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Abstract 24 

The Banister impulse-response (IR) model quantitatively relates athletic performance to training. Despite 25 

its long history, the model usefulness remains limited due to difficulties in obtaining precise parameter 26 

estimates and performance predictions. To address these challenges, we developed a Bayesian 27 

implementation of the IR model, which formalizes the combined use of prior knowledge and data. We 28 

report the following methodological contributions: 1) we reformulated the model to facilitate the 29 

specification of informative priors, 2) we derived the IR model in Bayesian terms, and 3) we developed a 30 

method that enabled the JAGS software to be used while enforcing parameter constraints. We applied the 31 

model to the training and performance data of a national-class middle-distance runner. We specified the 32 

priors from published values of IR model parameters, followed by estimating the posterior distributions 33 

from the priors and the athlete’s data. The Bayesian approach led to more precise and plausible parameter 34 

estimates than nonlinear least squares. We then drew inferences from the Bayesian model regarding the 35 

athlete’s performance and showed how the method can be applied in perpetuity as new data are collected. 36 

We conclude that the Bayesian implementation of the IR model overcomes the foremost challenges to its 37 

usefulness for athlete monitoring.  38 

  39 
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1. Introduction 40 

Maximizing athletic performance depends primarily on athletes undertaking appropriate training loads at 41 

appropriate times. Understanding the quantitative relationship between training and performance is thus 42 

of interest to athletes and their advisors. Mathematical models that predict performance from training have 43 

been proposed, with the most studied being the Banister impulse-response (IR) model (Clarke & Skiba, 44 

2013). The IR model expresses performance at time t as the sum of the initial or baseline performance 45 

capacity, P0, the positive training effects, and the negative training effects (Equation 1).  46 

𝑃𝑃𝑡𝑡 =  𝑃𝑃0 +  𝐾𝐾1�𝑒𝑒−
𝑡𝑡−𝑠𝑠
𝜏𝜏1 ∗  𝑊𝑊𝑠𝑠 − 𝐾𝐾2�𝑒𝑒−

𝑡𝑡−𝑠𝑠
𝜏𝜏2 ∗  𝑊𝑊𝑠𝑠

𝑡𝑡−1

𝑠𝑠=0

𝑡𝑡−1

𝑠𝑠=0

 (1) 

K1 and K2 are terms that express the change in performance per unit training accomplished, τ1 and τ2 are 47 

constants that describe the decay rates of the positive and negative training effects over time, and Ws is 48 

the training accomplished at time = s. The model presents an intuitive framework for understanding the 49 

dynamic response to training (Clarke & Skiba, 2013). This form of the model features five adjustable 50 

parameters (P0, K1, K2, τ1, τ2) that are typically estimated by fitting the model to data from maximal-effort 51 

performances using maximum-likelihood approaches. The model has been used to analyze and predict 52 

performance and optimize training in various sports such as cycling, running, swimming, weightlifting, 53 

and track and field events (Clarke & Skiba, 2013).   54 

Despite its promise, the model features several noteworthy limitations. First, its use can be burdensome 55 

in terms of time and effort. Training load data (Ws) must be rigorously collected, which is facilitated by 56 

available wearable and portable technologies such as bicycle-mounted power meters and GPS 57 

wristwatches. High-quality performance data (Pt) must likewise be regularly collected, and this 58 

requirement particularly challenges the model’s widespread use. For example, athletes may compete too 59 

infrequently to accumulate sufficient data from competitions, or they may be reluctant to devote training 60 

time to performance tests. Even if sufficient performance data are accumulated, the signal-to-noise ratio 61 

in these data is typically low for experienced athletes because their performance levels tend to be relatively 62 

stable. Accordingly, the parameters of the model are often poorly estimated (Busso & Thomas, 2006; 63 

Hellard et al., 2006). The aforementioned data challenge is difficult to overcome: IR model estimation 64 

methods employed to date are entirely data driven, with no formal way to incorporate other knowledge 65 

into the framework. Approaches to overcome these challenges are therefore sought.  66 
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An analogous challenge has been successfully addressed by anti-doping organizations in implementing 67 

the Athlete Biological Passport (ABP). The ABP is a framework developed to monitor suspicious changes 68 

in biomarkers of doping over time (Sottas, Robinson, Rabin, & Saugy, 2011). The effectiveness of the 69 

ABP is challenged by the relatively infrequency of athlete testing and the measured variables being 70 

influenced by both biological and nuisance technical factors. Stewards of the ABP resolved this challenge 71 

in part by employing Bayesian methods, in which prior probability distributions (“priors”) based on 72 

population averages define the normal ranges for the measured variables for a given athlete, and these 73 

ranges are updated using data collected from the athlete (Sottas, Robinson, & Saugy, 2010). With every 74 

test, the ranges become increasingly athlete specific. The ABP has been successful in reducing doping 75 

prevalence. More recently, a Bayesian framework was proposed to monitor suspicious changes in 76 

performance, as part of an emerging “performance passport” approach to anti-doping (Hopker et al., 77 

2020). By formalizing the judicious use of prior information, Bayesian approaches are useful when data 78 

are sparse, and athletes, coaches, and sport scientists can contribute their knowledge to the specification 79 

of the priors. Despite the promise of Bayesian approaches, the IR model has yet to be specified in a 80 

Bayesian framework and applied in practice. 81 

The purpose of this study is to cast the IR model in a Bayesian framework and to apply it to data from an 82 

elite middle-distance runner. We report the following methodological contributions: first, we reformulated 83 

the model to enhance our ability to specify informative prior distributions for the model parameters. 84 

Second, we derived the IR model in Bayesian terms. Third, we developed a generalizable procedure for 85 

imposing parameter constraints that enabled the computations to be conducted using JAGS software. We 86 

then estimated the model from the runner’s data and demonstrated the superiority of Bayesian inference 87 

compared to a commonly used nonlinear regression procedure in terms of the precision and plausibility 88 

of the parameter estimates. We conclude that the Bayesian inference approach provides a theoretically 89 

and empirically superior approach for applying the IR model to the longitudinal monitoring and prediction 90 

of athletic training and performance.  91 

Methods 92 

2.1 Study design & participant 93 

The study design was observational; we used previously collected training-load and performance data to 94 

fit the models. Ethical approval was obtained from the Simon Fraser University Office of Research Ethics. 95 

A Canadian national-level middle-distance runner volunteered to participate in the study and provided 96 
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informed consent. The athlete provided a season’s worth of training and performance data, spanning 97 

September 1, 2017 to July 28, 2018 (301 days), during which time 259 workouts were documented.  98 

2.2 Training and performance data 99 

The daily training loads Ws were recorded as the individualized training impulse (TRIMPi; Manzi, Iellamo, 100 

Impellizzeri, D’Ottavio, & Castagna, 2009). An athlete-specific multiplying factor was used to represent 101 

the nonlinear effect of intensity on training load. The function was generated from the relationship between 102 

blood lactate levels and the fraction of heart-rate reserve measured during an incremental treadmill 103 

exercise test.  104 

The athlete trained on 259 days during the season but TRIMPi were measured only for 173 of those days, 105 

likely because the athlete did not wear the heart-rate chest strap for all workouts. We therefore imputed 106 

the TRIMPi values in the following manner. First, we assumed that the TRIMPi were missing at random, 107 

and we observed that they were linearly associated with the distances run (km) during the workouts 108 

recorded by the GPS wristwatch. We used linear regression to quantify the relationship between TRIMPi 109 

and distance run, with distance run specified as the explanatory variable and log(TRIMPi) as the response 110 

variable. The TRIMPi were log transformed to ensure the validity of the normality assumption of the 111 

linear regression. Second, we used single imputation (Zhang, 2016), in which random errors are added to 112 

the predicted values from the regression model, to ensure that the imputed values had similar variation as 113 

the observed data.  114 

Performance Pt was expressed as IAAF points achieved in sanctioned races. This approach was used 115 

because the athletes raced over different distances (e.g., 800 m, 1,500 m, and one mile), whose times and 116 

velocities are not straightforwardly comparable. Referring to equation (1), the data are denoted P = 117 

(P1,...,PN) where N measurements were recorded.  118 

Model estimation: nonlinear least squares 119 

The parameters of the IR model (Equation 1) were estimated using nonlinear least squares. This procedure 120 

finds the combination of parameter values that minimize the sum-of-squares of the residual values 121 

corresponding to the modeled and measured performances (Johnson & Frasier, 1985). The method was 122 

implemented in R using the “nlminb” function. Confidence intervals for the parameter values were 123 

computed using a bootstrap method (Efron & Tibshirani, 1986).  124 

2.3 Model formulation 125 
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We cast the IR model in a stochastic framework by reformulating the original version of the model 126 

(Equation 1) as follows: 127 

𝑃𝑃𝑡𝑡 =  𝑃𝑃0 +  𝐾𝐾1�𝑒𝑒−
𝑡𝑡−𝑠𝑠
𝜏𝜏1 ∗  𝑊𝑊𝑠𝑠 − 𝜃𝜃 ∗ 𝐾𝐾1�𝑒𝑒−

𝑡𝑡−𝑠𝑠
𝜏𝜏2 ∗  𝑊𝑊𝑠𝑠

𝑡𝑡−1

𝑠𝑠=0

𝑡𝑡−1

𝑠𝑠=0

+ ε𝑡𝑡 =  𝜇𝜇𝑡𝑡 + ε𝑡𝑡 (2) 

where 𝜇𝜇𝑡𝑡  is the expected value of performance, ε𝑡𝑡  are the unobserved errors, and 𝜃𝜃  is an unknown 128 

constant greater than one that relates K1 to K2. The 𝜇𝜇𝑡𝑡 and ε𝑡𝑡 terms allow the model to be probabilistically 129 

assessed. In section 2.4, we discuss distributional assumptions concerning ε𝑡𝑡 . We rewrote K2 as 𝜃𝜃*K1 130 

because 𝜃𝜃 is a parameter for which we have greater prior knowledge, and it is less dispersed than K2. The 131 

corresponding physiology imposes the restriction 𝜃𝜃 > 1.  132 

To enhance the interpretability of the IR model, two derived parameters are commonly calculated, tn and 133 

tg. tn is the day after which training has a net negative influence on performance at time t, and tg is the 134 

day on which training has the highest positive influence on performance at time t. tn and tg are computed 135 

from the following formulae: 136 

𝑡𝑡𝑛𝑛 =  
𝜏𝜏1𝜏𝜏2
𝜏𝜏1 − 𝜏𝜏2

𝑙𝑙𝑙𝑙 �
𝐾𝐾2
𝐾𝐾1
� (3) 

𝑡𝑡𝑔𝑔 =  
𝜏𝜏1𝜏𝜏2
𝜏𝜏1 − 𝜏𝜏2

𝑙𝑙𝑙𝑙 �
𝐾𝐾2
𝐾𝐾1
𝜏𝜏1
𝜏𝜏2
� (4) 

Using these equations, 𝜃𝜃 can be rewritten entirely in terms of τ1, τ2, tn, and tg, which are parameters for 137 

which we have the best prior knowledge. 138 

𝜃𝜃 = 𝐾𝐾2/𝐾𝐾1 = (𝜏𝜏1/𝜏𝜏2)
� 1
𝑡𝑡𝑔𝑔/𝑡𝑡𝑛𝑛−1

�
 (5) 

Overall, the IR model parameters (𝑃𝑃0,𝐾𝐾1,𝐾𝐾2, 𝜏𝜏1, 𝜏𝜏2) are reformulated as (𝑃𝑃0,𝐾𝐾1,𝜃𝜃, 𝜏𝜏1, 𝜏𝜏2).  139 

2.4 Bayesian implementation of the IR model 140 

Bayesian approaches are being increasingly used in sports science and are particularly useful for 141 

applications involving elite athletes (Hecksteden et al., 2022; Santos-Fernandez, Wu, & Mengersen, 2019). 142 

Primers on the use of Bayesian approaches are available elsewhere (van de Schoot et al., 2021; Van de 143 

Schoot et al., 2014). In the Bayesian approach, a posterior probability distribution is obtained from the 144 

prior distribution and the likelihood function. To cast the IR model in a Bayesian framework, we first 145 

assume that the model parameters are random variables that conform to particular probability distributions. 146 
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The prior density 𝜋𝜋(𝛩𝛩) encodes background knowledge regarding the model parameters. The likelihood 147 

function 𝑓𝑓(𝑃𝑃|𝛩𝛩) specifies the information from the data. The posterior density describes the updated 148 

probability associated with the model parameters (given the data) and is proportional to the product of the 149 

prior distribution and likelihood function, as follows: 150 

𝜋𝜋(𝛩𝛩|𝑃𝑃) ∝ 𝑓𝑓(𝑃𝑃|𝛩𝛩)𝜋𝜋(𝛩𝛩) (6) 

where 𝛩𝛩 refers to the parameters in the IR model, including the variance parameters associated with the 151 

random error term ε𝑡𝑡. The vector P = (P1, ..., PN) is the performance data. 152 

Next, we assumed that the observed performances P1, ..., PN are recorded daily, although this assumption 153 

is not necessary in practice. We then assumed that the performances are correlated in time; specifically, 154 

the performance on day t is related to the performance on day t-1, t-2, and so on with decreasing correlation. 155 

To encode this assumption, we assumed that the error terms ε1, ε2, . . . , ε𝑁𝑁 conformed to the multivariate 156 

normal distribution 𝑀𝑀𝑀𝑀𝑀𝑀𝑁𝑁(0,𝛴𝛴) , and we modeled the athlete’s performances [P1, P2 ,..., 157 

PN|𝑃𝑃0,𝐾𝐾1,𝜃𝜃, 𝜏𝜏1, 𝜏𝜏2,∑ ] as 𝑀𝑀𝑀𝑀𝑀𝑀𝑁𝑁(𝜇𝜇,𝛴𝛴) , where  𝜇𝜇 =   (𝜇𝜇 1, 𝜇𝜇 2 ,..., 𝜇𝜇 N). Note that 𝜇𝜇 t is the expected 158 

performance on day t (Equation 2). The parameter Σ is the variance-covariance matrix of the multivariate 159 

normal distribution, where the i,jth term of Σ is equal to σ2 * ρ|i-j|, 0<ρ<1. The parameter σ2 is the variance 160 

term, and ρ|i-j| is the correlation between performances on day i and day j. When i = j, ρ|i-j| is maximized 161 

and is equal to 1; for i ≠ j, ρ|i-j|  decreases as |i-j| increases. This stipulation reflects the notion that 162 

performances closer in time to one another are expected to be more similar. This idea has been used in the 163 

analysis of substitution times in soccer (Silva & Swartz, 2016). This parametrization is appealing due to 164 

its simplicity because the N(N+1)/2 parameters in Σ are reduced to two parameters (ρ, σ). Using the density 165 

function of the multivariate normal distribution, the likelihood function of the data is therefore expressed 166 

as follows: 167 

𝑓𝑓(𝑃𝑃|𝛩𝛩) = 𝑓𝑓(𝑃𝑃|𝑃𝑃0,𝐾𝐾1,𝜃𝜃, 𝜏𝜏1, 𝜏𝜏2,∑(σ, ρ)) ∝ 𝑑𝑑𝑑𝑑𝑑𝑑(∑(σ, ρ))−
1
2𝑒𝑒−

1
2(𝑃𝑃−𝜇𝜇)𝑇𝑇∑(σ,ρ)−1(𝑃𝑃−𝜇𝜇) (7) 

2.5 Prior elicitation 168 

The prior density 𝜋𝜋(𝛩𝛩) expresses our prior beliefs regarding the model parameters (Van de Schoot et al., 169 

2014); it does not depend on the data. Prior elicitation involves specifying the probability distribution to 170 

which the parameter is expected to conform. The certainties of the priors are encoded in the widths of the 171 

distributions: for parameters whose values are well established, relatively strong priors are assigned, 172 

whereas the priors for parameters whose values are less certain, more diffuse priors are assigned.  173 
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We elicited the prior density of 𝛩𝛩 = (𝑃𝑃0,𝐾𝐾1,𝜃𝜃, 𝜏𝜏1, 𝜏𝜏2, σ, ρ), which includes the five model parameters 174 

(Equation 2) and the two parameters related to the error distribution. We made the standard assumption 175 

that the priors are statistically independent. This assumption enabled us to simplify the prior density 176 

[𝑃𝑃0,𝐾𝐾1,𝜃𝜃, 𝜏𝜏1, 𝜏𝜏2,σ, ρ]  as the product [𝑃𝑃0][𝐾𝐾1][𝜃𝜃][𝜏𝜏1][𝜏𝜏2][σ][ρ] . We then assigned priors to 177 

[𝑃𝑃0], [𝐾𝐾1], [𝜃𝜃], [𝜏𝜏1], [𝜏𝜏2], [σ], and [ρ]. 𝑃𝑃0 is the initial performance of the athlete and we let [𝑃𝑃0] ~ Normal 178 

(p0, σp0) with hyper-parameters p0 and σp0 which are later specified. The parameters K1 and 𝜃𝜃  have 179 

continuous values and express the average change in IAAF scores per unit positive training effect (K1) 180 

and per unit negative training effect (𝜃𝜃*K1). The specification of prior information about K1 is challenging 181 

due to the inconsistent measurements in performance and training load in different sports. Different 182 

performance and training load measurements lead to different K1 scales. We therefore assigned a flat prior 183 

with a large range to K1 as [K1] ~ Uniform(0, 10). The interpretation of 𝜃𝜃 is well understood and expressed 184 

via Equation 5. Therefore, we assigned a strong prior to 𝜃𝜃 as [𝜃𝜃] ~ Normal(4.137, 6), truncated(1,∞). The 185 

parameters τ1 and τ2 are time constants that respectively describe the temporal decays of the positive and 186 

negative training effects. Values reported in the literature spanned 4 to 169 and 1 to 69 for τ1 and τ2, 187 

respectively. Based on our experience with the model, we found these ranges to be excessively wide, such 188 

that we set the following constraints: 5 < 𝜏𝜏1 < 60 and 3 < 𝜏𝜏2 < 60 . Therefore, we assigned normal 189 

priors [𝜏𝜏1] ~ Normal(50, 38), truncated (5,60), and [𝜏𝜏2] ~ Normal(13,12), truncated (3,60). The parameter 190 

ρ is a correlation coefficient and 0<ρ<1. The variability of ρ was assigned as [ρ] ~ Beta(10, 1), where E(ρ) 191 

= 0.91. This reflects the assumption that the performance on day i and day i - 1 are positively correlated. 192 

For σ, we assigned the standard Jeffreys reference prior [σ] ∝ 1/σ. And for P0, we assigned [P0] ~ Normal 193 

(1000, 20). 194 

Using the likelihood function (Equation 7), the posterior density was expressed as the following product: 195 

[𝑃𝑃0,𝐾𝐾1,𝜃𝜃, 𝜏𝜏1, 𝜏𝜏2, σ, ρ|P] ∝𝑓𝑓(𝑃𝑃|𝛩𝛩)[𝑃𝑃0][𝐾𝐾1][𝜃𝜃][𝜏𝜏1][𝜏𝜏2][σ][ρ] (8) 

The specified values for the parameters and hyper-parameters are based on information from published 196 

studies featuring the IR model. Specifically, we curated studies from our personal libraries and by 197 

identifying papers that cited the original Banister et al. (1975) study and Clarke and Skiba (2013). 198 

Altogether, we compiled 40 studies, from which we extracted approximately 100 sets of estimated 199 

parameters. Of these, 57 parameter sets adhered to the assumptions of the model, which were used to 200 

inform the priors (Supplementary information https://github.com/kenp666/IR-model).                                                                   201 

2.6 Computation 202 

https://github.com/kenp666/IR-model
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The posterior density (Equation 8) is complex and intractable, such that it is challenging to gain insights 203 

into the model parameters directly. We therefore used Markov Chain Monte Carlo (MCMC) simulation 204 

to generate samples of model parameters from the posterior distribution. We implemented MCMC using 205 

the JAGS package in R, the code for which is provided as Supplementary Information at 206 

https://github.com/kenp666/IR-model. A challenge with implementing MCMC is that the IR model 207 

parameters have the following constraints: 0 < K1 < K2, 𝜃𝜃>1, 5 < τ1 < 60, and 3 < τ2 < 60, which cannot 208 

be straightforwardly enforced within the JAGS software. Accordingly, an extra step in the sampling 209 

procedure was introduced to implement the constraints. For each iteration in the MCMC simulation, we 210 

first checked whether the constraints were satisfied. If they were satisfied, then the simulation results were 211 

retained; if not, then the generated variates were discarded, and the sampling was repeated. This procedure 212 

slowed the computation time, such that 1,000 iterations for adaptation and 5,000 iterations were run for 213 

each model. The posterior means served as point estimates of the parameters and the lower (2.5%) and 214 

upper (97.5%) quantiles of the posterior distributions served as the lower and upper bounds of the 95% 215 

credible interval estimates. 216 

Predicted IAAF points, P, can also be generated from the MCMC simulations. The procedure to simulate 217 

the IAAF points involved three steps (A Gelman et al., 2013). First, (P0, K1, 𝜃𝜃, τ1, τ2, σ, ρ) are sampled 218 

from the posterior distribution. Second, P is sampled from the multivariate normal distribution [P|P0, K1, 219 

𝜃𝜃, τ1, τ2, σ, ρ], as expressed in Equation 6, using the sampled values of (P0, K1, 𝜃𝜃, τ1, τ2, σ, ρ) and the 220 

training loads as the inputs to the IR model. This process provided a single variate P from the predictive 221 

distribution. Third, steps 1 and 2 were repeated to approximate the predictive distribution of P. The 222 

prediction of P was iterated 5,000 times, resulting in a distribution of P(t) trajectories. The 2.5% and 97.5% 223 

quantiles were computed for P(t) to estimate the 95% prediction interval of IAAF points. Standard 224 

diagnostic checks were performed to assess convergence (Andrew Gelman & Rubin, 1992).  225 

 226 

Results 227 

Training and performance data 228 

The runner completed 259 workouts, the distances for which were 18.7 ± 12.6 km. The athlete’s distances 229 

were linearly associated with the TRIMPi values (r = 0.65), and the missing TRIMPi were imputed as 230 

described in the Methods (Figure 1).  231 

https://github.com/kenp666/IR-model
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 232 

 233 

Figure 1. Scatterplots of TRIMPi versus distance run (km). A. Scatterplot of the measured values of 234 

TRIMPi and workout distance (km). B. Measured values (black points) overlaid with the imputed values 235 

of TRIMPi (red points). 236 

The TRIMPi values (observed and imputed) are plotted by day in Figure 2. The athlete competed in 13 237 

races, 10 of which were 800 m (outdoor), two were 1,500 m (outdoor), and one was 1 mile (indoor). The 238 

athlete’s IAAF scores ranged from 1,018 to 1,109 points. 239 

 240 

 241 

 242 
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243 
Figure 2. Training load and performances in season 2018. The black bars are the daily training loads 244 

(TRIMPi) and the red points are athlete’s performances (IAAF score) in 13 races. 245 

 246 

Model fitting using non-linear least squares 247 

We first fitted the IR model (Equation 1) using non-linear least squares. We observed that the model-248 

predicted IAAF scores followed the trend of the true IAAF scores (Figure 3), and the method provided 249 

plausible estimates for P0, K1 and K2. However, the estimated parameter values featured wide confidence 250 

intervals (Table 1). The estimated values of the well-understood parameters tn and tg were 84 and 155, 251 

respectively. The plausibility of these values of is questionable. 252 

 253 
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 254 

Figure 3. Modeled performance (black line) compared to performance data (IAAF scores, red points). 255 

The IR model was fitted using the non-linear least squares method. 256 

 257 

Table 1. Estimated parameters and 95% confidence intervals from the nonlinear least-squares procedure. 258 

Parameter Estimate 95% Confidence interval 
P0 1078 1,022, 1,799 
K1  0.056 -2.82, 16.15 
K2  0.068 -2.80, 16.17 
τ1 77 -731,491, 154 
τ2 65 -5,803, 129 
tn 84  19, 617 
tg 155 -167,864, 334 

 259 

Model fitting using the Bayesian approach 260 

The Bayesian approach led to predicted IAAF scores and corresponding 95% predictive intervals that 261 

captured most of observed IAAF scores. In addition, the fitted curve was smoother and less scattered than 262 
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the one from the non-linear least square estimates (Figure 4). Model diagnostics are reported in the 263 

Appendix. 264 

 265 

 266 

Figure 4. Modeled performance (black line is the point estimates, grey shadow is the posterior predictive 267 

interval) compared to performance data (IAAF scores, red points). The IR model was fitted using Bayesian 268 

method. 269 

The Bayesian approach led to parameter estimates that adhered to the IR model constraints and posterior 270 

intervals of reasonable widths (Table 2). The width of the posterior intervals of parameters tn and tg were 271 

still wide, but their estimates were more believable, and the fitted model can be used to suggest the taper 272 

strategy for this athlete.  273 

Table 2. Estimated parameters and 95% credible intervals from the Bayesian version of the IR model. 274 

Parameter Estimate 
(posterior mean) 

Credible interval 
(2.5%, 97.5%) 

P0 1028 986, 1,063 
k1  0.028 0.0024, 0.68 
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𝜃𝜃  2.75 1.16, 5.30 
τ1 50 45, 55 
τ2 13 9, 16 
tn 16 2, 29 
tg 39 25, 55 
ρ 0.83 0.61, 0.97 
σ 43 25, 86 

 275 

Comparing the prior and posterior distributions for parameters P0, K1, 𝜃𝜃, τ1, τ2, σ revealed that the data 276 

had a strong influence on the posterior distributions (Figure 5). In particular, the posterior standard 277 

deviations of the parameters τ1, τ2, and 𝜃𝜃 were markedly reduced, while the posterior mean of P0 was 278 

shifted to the right. The posterior density of K1 was narrow despite its less-informative prior, which was 279 

flat and had a wide range.  280 

 281 

Figure 5. Comparison of the prior (red) and posterior (black) densities for the IR model parameters. 282 

Discussion 283 

In this study, we applied Bayesian methods to the IR model involving an elite middle-distance runner. We 284 

made several methodological advances, including a reformulated the model to facilitate the specification 285 

of informative priors, we compiled published data to specify the priors, and we developed a method that 286 
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enabled the JAGS software to be used while enforcing logical parameter constraints. We applied the 287 

Bayesian approach to the data from a national-class middle-distance runner, and compared the fits to those 288 

obtained using nonlinear least squares. Our proof-of-principle results demonstrate that the Bayesian 289 

approach method is superior to nonlinear least squares because the estimated parameter values from the 290 

former were more precise, well behaved, and believable. Bayesian inference led to actionable insights 291 

whereas the nonlinear least squares approach did not.  292 

Bayesian methods offer theoretical and practical advantages compared to frequentist methods such as 293 

nonlinear least squares, and are finding increasing use in the sport science literature (Hecksteden et al., 294 

2022; Hopker et al., 2020). First, the nonlinear least squares approach relies solely on the data for fitting 295 

models, such that the procedure will work poorly when the data are sparse, the results are highly sensitive 296 

to noise. The present data set featured relatively few performances, because middle-distance runners tend 297 

to compete sporadically, and there was considerable variability in the data that could have unduly 298 

influenced the model fit. Bayesian methods, by contrast, can still be used when data are sparse and can be 299 

more robust to noise depending on the strengths of the priors. A second advantage of Bayesian methods 300 

is the ability to iterate the procedure as new data become available, which is particularly useful for 301 

longitudinal athlete monitoring. In this case, the posterior distribution from the 2018 season could be 302 

specified as the prior distribution for the following season. Specifically, the results from Table 2 would 303 

be used to specify the priors as follows: [K1] ~ Normal(0.038, 0.02); [θ] ~ Normal(µ𝜃𝜃 = 2.78, σ𝜃𝜃 = 1.1), 304 

truncated(1,∞); [τ1] ~ Normal(µ𝜏𝜏1 = 49, σ𝜏𝜏1 = 2.6), truncated (5,60); [τ2] ~ Normal(µ𝜏𝜏2 = 13, σ𝜏𝜏2 = 1.9), 305 

truncated (3,60); [P0]~Normal (p0 = 1025, σp0 = 20); [σ2] ∝ inverse gamma(0.001, 0.001); and [ρ]~Beta 306 

(10, 1). Note that the P0 of the following season is the predicted performance from the end of the 2018 307 

season, and the prior for K1 is specified as a normal distribution. In addition, the widths of the new priors 308 

are less than those of the 2018 season and are therefore more informative.  309 

The results of the analysis can be interpreted to provide practical interpretations and advice for the athlete, 310 

from both retrospective and predictive standpoints. From a retrospective standpoint, the predicted 311 

performance from the Bayesian model demonstrated that the athlete improved in the early part of the 312 

season, from December to April, and then maintained their performance level during the competition 313 

period (April to July). Such a pattern might be expected if the athlete is competing frequently and has less 314 

opportunity for high volumes of training. For this athlete, the training loads during the competition phase 315 

may have been insufficient to support an increase in performance in the latter part of the season. From a 316 
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predictive standpoint, the estimated tg of 39 days suggests that training quantity and quality should be 317 

maximized approximately 40 days before the main competition, which could inform the scheduling of 318 

future training camps. The estimated tn of 16 days suggests that the athlete would most benefit from tapers 319 

lasting approximately 2.5 to 3 weeks. The Bayesian model could be used to predict the effects of different 320 

training programs simulated as TRIMPi profiles over time (Clarke & Skiba, 2013). 321 

While the Bayesian approach addresses some of the foremost challenges limiting the usefulness of the IR 322 

model, particularly those relevant to parameter estimation, it does not overcome all of them. For example, 323 

owing to diffuse priors and sparse few data, the prediction intervals may be overly wide for some 324 

applications. While the Bayesian approach may be less sensitive to noise in the data, the quality of training 325 

and performance data still matters. Here our data set featured missing training data, which we addressed 326 

using imputation, but it would have been preferable if we had more complete training data. We also 327 

quantified performance using IAAF points, because this metric enables races of different distances to be 328 

used as performance data. However, IAAF points for middle-distance races are a function of race time 329 

and placing, and such races are not always run as well-paced maximal efforts. Race tactics, such as a 330 

conservatively paced first half, can confound the performance data. Further research is needed to  propose 331 

and evaluate improved performance metrics. Finally, the Bayesian approach does not overcome the 332 

theoretical shortcomings of the IR model, such as the assumption that performance is solely a function of 333 

training load. That said, the Bayesian approach is general and can be applied to future improved versions 334 

of the IR model. 335 

In summary, we have developed here a Bayesian implementation of the Banister IR model. We made 336 

several methodological contributions and showed proof-of-principle by applying the approach to analyze 337 

the training and performance data from a national-class middle-distance runner. The Bayesian approach 338 

outperformed nonlinear least squares and provided actionable insights for the athlete. The Bayesian 339 

implementation of the IR model helps to overcome several of the IR model’s foremost challenges that 340 

have heretofore impaired its practical usefulness.   341 
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Appendix 394 

Bayesian model diagnostics 395 

We checked the convergence of MCMC simulation with trace plots (Figure A1). The plot shows that the 396 

two chains (black and red) rapidly converged in the first few iterations, and both chains converged to 397 

similar estimates. The Gelman Rubin Diagnostic (𝑅𝑅�, “shrink factor”) value were low for each parameter, 398 

and they approached values equal to 1 within approximately 2,000 iterations, which further indicated that 399 

the MCMC converged (Figure A2). Therefore, we used the first 2,000 iterations as the “burn in” and 400 

retained the last 3,000 iterations as our sample of the posterior.  401 

 402 

Figure A1. IR model parameter diagnostics. The x-axes of the plots are the iteration number, while the y-403 

axes are the values of the indicated IR model parameter. Each plot includes trace plots for two chains, 404 

indicated by the red and black lines. 405 
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 406 

Figure A2. IR model diagnostics. Gelman Rubin Diagnostic (𝑅𝑅�, y-axis) are plotted as a function of the 407 

iteration number (x-axis). The red dashed line represents the upper bound of 𝑅𝑅� (97.5% quantile) and the 408 

black solid line represents the point estimates for 𝑅𝑅�. 𝑅𝑅� values equal to ~1 imply that the MCMC algorithm 409 

converged. 410 

 411 
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