,1000))+ 
  theme(legend.position="none",axis.title.x=element_blank(), 
        axis.text.x=element_blank(), 
        axis.ticks.x=element_blank(), 
          axis.line.x=element_blank()) 
TestRetestPlot 
 
# Combine plots 
TestRetestPlotCombine =ggplot(Day1TestRetestDFOrder, aes(X, True)) +         
  geom_point() + 
  geom_errorbar(aes(ymin = LB, ymax = UB,color=C)) +  
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  ylab("Power (Watts)") + theme_classic() +    
  scale_y_continuous(breaks=seq(1000,5000,1000))+ 
  theme(legend.position="none",axis.title.x=element_blank(), 
        axis.text.x=element_blank(), 
        axis.ticks.x=element_blank(), 
        axis.line.x=element_blank(), 
        axis.text.y=element_blank(), 
        axis.ticks.y=element_blank(), 
        axis.line.y=element_blank(), 
        axis.title.y=element_blank()) 
 
plot_grid(SDPlot, TestRetestPlotCombine,labels = c('A', 'B'), hjust=-1.5,label_size = 12) 
# 1000 by 650 
 
##########################################################################
####### 
##########################################################################
####### 
#########################              ########################################## 
 
############ Framework extension 1 – Mean of multiple measurements  
 
# In this example we visualise how the typical error changes when we take the  
# mean of different numbers of measurements.To illustrate this process we randomly  
# select 20 individuals from our sample. We then visualise the true score confidence  
# intervals and how these change when we take the mean of 1,4,7 and 14 measurements.  
# For ease we assume that the TE of 200 Watts is known, 
 
# Select 20 random individuals. 
set.seed(123) 
R20 = sample(1:SampleN,20,replace=FALSE) 
TS0Power20 = TS0Power[R20] 
PowerBaseline20 = PowerBaseline[R20,] 
 
# Calculate the mean of 1,4,7,14 measurements 
MeasurementA = c(1,4,7,14) 
MeanPowerBaseline20 = matrix(NA,nrow=20,ncol=4) 
MeanPowerBaseline20[,1]=PowerBaseline20[,1] 
for(i in 2:4){ 
  MeanPowerBaseline20[,i]=apply(PowerBaseline20[,1:MeasurementA[i]],1,mean)} 
 
# Organise the data frame so that the participants are ordered in increasing true score 
 
TS0Power20Order = TS0Power20[order(TS0Power20)] 
MeanPowerBaseline20Order = MeanPowerBaseline20[order(TS0Power20),] 
 
# Calculate the intervals bounds using the typical error and adjustment based on using  
# the mean of different number of data points.  
 
MeanPowerBaseline20OrderDF = data.frame(X = c(seq(1,80,4),seq(2,80,4), 
                                              seq(3,80,4),seq(4,80,4)), 
                                        True =rep(TS0Power20Order,4), 
                                        LB = c(MeanPowerBaseline20Order[,1]-1.96*200, 
                                               MeanPowerBaseline20Order[,2]-1.96*200/sqrt(4), 
                                               MeanPowerBaseline20Order[,3]-1.96*200/sqrt(7), 
                                               MeanPowerBaseline20Order[,4]-1.96*200/sqrt(14)), 
                                        UB = c(MeanPowerBaseline20Order[,1]+1.96*200, 
                                               MeanPowerBaseline20Order[,2]+1.96*200/sqrt(4), 
                                               MeanPowerBaseline20Order[,3]+1.96*200/sqrt(7), 
                                               MeanPowerBaseline20Order[,4]+1.96*200/sqrt(14)), 
                                        Group = c(rep(letters[1:20],4))) 
 
MeanPowerBaseline20OrderDF$C = MeanPowerBaseline20OrderDF$LB<MeanPowerBaseline20OrderDF$True& 
  MeanPowerBaseline20OrderDF$UB>MeanPowerBaseline20OrderDF$True 
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# Visualise the intervals across the different number of measurements 
TrueScoreCIPlot = ggplot(MeanPowerBaseline20OrderDF, aes(X, True, group=Group)) +         
  geom_point() + 
  geom_errorbar(aes(ymin = LB, ymax = UB,color=C)) +  
  ylab("Power (Watts)") + theme_classic() +    
  scale_y_continuous(breaks=seq(1000,5000,1000))+ 
  theme(legend.position="none",axis.title.x=element_blank(), 
        axis.text.x=element_blank(), 
        axis.ticks.x=element_blank(), 
        axis.line.x=element_blank())+ 
  annotate("text",x=1, y = 2000, label = "P1")+  annotate("text", x = 5, y = 2300, label = "P2")+ 
  annotate("text",x=9, y = 2600, label = "P3")+  annotate("text", x = 13, y = 2600, label = "P4")+ 
  annotate("text",x=17, y = 3000, label = "P5")+  annotate("text", x = 21, y = 3400, label = "P6")+ 
  annotate("text",x=25, y = 3400, label = "P7")+  annotate("text", x = 29, y = 3400, label = "P8")+ 
  annotate("text",x=33, y = 3600, label = "P9")+  annotate("text", x = 37, y = 3750, label = "P10")+ 
  annotate("text",x=41, y = 3850, label = "P11")+  annotate("text", x = 45, y = 4100, label = "P12")+ 
  annotate("text",x=49, y = 4100, label = "P13")+  annotate("text", x = 53, y = 4100, label = "P14")+ 
  annotate("text",x=57, y = 4300, label = "P15")+  annotate("text", x = 61, y = 4400, label = "P16")+ 
  annotate("text",x=65, y = 4600, label = "P17")+  annotate("text", x = 69, y = 4600, label = "P18")+ 
  annotate("text",x=73, y = 4600, label = "P19")+  annotate("text", x = 77, y = 5300, label = "P20") 
TrueScoreCIPlot 
############ Framework extension 1a Inclusion of hierarchical model with inter- and intra typical errors  
 
# First we start with some calculations to show how the intra- and inter-session TE values influence the  
# overall uncertainty in mean scores calculated across different combinations of inter and intra-sessions.  
 
# Inter-day TE of 160 Watts and Intra-day TE of 120 Watts 
sqrt(TEInter^2+TEIntra^2) 
# 200 
 
# Here we show the different TE values based on scenarios highlighted in the paper 
 
# Scenario 1: Mean of four measurements on single day 
Scenario1TE = sqrt(TEInter^2+(TEIntra^2)/4) 
Scenario1TE 
# 170.8801 
 
# Scenario 2: Mean of single measurements on four days 
Scenario2TE = sqrt((TEInter^2+TEIntra^2)/4) 
Scenario2TE 
# 100 
 
# Scenario 3: grand mean of for measurements on four days 
Scenario3TE = sqrt(((TEInter^2)/4)+((TEIntra^2)/(4*4))) 
Scenario3TE 
# 85.44004 
 
# Now plot how the CI intervals change across the scenarios for the 20 participants 
# We start with our 20 participants and a single measurement on day 1 
HierarchicalBase = PowerBaselineIntraInter[R20,1,1] 
 
# Scenario 1 we calculate the mean of the four measurements in day 1 
Hierarchical1Matrix = matrix(NA,nrow=20,ncol=4) 
for(i in 1:4){ 
  Hierarchical1Matrix[,i]=PowerBaselineIntraInter[R20,1,i]} 
Hierarchical1Mean = apply(Hierarchical1Matrix,1,mean) 
 
# Scenario 2 we calculate the mean of firs measurement day 1,2,3,4 
Hierarchical2Matrix = matrix(NA,nrow=20,ncol=4) 
for(i in 1:4){ 
  Hierarchical2Matrix[,i]=PowerBaselineIntraInter[R20,i,1]} 
Hierarchical2Mean = apply(Hierarchical2Matrix,1,mean) 
 
# Scenario 3 we calculate the grand mean of four measurement day 1,2,3,4 
Hierarchical3MatrixIntra = matrix(NA,nrow=20,ncol=4) 
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Hierarchical3MatrixInter = matrix(NA,nrow=20,ncol=4) 
for(i in 1:4){ 
  for(j in 1:4){ 
    Hierarchical3MatrixIntra[,j]=PowerBaselineIntraInter[R20,i,j]} 
  Hierarchical3MatrixInter[,i] = apply(Hierarchical3MatrixIntra,1,mean)} 
Hierarchical3Mean = apply(Hierarchical3MatrixInter,1,mean) 
 
# Combine into one data frame  
# Organise the data frame so that the participants are ordered in increasing true score 
 
TS0Power20Order = TS0Power20[order(TS0Power20)] 
 
HierarchicalBaseOrder=HierarchicalBase[order(TS0Power20)] 
Hierarchical1MeanOrder=Hierarchical1Mean[order(TS0Power20)] 
Hierarchical2MeanOrder=Hierarchical2Mean[order(TS0Power20)] 
Hierarchical3MeanOrder=Hierarchical3Mean[order(TS0Power20)] 
 
MeanHierarchical20OrderDF = data.frame(X = c(seq(1,80,4),seq(2,80,4), 
                                              seq(3,80,4),seq(4,80,4)), 
                                        True =rep(TS0Power20Order,4), 
                                        LB = c(HierarchicalBaseOrder-1.96*200, 
                                               Hierarchical1MeanOrder-1.96*Scenario1TE, 
                                               Hierarchical2MeanOrder-1.96*Scenario2TE, 
                                               Hierarchical3MeanOrder-1.96*Scenario3TE), 
                                        UB = c(HierarchicalBaseOrder+1.96*200, 
                                               Hierarchical1MeanOrder+1.96*Scenario1TE, 
                                               Hierarchical2MeanOrder+1.96*Scenario2TE, 
                                               Hierarchical3MeanOrder+1.96*Scenario3TE), 
                                        Group = c(rep(letters[1:20],4))) 
 
MeanHierarchical20OrderDF$C = MeanHierarchical20OrderDF$LB<MeanHierarchical20OrderDF$True& 
  MeanHierarchical20OrderDF$UB>MeanHierarchical20OrderDF$True 
 
TrueScoreHierarchicalCIPlot = ggplot(MeanHierarchical20OrderDF, aes(X, True, group=Group)) +         
  geom_point() + 
  geom_errorbar(aes(ymin = LB, ymax = UB,color=C)) +  
  ylab("Power (Watts)") + theme_classic() +    
  scale_y_continuous(breaks=seq(1000,5000,1000))+ 
  theme(legend.position="none",axis.title.x=element_blank(), 
        axis.text.x=element_blank(), 
        axis.ticks.x=element_blank(), 
        axis.line.x=element_blank(), 
        axis.text.y=element_blank(), 
        axis.ticks.y=element_blank(), 
        axis.line.y=element_blank(), 
        axis.title.y=element_blank())+ 
  annotate("text",x=1, y = 1900, label = "P1")+  annotate("text", x = 5, y = 2300, label = "P2")+ 
  annotate("text",x=9, y = 2400, label = "P3")+  annotate("text", x = 13, y = 2700, label = "P4")+ 
  annotate("text",x=17, y = 3400, label = "P5")+  annotate("text", x = 21, y = 3400, label = "P6")+ 
  annotate("text",x=25, y = 3400, label = "P7")+  annotate("text", x = 29, y = 3400, label = "P8")+ 
  annotate("text",x=33, y = 3800, label = "P9")+  annotate("text", x = 37, y = 3800, label = "P10")+ 
  annotate("text",x=41, y = 3800, label = "P11")+  annotate("text", x = 45, y = 4200, label = "P12")+ 
  annotate("text",x=49, y = 4200, label = "P13")+  annotate("text", x = 53, y = 4200, label = "P14")+ 
  annotate("text",x=57, y = 4300, label = "P15")+  annotate("text", x = 61, y = 4300, label = "P16")+ 
  annotate("text",x=65, y = 4600, label = "P17")+  annotate("text", x = 69, y = 4600, label = "P18")+ 
  annotate("text",x=73, y = 4600, label = "P19")+  annotate("text", x = 77, y = 5100, label = "P20") 
TrueScoreHierarchicalCIPlot 
 
# Combined plots 
plot_grid(TrueScoreCIPlot, TrueScoreHierarchicalCIPlot,labels = c('A', 'B'), hjust=-1.5,label_size = 12) 
# 1400 by 700 
 
#######  We now run a simple check on true score CIs using known errors 
# We conclude this section by showing that CIs using the methods outlined produce the  
# correct proportions (e.g. 0.95) when the TEs are known. 
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set.seed(123) 
PopN = 10000 
Ts = rnorm(PopN,PopMean,PopSd) 
 
# Scenario 1 
ObsSingle4 = matrix(NA, nrow = PopN, ncol=4) 
Day1S1 = Ts+ rnorm(PopN, 0, TEInter) 
for(i in 1:4){ 
  ObsSingle4[,i] = Day1S1+ rnorm(PopN,0,TEIntra)} 
ObsSingle4mean = apply(ObsSingle4,1,mean) 
round(mean(ObsSingle4mean -1.96*Scenario1TE<Ts&ObsSingle4mean+1.96*Scenario1TE>Ts),2) 
# 0.95 
 
# Scenario 2 
Daily4 = matrix(NA, nrow = PopN, ncol=4) 
ObsDaily4 = matrix(NA, nrow = PopN, ncol=4) 
for(i in 1:4){ 
  Daily4[,i]=Ts + rnorm(PopN, 0, TEInter) 
  ObsDaily4[,i]=Daily4[,i] + rnorm(PopN, 0,TEIntra)} 
ObsDaily4mean = apply(ObsDaily4,1,mean) 
round(mean(ObsDaily4mean -1.96*Scenario2TE<Ts&ObsDaily4mean+1.96*Scenario2TE>Ts),2) 
# 0.95 
 
# Scenario 3 
ObsFour4 = array(NA, dim=c(PopN,4,4)) 
for(i in 1:4){ 
  for(j in 1:4){ 
    ObsFour4[,j,i] = Daily4[,i]+rnorm(PopN,0,TEIntra)}} 
ObsFour4mean = matrix(NA, nrow = PopN, ncol=4) 
for(i in 1:4){ 
  ObsFour4mean[,i] = apply(ObsFour4[,,i],1,mean)} 
ObsFour4Gmean = apply(ObsFour4mean,1,mean) 
round(mean(ObsFour4Gmean -1.96*Scenario3TE<Ts&ObsFour4Gmean+1.96*Scenario3TE>Ts),2) 
# 0.95 
 
 
##########################################################################
####### 
##########################################################################
####### 
#########################              ########################################## 
 
############ Framework extension 2 – Intermediate testing 
 
# Here we use Monte Carlo simulation to conceptualise capturing uncertainty with 
# intermediate testing.  
 
# Create plot illustrating example from paper 
 
# Set up participant true scores across ten weeks assuming 30 Watt improvement  
# per week for 10 weeks, with measurements taken every 2 weeks and a TE of 200 Watts 
IntermediateBase = 3000 
IntermediateDuration = 10 
IntermediateFrequency = 2 
IntermediateGradient = 30 
IntermediateExampleTrue = seq(IntermediateBase, 
                              IntermediateBase+(IntermediateDuration*IntermediateGradient), 
                              IntermediateFrequency*IntermediateGradient) 
IntermediateN = length(IntermediateExampleTrue) 
IntermediateTE = 200 
IntermediateIterations = 10 
# Create observed scores 
set.seed(1) 
IntermediateExampleObs = IntermediateExampleTrue + rnorm(IntermediateN,0,IntermediateTE) 
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IntermediateExampleDraws = rep(IntermediateExampleObs,IntermediateIterations)+ 
                           rnorm(IntermediateN*IntermediateIterations,0,IntermediateTE) 
 
IntermediateExampleDF = data.frame(Y = c(IntermediateExampleObs,IntermediateExampleDraws), 
                                   X = rep(seq(0,IntermediateDuration,IntermediateFrequency),IntermediateIterations+1), 
                                   group = factor(c(rep("Obs",IntermediateN), 
                                                    rep("MC",IntermediateN*IntermediateIterations))), 
                                   group2 = factor(rep((1:(IntermediateIterations+1)),each=IntermediateN))) 
 
# Fit regression lines 
IntermediateExampleRM  = matrix(NA, nrow = 2, ncol =IntermediateIterations+1) 
RSeq = seq(1,length(IntermediateExampleDF[,1]),IntermediateN) 
for(i in 1:(IntermediateIterations+1)){ 
    LM = lm(Y~X,data=IntermediateExampleDF[(RSeq[i]:(RSeq[i]+(IntermediateN-1))),]) 
    IntermediateExampleRM[1,i]=summary(LM)$coefficient[1,1] 
    IntermediateExampleRM[2,i]=summary(LM)$coefficient[2,1]} 
IntermediateExampleRM 
 
# 1st plot of single regression line from observed data 
SingleRegressionPlot = ggplot(IntermediateExampleDF,aes(x=X,y=Y,color=group))+geom_point() + 
  scale_color_manual(values=c("black", "red")) +  
  geom_abline(intercept = IntermediateExampleRM[1,1],  
              slope = IntermediateExampleRM[2,1],color="red")+ 
  scale_x_continuous(breaks = seq(0,10,1))+ 
  theme_classic()+ xlab("Week") + ylab("Power (Watts)") +   
  theme(legend.position="none") 
SingleRegressionPlot 
 
# 2nd plot with regression lines from random sample based on first set of  
# observed data 
AllRegressionPlot = ggplot(IntermediateExampleDF,aes(x=X,y=Y,color=group2))+geom_point() + 
  scale_color_manual(values=c("red", "black","slategray","springgreen", 
                                   "steelblue2","tan","turquoise","yellow", 
                                   "gold3","blue4","grey20")) + theme_classic()+ 
  geom_abline(intercept = IntermediateExampleRM[1,1],  
              slope = IntermediateExampleRM[2,1],color="red",alpha=0.4)+ 
  geom_abline(intercept = IntermediateExampleRM[1,2],  
              slope = IntermediateExampleRM[2,2],color="black",alpha=0.4)+ 
  geom_abline(intercept = IntermediateExampleRM[1,3],  
              slope = IntermediateExampleRM[2,3],color="slategray",alpha=0.4)+ 
  geom_abline(intercept = IntermediateExampleRM[1,4],  
              slope = IntermediateExampleRM[2,4],color="springgreen",alpha=0.4)+ 
  geom_abline(intercept = IntermediateExampleRM[1,5],  
              slope = IntermediateExampleRM[2,5],color="steelblue2",alpha=0.4)+ 
  geom_abline(intercept = IntermediateExampleRM[1,6],  
              slope = IntermediateExampleRM[2,6],color="tan",alpha=0.4)+ 
  geom_abline(intercept = IntermediateExampleRM[1,7],  
              slope = IntermediateExampleRM[2,7],color="turquoise",alpha=0.4)+ 
  geom_abline(intercept = IntermediateExampleRM[1,8],  
              slope = IntermediateExampleRM[2,8],color="yellow",alpha=0.4)+ 
  geom_abline(intercept = IntermediateExampleRM[1,9],  
              slope = IntermediateExampleRM[2,9],color="gold3",alpha=0.4)+ 
  geom_abline(intercept = IntermediateExampleRM[1,10],  
              slope = IntermediateExampleRM[2,10],color="blue4",alpha=0.4)+ 
  geom_abline(intercept = IntermediateExampleRM[1,11],  
              slope = IntermediateExampleRM[2,11],color="grey20",alpha=0.4)+ 
  scale_x_continuous(breaks = seq(0,10,1))+ 
xlab("Week") + ylab("Power (Watts)") +   
  theme(legend.position="none") 
 
AllRegressionPlot 
 
# Using the small sample of regression lines quantify uncertainty in improvement 
(10*IntermediateExampleRM[2,])[order(IntermediateExampleRM[2,])] 
quantile(10*IntermediateExampleRM[2,],c(0.025,0.25,0.5,0.75,0.975)) 
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# Combine Plots 
plot_grid(SingleRegressionPlot, AllRegressionPlot,labels = c('A', 'B'), ncol = 1) 
# 1000 by 600 
 
 
# Development of true score change confidence intervals using large number of Monte Carlo Iterations  
set.seed(1234) 
IntermediateMCRegression = c(NULL) 
for(i in 1:10000){ 
  Data = data.frame(X =seq(0,10,2), 
                    Y = IntermediateExampleObs + rnorm(6,0,IntermediateTE)) 
  IntermediateMCRegression[i] = 10*summary(lm(Y~X,data=Data))$coefficient[2,1]} 
 
quantile(IntermediateMCRegression,c(0.025,0.25,0.5,0.75,0.975)) 
 
#75% CI 
quantile(IntermediateMCRegression,c(0.125,0.875)) 
 
 
# Least squares regression example.  
# We recreate the above Monte Carlo simulation analytically using least squares 
 
X = matrix(c(rep(1,6),seq(0,10,2)),nrow=6,ncol=2) 
y = matrix(c(2874,3097,2953,3499,3305,3136),nrow=6,ncol=1) 
 
Betahat = solve(t(X)%*%X)%*%t(X)%*%y  
SampleVar = IntermediateTE^2*solve(t(X)%*%X) 
 
# Approximate 75%CI  
10*(Betahat[2,1]-1.15*sqrt(SampleVar[2,2])) 
10*(Betahat[2,1]+1.15*sqrt(SampleVar[2,2])) 
 
# Plot showing true score change intervals across different measurement frequencies 
# for Monte Carlo and least squares regression 
 
# Function to create data for 100 realisations of observed scores across different  
# measurement frequencies  
Data100 = function(IntermediateFreq){ 
  True = seq(IntermediateBase, 
             IntermediateBase+(IntermediateDuration*IntermediateGradient), 
             IntermediateFreq*IntermediateGradient) 
  N = length(True) 
  DataCollect = matrix(NA, nrow=100,ncol=N) 
  for(i in 1:100){ 
    DataCollect[i,]=True + rnorm(N,0,IntermediateTE)} 
  return(DataCollect)} 
 
# Function to run Monte Carlo Simulation method on data and calculate CIs of given % 
MonteCarloCI = function(Data,timepoints,ProportionCI){ 
  N = length(timepoints) 
  CIBounds = matrix(NA,nrow=100,ncol=2) 
  for(i in 1:100){ 
    ChangeEstimate = c(NULL) 
    for(j in 1:1000){ 
      DataI = data.frame(X =timepoints, 
                         Y = Data[i,] + rnorm(N,0,IntermediateTE)) 
      ChangeEstimate[j] = 10*summary(lm(Y~X,data=DataI))$coefficient[2,1]} 
    CIBounds[i,1]=quantile(ChangeEstimate,c(((1-ProportionCI)/2),1-((1-ProportionCI)/2)))[[1]] 
    CIBounds[i,2]=quantile(ChangeEstimate,c(((1-ProportionCI)/2),1-((1-ProportionCI)/2)))[[2]]} 
  return(CIBounds)} 
 
# Function to run analytical method on data and calculate CIs of given % 
LeastSquaresCI = function(Data,timepoints,ProportionCI){ 
  # Calculate multiplier 

https://doi.org/10.31236/osf.io/y7sk6


Doi:| SportR𝜒iv Preprint version 1 

 

 

 Multiplier =  -1*qnorm((1-ProportionCI)/2) 
X = matrix(c(rep(1,length(Data[1,])),timepoints),nrow=length(Data[1,]),ncol=2) 
LSE = c(NULL) 
SE = sqrt((IntermediateTE^2*solve(t(X)%*%X))[2,2]) 
CIBounds = matrix(NA,nrow=100,ncol=2) 
for(i in 1:100){ 
  y = as.matrix(Data[i,]) 
  LSE[i]=(solve(t(X)%*%X)%*%t(X)%*%y)[2,1] 
  CIBounds[i,1]=10*(LSE[i]-(Multiplier*SE)) 
  CIBounds[i,2]=10*(LSE[i]+(Multiplier*SE))} 
return(CIBounds)} 
 
 
# Three time points  
set.seed(123) 
Data3 = Data100(5) 
MonteCarlo3T95 = MonteCarloCI(Data=Data3,timepoints=c(0,5,10),ProportionCI=0.95) 
mean(MonteCarlo3T95[,1]<300&MonteCarlo3T95[,2]>300) 
LeastSquares3T95 = LeastSquaresCI(Data=Data3,timepoints=c(0,5,10),ProportionCI=0.95) 
mean(LeastSquares3T95[,1]<300&LeastSquares3T95[,2]>300) 
 
# Six time points 
set.seed(123) 
Data6 = Data100(2) 
MonteCarlo6T95 = MonteCarloCI(Data=Data6,timepoints=seq(0,10,2),ProportionCI=0.95) 
mean(MonteCarlo6T95[,1]<300&MonteCarlo6T95[,2]>300) 
LeastSquares6T95 = LeastSquaresCI(Data=Data6,timepoints=seq(0,10,2),ProportionCI=0.95) 
mean(LeastSquares6T95[,1]<300&LeastSquares6T95[,2]>300) 
 
# Eleven time points 
set.seed(12) 
Data11 = Data100(1) 
MonteCarlo11T95 = MonteCarloCI(Data=Data11,timepoints=seq(0,10,1),ProportionCI=0.95) 
mean(MonteCarlo11T95[,1]<300&MonteCarlo11T95[,2]>300) 
LeastSquares11T95 = LeastSquaresCI(Data=Data11,timepoints=seq(0,10,1),ProportionCI=0.95) 
mean(LeastSquares11T95[,1]<300&LeastSquares11T95[,2]>300) 
 
# Twenty-one time points 
set.seed(12) 
Data21 = Data100(0.5) 
MonteCarlo21T95 = MonteCarloCI(Data=Data21,timepoints=seq(0,10,0.5),ProportionCI=0.95) 
mean(MonteCarlo21T95[,1]<300&MonteCarlo21T95[,2]>300) 
LeastSquares21T95 = LeastSquaresCI(Data=Data21,timepoints=seq(0,10,0.5),ProportionCI=0.95) 
mean(LeastSquares21T95[,1]<300&LeastSquares21T95[,2]>300) 
 
# Plot  
MC3DF = data.frame(LB = MonteCarlo3T95[,1],UB=MonteCarlo3T95[,2], 
                   C=MonteCarlo3T95[,1]<300&MonteCarlo3T95[,2]>300, 
                   X=seq(331,430,1)) 
MC3DF$Mid = (MC3DF$UB + MC3DF$LB)/2 
 
MC6DF = data.frame(LB = MonteCarlo6T95[,1],UB=MonteCarlo6T95[,2], 
                   C=MonteCarlo6T95[,1]<300&MonteCarlo6T95[,2]>300, 
                   X=seq(221,320,1)) 
MC6DF$Mid = (MC6DF$UB + MC6DF$LB)/2 
 
MC36DF = rbind(MC3DF,MC6DF) 
 
MC11DF = data.frame(LB = MonteCarlo11T95[,1],UB=MonteCarlo11T95[,2], 
                   C=MonteCarlo11T95[,1]<300&MonteCarlo11T95[,2]>300, 
                   X=seq(111,210,1)) 
MC11DF$Mid = (MC11DF$UB + MC11DF$LB)/2 
 
MC3611DF = rbind(MC3DF,MC6DF,MC11DF) 
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MC21DF = data.frame(LB = MonteCarlo21T95[,1],UB=MonteCarlo21T95[,2], 
                    C=MonteCarlo21T95[,1]<300&MonteCarlo21T95[,2]>300, 
                    X=seq(1,100,1)) 
MC21DF$Mid = (MC21DF$UB + MC21DF$LB)/2 
 
MC361121DF = rbind(MC3DF,MC6DF,MC11DF,MC21DF) 
 
MCPlot = ggplot(MC361121DF, aes(X, Mid, group=C)) +         
  geom_point(alpha=0) + 
  geom_errorbar(aes(ymin = LB, ymax = UB,color=C))+ 
  ylab("Power (Watts)") + theme_classic() +    
  scale_y_continuous(breaks=seq(-1000,1500,200))+ 
  coord_flip()+ 
  theme(legend.position="none",axis.title.y=element_blank(), 
        axis.text.y=element_blank(), 
        axis.ticks.y=element_blank()) +  
  geom_hline(yintercept = 300,linetype="dashed", size =0.8) 
 
LS3DF = data.frame(LB = LeastSquares3T95[,1],UB=LeastSquares3T95[,2], 
                   C=LeastSquares3T95[,1]<300&LeastSquares3T95[,2]>300, 
                   X=seq(331,430,1)) 
LS3DF$Mid = (LS3DF$UB + LS3DF$LB)/2 
 
LS6DF = data.frame(LB = LeastSquares6T95[,1],UB=LeastSquares6T95[,2], 
                   C=LeastSquares6T95[,1]<300&LeastSquares6T95[,2]>300, 
                   X=seq(221,320,1)) 
LS6DF$Mid = (LS6DF$UB + LS6DF$LB)/2 
 
LS36DF = rbind(LS3DF,LS6DF) 
 
LS11DF = data.frame(LB = LeastSquares11T95[,1],UB=LeastSquares11T95[,2], 
                    C=LeastSquares11T95[,1]<300&LeastSquares11T95[,2]>300, 
                    X=seq(111,210,1)) 
LS11DF$Mid = (LS11DF$UB + LS11DF$LB)/2 
 
LS3611DF = rbind(LS3DF,LS6DF,LS11DF) 
 
LS21DF = data.frame(LB = LeastSquares21T95[,1],UB=LeastSquares21T95[,2], 
                    C=LeastSquares21T95[,1]<300&LeastSquares21T95[,2]>300, 
                    X=seq(1,100,1)) 
LS21DF$Mid = (LS21DF$UB + LS21DF$LB)/2 
 
LS361121DF = rbind(LS3DF,LS6DF,LS11DF,LS21DF) 
 
LSPlot = ggplot(LS361121DF, aes(X, Mid, group=C)) +         
  geom_point(alpha=0) + 
  geom_errorbar(aes(ymin = LB, ymax = UB,color=C))+ 
  ylab("Power (Watts)") + theme_classic() +    
  scale_y_continuous(breaks=seq(-1000,1500,200))+ 
  coord_flip()+ 
  theme(legend.position="none",axis.title.y=element_blank(), 
        axis.text.y=element_blank(), 
        axis.ticks.y=element_blank(), 
        axis.line.y=element_blank()) +  
  geom_hline(yintercept = 300,linetype="dashed", size =0.8) 
 
plot_grid(MCPlot, LSPlot,labels = c('A', 'B'), hjust=-1.5,label_size = 12) 
# 1000 by 600 
   
##########################################################################
####### 
##########################################################################
####### 
#########################              ########################################## 
 

https://doi.org/10.31236/osf.io/y7sk6


Doi:| SportR𝜒iv Preprint version 1 

 

 

############ Autoregressive Modelling  
 
# We assume that a single measurement is made each day and we model errors from   
# AR(1) models with autocorrelation of 0.2 and 0.8, and in both cases sigma equal to 200. 
 
# Build AR(1) 
# for theta 0.2 we have var(y)= 200^2 = zeta^2 / 1-0.2^2; hence zeta = 196  
# for theta 0.2 we have var(y)= 200^2 = zeta^2 / 1-0.8^2; hence zeta = 120  
 
set.seed(112) 
UPower0.2 = WPower0.2 =rnorm(71,0,196) 
for(i in 2:71){ 
  UPower0.2[i] = 0.2*UPower0.2[i-1] + WPower0.2[i]} 
sd(UPower0.2) 
 
set.seed(112) 
UPower0.8 = WPower0.8 =rnorm(71,0,120) 
for(i in 2:71){ 
  UPower0.8[i] = 0.8*UPower0.8[i-1] + WPower0.8[i]} 
sd(UPower0.8) 
 
# Add linear regression to AR(1) Errors 
Power0.2 = c(NULL) 
for(i in 1:71){ 
  Power0.2[i]=3000 + ((i-1)*(300/70)) + UPower0.2[i] 
} 
 
Power0.8 = c(NULL) 
for(i in 1:71){ 
  Power0.8[i]=3000 + ((i-1)*(300/70)) + UPower0.8[i] 
} 
 
# Plot data 
PowerIDF = data.frame(Obs0.2 = Power0.2, 
                      Obs0.8 = Power0.8, 
                      Day = seq(0,70,1), 
                      True = seq(3000,3300,(300/70))) 
 
AR0.2Plot = ggplot(PowerIDF, aes(x=Day,Obs0.2)) +  
  geom_point() + theme_classic() +  
  geom_abline(intercept = 3000, slope = 300/70,color="red")+ 
  scale_x_continuous(limit = c(0,70), breaks = seq(0,70,5))+ 
  scale_y_continuous(limit = c(2500,3750),breaks = seq(2500,3750,250))+ 
  theme_classic()+ xlab("Day") + ylab("Power (Watts)") + 
  geom_segment(aes(x=0:70,y=c(rep(0,14),PowerIDF$Obs0.2[15:43], 
                              rep(0,28)),xend=1:71, 
                   yend=c(rep(0,14),PowerIDF$Obs0.2[16:44], 
                          rep(0,28)))) 
 
 
AR0.2Plot 
 
AR0.8Plot = ggplot(PowerIDF, aes(x=Day,Obs0.8)) +  
  geom_point() + theme_classic() +  
  geom_abline(intercept = 3000, slope = 300/70,color="red")+ 
  scale_x_continuous(limit = c(0,70), breaks = seq(0,70,5))+ 
  scale_y_continuous(limit = c(2500,3750),breaks = seq(2500,3750,250))+ 
  theme_classic()+ xlab("Day") + ylab("Power (Watts)") + 
  geom_segment(aes(x=0:70,y=c(rep(0,14),PowerIDF$Obs0.8[15:54], 
                              rep(0,17)),xend=1:71, 
                   yend=c(rep(0,14),PowerIDF$Obs0.8[16:55], 
                          rep(0,17)))) 
 
AR0.8Plot 
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# Combine plots  
plot_grid(AR0.2Plot,AR0.8Plot,labels = c('A', 'B'), hjust=-1.5,label_size = 12) 
# 1000 by 600 
 
# Fit AR(1) models using the arima function in R and least squares 
 
# Function that returns the least squares estimate of the regression slope and  
# standard error. Assumes serial correlation and TE are known.  
 
LeastSquaresAR1 = function(Data,timepoints,rho){ 
  n =length(timepoints) 
  # Create design matrix 
  X = matrix(c(rep(1,length(timepoints)),timepoints),nrow=length(timepoints),ncol=2) 
  # Create correlation matrix 
  exponent = abs(matrix(1:n - 1, nrow = n, ncol = n, byrow = TRUE) -  
                   (1:n - 1)) 
  R = rho^exponent 
  LSE = (solve(t(X)%*%X)%*%t(X)%*%Data)[2,1] 
  SE = sqrt((IntermediateTE^2*(solve(t(X)%*%X)%*%t(X)%*%R%*%X%*%solve(t(X)%*%X)))[2,2]) 
  return(c(LSE,SE))} 
 
# arima calculation 0.2 
arima0.2 = arima(PowerIDF$Obs0.2, xreg=seq(0,70,1), order=c(1,0,0)) 
arima0.2 
# Estimated improvement across intervention 
arima0.2$coef[[3]]*70 
# 95% CI 
70*(arima0.2$coef[[3]]-1.96*sqrt(arima0.2$var.coef[[3,3]])) 
70*(arima0.2$coef[[3]]+1.96*sqrt(arima0.2$var.coef[[3,3]])) 
 
# arima calculation 0.8 
arima0.8 = arima(PowerIDF$Obs0.8, xreg=seq(0,70,1), order=c(1,0,0)) 
arima0.8 
# Estimated improvement across intervention 
arima0.8$coef[[3]]*70 
# 95% CI 
70*(arima0.8$coef[[3]]-1.96*sqrt(arima0.8$var.coef[[3,3]])) 
70*(arima0.8$coef[[3]]+1.96*sqrt(arima0.8$var.coef[[3,3]])) 
 
#least squares calculation 
# calculation 0.2 
LSAR10.2 = LeastSquaresAR1(PowerIDF$Obs0.2,seq(0,70,1),0.2) 
# Estimated improvement across intervention 
LSAR10.2[1]*70 
# 95% CI 
70*(LSAR10.2[1]-1.96*LSAR10.2[2]) 
70*(LSAR10.2[1]+1.96*LSAR10.2[2]) 
 
# calculation 0.8 
LSAR10.8 = LeastSquaresAR1(PowerIDF$Obs0.8,seq(0,70,1),0.8) 
# Estimated improvement across intervention 
LSAR10.8[1]*70 
# 95% CI 
70*(LSAR10.8[1]-1.96*LSAR10.8[2]) 
70*(LSAR10.8[1]+1.96*LSAR10.8[2]) 
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