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Abstract     

It has been reported repeatedly that mental fatigue can negatively affect exercise performance, but 

recent findings have questioned the strength of the effect. To further complicate this issue, an 

overlooked problem might be the presence of publication bias in a body of literature with studies using 

underpowered designs which is known to inflate false positive report probability and effect size 

estimates. Altogether, the presence of bias in the literature is likely to reduce the evidential value of the 

published literature on this topic, although it is unknown to which extent. The purpose of the current 

work was to assess the evidential value of studies published up to date on the effect of mental fatigue 

on exercise performance by assessing the presence of publication bias and the observed statistical power 

achieved by these studies. A traditional meta-analysis revealed a Cohen’s dz effect size of –0.49, 95% 

CI [–0.63, –0.34], p < 0.001. However, when we applied methods for estimating and correcting for 

publication bias (such as small-study effects), we found that the bias-corrected effect size decreased to 

–0.17. Furthermore, the median observed statistical power assuming the meta-analytic effect size (i.e., 

–0.49) as the true effect size was 34% (min = 16%, max = 97%), indicating that on average these studies 

only had a 34% chance of observing a significant result if the true effect was Cohen’s dz = –0.49. If the 

adjusted effect size (–0.17) was assumed as the true effect, the median statistical power was just 0.09%. 

We conclude that the evidence for the effect of the mental fatigue effect is a useful case study for 

illustrating the dangers of small-study effects.  

  



 

 

1 Introduction 

Mental fatigue has attracted the attention of many sport scientists over the course of the last two decades 

given the potential negative consequences for exercise performance [1–3]. A key hypothesis in this area 

is that performing a long demanding mental effort increases perception of mental fatigue and this 

reduces performance in a subsequent physical exercise task [4]. There is some doubt, however, 

regarding the strength of the effect of mental fatigue on exercise performance [3,5]. For instance, the 

only pre-registered study that has attempted to replicate the seminal study by Marcora et al., [6], failed 

to replicate these findings [5]. After watching a 90-minute documentary or performing a mental fatigue 

task, 30 participants (in comparison with 16 participants in the original study) completed a time-to-

exhaustion task. There was no evidence of reduced performance or increased perceived effort during 

the cycling task in the mental fatigue condition [5]. Nonetheless, the fact that an original finding cannot 

be replicated does not mean that it does not exist, since science relies on accumulating evidence [7].  

In some cases, replications do not succeed because of inadequate replication methods or because of 

factors that moderate the results. However, original studies might not be replicated for a few other 

reasons. First because there is no effect to be found. For instance, despite initial claims about the effect 

of ego depletion, a multilab preregistered project attempting to replicate the ego-depletion effect 

revealed that the size of the effect was small with 95% CI encompassing zero (Cohen’s d = 0.04, 95% 

CI [–0.07, 0.15]) [8]. Second, the use of questionable research practices such as p-hacking or optional 

stopping can overestimate the true effect size and lead to a large number of Type 1 errors in the 

published literature after selecting for statistical significance [9–11]. Third, the presence of publication 

bias in combination with studies using underpowered designs can also distort the cumulative evidence 

and consequently body literature [10,12,13]. Publication bias is the research practice of selectively 

favoring the publication of studies that obtain significant effects. On the other hand, if studies are 

conducted with underpowered designs, the sampling error can cause large swings in effect size estimates 

[12,14]. Indeed, studies with underpowered designs will only reach statistical significance if the study 

happens to yield an overestimated effect size. Indeed, most of the studies in the literature are based on 

low sample sizes (mean = 15, SD = 9.14; min = 8, max = 63) suggesting that some studies might have 

underpowered designs to detect a range of hypothetical small and medium effect sizes. For instance, 

assuming a true Cohen’s d effect size of –0.49 and a within-subject design, a study would require a 

sample size of 35 participants to achieve a statistical power of 80%. 

The presence of these biases is problematic for the credibility of research because it reduces the 

evidential value of published literature leading to overestimated meta-analytical effect sizes [15,16]. 

For instance, the results of a systematic review and meta-analysis [3] on the effect of mental fatigue on 

exercise performance seemed to indicate a significant negative effect (dz = –0.48, with a 95% CI [–0.70, 

–0.28]), but a bias-sensitive analysis suggested that after adjusting for publication bias, this estimate 

was significantly smaller (dz = –0.14, 95% CI [–0.46, 0.16]) [3]. The evidential value of a literature 



 

 

body is determined by the number of studies examining true and false effects, the power of the studies 

that examine true effects, the frequency of type I error rates (and how they are inflated by p-hacking) 

and publication bias [17,18]. Given that the likely presence of studies with underpowered designs has 

been overlooked, there is therefore uncertainty as to whether or not the published literature on this topic 

has provided reliable estimates of the effect of mental fatigue on exercise performance.  

One way to assess the evidential value of a body of literature is by considering the presence of 

publication bias and studies with underpowered designs. However, meta-analytic effect sizes are often 

taken at face value without considering the evidential value of the primary studies (i.e., publication bias 

and the statistical power of primary studies). Therefore, we considered it pertinent to perform further 

analysis to examine the evidential value of the studies investigating this topic, as has been done in other 

sport science areas [19]. Furthermore, to date, meta-analyses on the effect of mental fatigue have relied 

on one [1,20] or two methods [2,3] to assess for publication bias and small-study effects. For instance, 

Giboin & Wolf [1] and McMorris et al. [20] only used Egger’s test and Begg's test, respectively. 

Likewise, besides Egger 's test, Brown et al. [2] relied on the Fail-Safe method (which is known to be 

outdated and it should be avoided) and Holgado et al. [3] a 3-Parameter-Selection model. However, 

simulation studies investigating the accuracy of publication bias tests have shown that factors such as 

high heterogeneity and studies with small sample sizes can inflate type I error rates, decrease statistical 

power and overestimate or underestimate the meta-analytic effect size to a higher or smaller degree 

[21–23]. Indeed, Carter et al. [21] argued that no single meta-analytic method consistently outperformed 

all the others due to the different assumptions underlying these methods. As a result, researchers have 

been recommended to rely on several publication bias tests [21,22]. In the present manuscript, we 

therefore examined the evidential value of primary studies included in previous meta-analyses and 

recent articles that have been published afterwards by assessing the presence of publication bias using 

several tests and the observed statistical power for a range of hypothetical effect sizes achieved by these 

studies. We hypothesized that a) there will be evidence of publication bias and b) most of the published 

articles will not have adequate power to detect the estimated meta-analytic effect size.  

2 Methods 

The hypothesis, methodology and analysis plan for this study were pre-registered in Open Science 

Framework along with the datasets generated and R scripts required to reproduce both the statistical 

analyses and figures included in this meta-analysis (https://osf.io/5zbyu/). 

Literature search 

We included studies with within-participants designs from previous meta-analyses investigating the 

effect of performing a cognitive task before a physical exercise which provided enough information and 

fulfilled the inclusion criteria [1–3]. Additionally, given that the last available meta-analysis was 



 

 

published in 2020 [3], studies published afterwards and up to May 2022 were also considered. Thus, 

we conducted a literature search for new studies through Medline, Scopus and Web of Science in May 

2022. We used 4 search terms related to mental fatigue and another 4 terms related to exercise: “mental 

fatigue” OR “cognitive fatigue” OR “mental exertion” OR “ego-depletion” AND “physical 

performance” OR “exercise” OR “muscle fatigue” OR “sport”.  

Study selection 

Studies were selected on the basis of the following inclusion criteria: 1) available in English; 2) within-

participant design; 3) participants completed a cognitive task of any duration prior to an exercise; 4) the 

main outcome was a measure of exercise performance (e.g., time, distance completed, average 

power/speed or total work done); 5) the study provides necessary descriptive information of the main 

performance outcome. Studies investigating the effect of mental fatigue on psychomotor or tactical 

skills were not included. 

Data extraction 

A table containing data extracted from each study can be found at https://osf.io/5zbyu/. The major two 

major pieces of information for the current study were study effect size and its associated p-value. If 

participants completed more than two experimental conditions, we only considered the control 

condition and experimental condition (i.e., mental fatigue) without other factors (e.g., mental fatigue in 

hypoxia). For each study, the following information was extracted: 1) study design; 2) type of 

experimental conditions; 3) exercise protocol and type of test; 4) statistical test and level of significance; 

5) descriptive statistics (study sample size and mean ± SD) for both the experimental and control 

condition; and 6) the result of the statistical test (e.g., t(11) = 7.2, p < 0.001). We contacted authors to 

request unpublished data under two circumstances. First, when no sufficient statistical information was 

reported to recompute either the study effect size (i.e., t-statistic and sample size) or the p-value (i.e., 

degrees of freedom and F-ratio or t-statistic). Second, when a study used a factorial design with more 

than two experimental groups, but not pairwise comparison on mental fatigue condition and control 

condition was reported. Only one p-value per independent study/sample of participant for the main 

outcome was extracted to meet the independence criteria. The extracted p-value corresponded to the 

same statistical contrast as the effect size estimate.  

Effect size calculation 

Because we only included within-participant designs, we decided to use Cohen’s dz as our type of effect 

size estimate. The advantage of doing so is that dz scores are computed on the basis of the same 

information that is used to test for statistical significance in these studies (i.e., a paired-samples t-test) 

and, consequently, the confidence intervals of the effect size are more consistent with the p-values 

reported in the original papers. Second, the computation of dz does not require the correlation between 

dependent measures since correlation parameters are seldom reported as part of statistical analysis. 



 

 

Thus, all study effect sizes were calculated as Cohen’s dz, representing the standardized mean difference 

between mental fatigue and the control group. Cohen’s dz was calculated directly from the t-value and 

the number of participants using the formula provided by Rosenthal (1991) [24], as follows: dz = t / √n. 

If a study performed a repeated measures one-way within-participant ANOVA for the effect of 

condition, the F-ratio was converted into a t-statistic as t = √F.  

P-value recalculation 

In the case that the corresponding p-value was reported relatively (i.e., p < 0.05), the p-value was 

recomputed for z-curve analysis when degrees of freedom and t-statistic were reported. In the case 

where the t-test was reported but not the degrees of freedom, degrees of freedom were inferred from the 

study sample size (N - 1). P-values were recomputed in Microsoft Excel for Mac version 16.45 using 

the functions T.DIST.2T or F.DIST.RT for t-tests and F-tests, respectively. 

2.6. Statistical Analysis 

Meta-analysis 

The meta-analysis was performed using the metafor R package [25] in R version 3.6.1 (R Core Team, 

2019) and relied on a random-effects model to fit the overall effect size to estimate the average reported 

effect of mental fatigue and to assess heterogeneity in effect sizes. The overall effect size is reported 

along with 95% confidence and prediction intervals. Heterogeneity across studies was assessed by 

means of Cochran’s Q to test whether the true effect size differs between the studies, Thompson’s I2 to 

assess the proportion of total variability due to between-study heterogeneity and tau-squared (τ2) as 

estimate of the variance of the underlying distribution of true effect sizes. 

Testing for small-study effects and publication bias 

Because previous research has shown that there is no single publication bias method that outperforms 

all the other methods under each and every assumption tested [21,22,26–28], we used a triangulation 

approach, also known as sensitivity analysis, where researchers do not rely on only one single 

publication bias method, but use multiple publication bias methods instead [21,29–31]. To test for 

publication bias, we relied on two types of methods based either on effect sizes or p-values. Effect size 

methods were Egger’s regression test for funnel plot asymmetry (R package weightr [32]), a Three-

Parameter Selection Model with a one-tailed p-value cutpoint of 0.025 (3PSM; R package weightr [32]), 

the Precision-Effect Test - Precision-Effect Estimate with Standard Error (PET-PEESE; JASP [31]), 

the skewness test (R package altmeta [27]) and the limit meta-analysis (R package metsense [35]). As 

a p-value method, only z-curve was used (R package z-curve 2.0 [36]). The z-curve method allows 

testing for publication bias by considering whether the point estimate of the Observed Discovery Rate 

lies within the 95% confidence interval (CI) of the Expected Discovery Rate. If the Observed Discovery 

Rate estimate lies outside the 95% CI of the Expected Discovery Rate is considered evidence of 



 

 

publication bias [36]. For a detailed description of the limitations and assumptions of these methods, 

readers are referred to Carter et al. [21], McShane et al. [22], Stanley [26] Bartos and Schimmack [36] 

and Sladevoka [23]. We report two deviations from the pre-registered analysis. First, the limit-meta was 

not included in the pre-registered protocol [37]. Limit meta-analysis (LMA) is based on the concept of 

increasing the precision of the meta-analytic effect size using a random-effects model that accounts for 

small-study effects [23]. Second, both p-curve and p-uniform methods were discarded following Carter 

et al. [21] recommendations. These methods result in the overestimation of the true effect size under 

moderate-to-large heterogeneity. 

Statistical power  

Several statistical power estimates were calculated using two different methods based on p-values and 

effect sizes. First, we conducted a z-curve analysis which is based on the concept that the average power 

of a set of studies can be derived from the distribution of p-values (see [36] for technical details). This 

method converts significant and non-significant p-values reported in a literature into two-tailed z-

scores, and uses the distribution of z-scores to calculate two estimates of average power using finite 

mixture modeling: the Expected Discovery Rate (EDR) which is the percentage of studies predicted to 

be significant based on the average power of published studies and the Expected Replication Rate (ERR) 

which is the average power of the studies entered, which is also an estimate of the percent of the studies 

that one would expect to replicate if one performed the studies in exactly the same way as they were 

done before. Z-curve also allows measuring the false discovery risk (i.e., Sõric False Discovery Rate) 

which is an estimate of the maximum percentage of studies that could be false positive. Second, we 

used a range of hypothetical effect sizes to estimate statistical power using the R package metameta 

[38]. This package allows researchers to estimate the statistical power of the studies included in the 

meta-analysis by using a) a range of hypothetical effect sizes, and b) the meta-analytic effect size 

estimate as the true effect size.  

3 Results  

A total of 56 effect sizes were selected for eligibility. 12 effects sizes were discarded because either 

inclusion criteria were not met (n = 8) or descriptive data were not reported and authors did not provide 

raw data upon request (n = 4)1. A total of 44 effect sizes from independent samples were included in 

the meta-analysis. A disclosure table containing the list of 56 effects selected for eligibility, including 

those included in meta-analysis and the literature search output can be found at https://osf.io/5zbyu/. 

 
1Researchers should ensure that raw data is made publicly available on public repositories, such as the Open 
Science Framework to facilitate reproducibility and reuse of data. The statement "data will be made available 
upon request" is outdated and in most cases, it implies that raw data will not be shared [39].  
 



 

 

Overall meta-analysis  

The results of the random-effects meta-analysis are summarized in Fig. 1. Across all studies, the 

random-effects meta-analysis revealed a statistically significant meta-analytic effect size of dz = –0.49, 

95% CI [–0.63, –0.34], p < 0.001. The 95% prediction interval for the meta-analytic effect size was [–

1.26, 0.28]. The significant Q-statistic (Q(43) = 115.20, p < .0001) leads us to reject the null hypothesis 

that all studies share a common effect size. Instead, there is true heterogeneity between studies, 

suggesting the true effect sizes differ between the studies. The estimated heterogeneity was τ2 = 0.14. 

Furthermore, I2 was 65.97% indicating that about two thirds of total variability is due to between-study 

heterogeneity.  



 

 

 

Fig. 1 Forest plot of study Cohen’s dz effect size and meta-analyzed effect size [95% CI].  



 

 

Small study effect and publication bias 

Results of small-study and publication bias tests are summarized in Table 1. Egger’s regression test for 

funnel plot asymmetry was b1 = -3.52, SE = 0.8, z = -4.40, p < 0.001, indicating funnel plot asymmetry 

(Fig. 2). Egger’s regression test evaluates the null hypothesis of no asymmetry. When Egger’s 

regression test rejects the null hypothesis, it suggests the presence of small-study effects which is 

usually interpreted as publication bias. In contrast, the skewness test was Ts = 0.46, 97.5% CI [–0.01, 

0.92], p = 0.21 and the distribution of study effect sizes was inconclusive. Similarly, the Observed 

Discovery Rate estimate (0.55) lies within the 95% CI [0.05, 0.66] of the Expected Discovery Rate; this 

suggests that, even though there is a discrepancy, there is not enough data to statistically reject the 

hypothesis that there is evidence of publication bias.  

 

 Fig. 2 Funnel plot of study Cohen’s dz effect size versus study standard error.  

To obtain an estimate of the likely effect size in the absence of bias, we used several techniques. The 

fit of the 3PSM was improved significantly assuming the presence of publication bias, χ2(1) = 10.34, p 

= .001, and returned an significant adjusted dz of –0.19, 95% CI [–0.37, –0.007], p = 0.04. PET-PEESE 

is a two-step procedure whereby only if the null hypothesis is rejected, the second-step PEESE is 

performed to calculate the adjusted meta-analytic effect size [31]. Only PET procedure was performed 

because method it returned a non-significant effect (t(42) = 1.21, dz = 0.24, 95% CI [–0.15, 0.65], p = 

0.23) and therefore, the null hypothesis of zero effect could not be rejected based on the 95% CI of the 



 

 

estimated effect size. Likewise, limit meta-analysis (LMA) returned a non-significant adjusted dz = –

0.16, 95% CI [–0.44, 0.1], p = 0.22). 

Table 1 Summary results of publication bias tests 

Test Result Interpretation 

Egger’s  b1 = 3.52, SE = 0.8, z = -4.4, p < = 0.001 Small-study effect 

skewness Ts = 0.46, 97.5% CI [–0.01, 0.92], p = 0.21 Inconclusive 

z-curve ODR estimate (0.55) ∈ 95% CI [0.05, 0.66] of the EDR No publication bias 

3PSM adjusted dz = –0.19, 95% CI [–0.37, –0.007], p = 0.04  Publication bias 

PET t(42) = 1.21, dz = 0.24, 95% CI [–0.15, 0.65], p = 0.23 A null effect could not be 
rejected 

LMA adjusted dz = –0.16, 95% CI [–0.44, 0.1], p = 0.22 Publication bias 

    

Statistical Power 

The metameta package [38] was used to calculate statistical power estimates for a range of hypothetical 

effect sizes. The median statistical power of the studies included in the meta-analysis, using the meta-

analytic effect size estimate as the true effect size (dz = –0.49) was 34% (min = 16%, max = 97%). The 

statistical power estimates of the studies included in the meta-analysis for a range of hypothetical effect 

sizes is presented in Fig. 3. If we assume the bias-corrected (i.e., the average from 3PSM and LMA) 

effect size estimate (dz = –0.17) as a true effect size, the median observed statistical power of the studies 

would be 0.09% (min = 6%, max = 28%). The z-curve method was also used to estimate average 

statistical power of all studies included in the meta-analysis (see Fig. 4). The Expected Discovery Rate 

was 0.27 with 95% CI [0.05, 0.66] indicating that the average power of all studies was 27%. The 

Expected Replication Rate was 0.44 with 95% CI [0.16, 0.70] indicating that the average power of only 

those studies reporting a statistically significant effect was 44%. 



 

 

Fig. 3 Observed statistical power estimates for studies included in the meta-analysis assuming a range of 
hypothetical effect sizes [–0.1, –1]. The leftmost column (obs) refers to the observed statistical power assuming 
the meta-analytic effect size (dz = –0.49). The rest of the columns represent the observed statistical power of 
each study given an hypothetical effect size.  

 

Fig. 4 Distribution of z-scores. The vertical red line refers to a z-score of 1.96, the critical value for statistical 
significance when using a two-tailed alpha of 0.05. The dark blue line is the density distribution for the inputted 
p-values (represented in the histogram as z-scores). The dotted lines represent the 95% CI for the density 
distribution. Range represents the minimum and maximum values of z-scores used to fit the z-curve. A total of 44 
independent p-values (24 significant) were converted into z-scores to fit the z-curve model.   



 

 

4 Key findings 

In the present manuscript, we attempted to examine the evidential value of studies investigating the 

effect of mental fatigue and we hypothesized that a) there would be evidence of publication bias and b) 

most of the published articles would not have adequate power to detect the estimated meta-analytic 

effect size. Although Egger’s regression test was significant for small study effect, type I error rates for 

this test are slightly inflated when the heterogeneity is substantial (τ = 4 or 50% ≤ I2 ≤ 94%). Meanwhile, 

the skewness test and z-curve are known to perform well under heterogeneity. The skewness was 

inconclusive, and the z-curve could not reject the null hypothesis of no publication bias, respectively. 

When considering the results from the 3PSM (dz = –0.19, p = 0.04) and limit meta-analysis (dz = –0.16, 

p = 0.22), the new meta-analytic effect size after adjusting for publication bias was reduced by at least 

0.30 standard deviations. Surprisingly, PET returned a positive effect although based on a rather wide 

95% CI [–0.15, 0.65].2 Due to small samples and high heterogeneity, the 95% CI for the effect size 

estimates derived from these methods are very wide, ranging from positive to negative estimates and in 

some instances including 0. Furthermore, another limitation of 3PSM and PET is that they suffer from 

reduced power when sample sizes are small, heterogeneity is high and there is little publication bias, or 

there is heavy use of flexibility in data analysis. Similarly, these two methods also tend to underestimate 

effects when sample sizes are small, heterogeneity is high, or there is heavy use of flexibility in data 

analysis. On the basis of the results from the 3PSM, and limit-meta-analysis, it seems reasonable to 

conclude that the negative effect is likely to be much smaller than reported. 

Furthermore, the median observed statistical power assuming the meta-analytic effect size (dz = –0.49) 

as the true effect size was 34% and if the adjusted effect size (–0.17) was assumed as the true effect, the 

median statistical power was 0.09%. These results are also in line with the results obtained from the z-

curve analysis which yielded an observed statistical power of 27% 95% CI [0.05, 0.66] for both 

significant and non-significant results. Both the shrinkage of the meta-analytic effect size estimate after 

adjusting for publication bias and the presence of underpowered designs might therefore suggest that 

the evidential value of the studies included in this meta-analysis is low on average. 

4a. The expectancies about mental fatigue should be lower 

In this study, we questioned the settled claim that mental fatigue impairs exercise performance. In line 

with the meta-analysis results (meta-analytic effect size dz = –0.49, 95% CI [–0.63, –0.343]), empirical 

studies have shown that exerting cognitive effort (regardless of the duration) before exercise might 

reduce exercise performance [6,40,41]. However, when the overall estimate is adjusted for publication 

bias, most of the tests provided a lower adjusted estimate of the true effect of mental fatigue on exercise 

performance, suggesting that the effect might be substantially smaller (see Table 1). For instance, the 

 
2 There are a few studies with very large effects (around dz = 2) that could condition the outcome of this test. 
However, after removing it, the result is still similar: t(40) = 0.52 dz = 0.10, 95% CI [-0.29, 0.51], p = 0.6 



 

 

new meta-analytic effect size was reduced by at least 0.30 standard deviations based on the results from 

the 3PSM (dz = –0.19, p = 0.04) and limit meta-analysis (dz = –0.16, p = 0.22). The reasons for 

publication bias are multiple [42,43], but it varies from editorial predilection for publishing positive 

findings, researchers' degree of freedom in analyzing the data [44], authors not writing up null results 

and other causes. The presence of publication bias in a set of published studies is likely to inflate study 

effect sizes and type I error rate, especially when these studies have underpowered designs. Indeed, the 

overall negative effect observed in this meta-analysis (Cohen’s dz = –0.49) might be driven by some 

studies reporting inflated large effects and with high standard error due to study small sample sizes (see 

Fig. 2). Due to the unreliability of the cumulative evidence from experimental studies, there is no 

certainty of a causal effect, and neither is its absence certain.  

4b. Low replicability  

The power analysis revealed that even considering dz = –0.49 as the true effect size, only one study 

achieved the considered adequate power of 80%, and only two others would be close (see Fig. 3). The 

median power of the literature indicates that if we were to conduct 10 exact replications, only ~3 out 10 

studies would find the expected effect. If we assume the adjusted estimate (for any of the publication 

bias methods), these results would be even more dramatic and all studies would be highly underpowered 

to detect the adjusted effect. Indeed, a sample size of 274 participants would be required to find a true 

effect size of –0.17 given an intended power of 80% and a paired t-test. The z-curve analysis adds 

further support to the above results. The analysis provided that the expected discovery rate (value that 

is computed from mean power before significance selection [36]) is 0.27 95% CI [0.06, 0.66], which 

corresponds to the long-run relative frequency of statistically significant results. Therefore, in the future, 

the sample size should be significantly increased, rather than performing exact replicates. The problem 

of underpowered studies stems from three main issues.  

First, just by the definition of statistical power, if a study has an underpowered design it has a low 

probability of detecting a significant effect even if there is one to be found (or the null hypothesis is 

false) [45]. This is reflected in the Observed Discovery Rate for this literature, which was estimated to 

be 55%– this is, the percentage of articles providing a significant result assuming there is a significant 

effect to be found. One consideration of this value is that the Observed Discovery Rate does not 

distinguish between true and false discoveries. Second, studies with low power designs are more likely 

to produce overestimated effect sizes [46–49]. This will result in a literature filled with exaggerated 

effect estimates if significant original findings are more likely to be published. As far as we know, only 

one pre-registered and replication study to date has been conducted and the reported effect size was 

substantially lower and in the opposite direction of the original study [5,6]. Though replication efforts 

are still very scarce in the field [50], data from similar disciplines such as psychology show that only 

half of the original studies were replicated [49,51] and this would be in agreement with the Expected 

Replicability Rate of 0.44 (see Fig. 4). Third, underpowered analyses may lead to a bias in the literature 



 

 

due to the increased proportion of false positives. [52,53]. Altogether, the presence of studies with 

underpowered designs hinders the replicability of scientific results and if only studies with significant 

results were going to replicate, only 44% of them would yield another significant result. Despite these 

limitations, the results obtained from studies with underpowered designs have usually been taken at 

face value. In the past, power issues had been overlooked in the evaluation of results and whenever an 

effect was significant, it was assumed that the study had enough power [54]. The result is that there has 

been limited incentive to conduct studies with adequate power [55–57]. Meta-analyses may minimize 

some of the shortcomings of low power studies, but they cannot provide a realistic picture of the 

literature as a whole from a set of low powered studies [58]. In light of this, the aphorism "Extraordinary 

claims require extraordinary evidence" may be applicable.  

4c. This effect cannot be discarded  

Although it might sound cliché, absence of evidence of an effect does not necessarily prove its absence. 

In line with our results, a major caveat in the literature is effect-size heterogeneity [1–3,59]. Effect-size 

heterogeneity refers to the variance in true effect sizes underlying the different studies– this is, there is 

no single true effect size but rather there is a distribution of true effect sizes. Even when the mean 

distribution of the true effect size is negative, it is likely that some studies yield effect size estimates 

around zero or even positive. Heterogeneity is not only reflected on the results of Q-statistic test and I2 

estimate but also on the 95% prediction interval as its width accounts for the uncertainty of the summary 

estimate, the estimate of between study standard deviation in the true effect, and the uncertainty in the 

between study standard deviation estimate itself. Although the prediction interval is below zero [–1.26, 

0.28] and thus indicating the effect will be detrimental in most settings, the interval overlaps zero and 

so in some studies the effect may actually be non-detrimental. Then, as we are unaware of the true 

effect, the results of future implementations are unclear. This finding is masked when we focus only on 

the average effect and its confidence interval. However, its width will be also enlarged by bias such as 

publication bias and studies with underpowered designs, in addition to that caused by genuine effect. 

Therefore, it is possible that mental fatigue does not affect all types of exercise or that the fitness level 

of participants mediates its effect. However, the actual presence of these moderators should be 

interpreted with caution, in a set of studies with low statistical power and publication bias. 

Final remarks 

Studies conducted so far have not provided reliable evidence that a causal effect exists, but it is also not 

certain that one does not exist. It is not only this field of research that suffers from publication bias and 

low statistical power [19,43]. In fact, numerous voices have recently highlighted this problem in sport 

science literature [19,43,60–63]. However, this should not be used as an excuse to ignore publication 

bias and low statistical power. Moreover, as we have seen, meta-analyses are not the ultimate tool to 

solve the problem of low power. Despite the potential for meta-analyses to mitigate some shortcomings 

of individual studies, results are largely dependent on the quality of the included reports. Moreover, 



 

 

several publication bias methods should be considered when performing meta-analyses, as each method 

is built over specific assumptions [21]. An intervention is sometimes considered to be effective or not 

based solely on its estimated effect size in a meta-analysis, rather than considering the quality of the 

primary studies and publication bias. Results from a meta-analysis that shows a high selection bias and 

low replication rate need to be verified independently in experiments with larger samples (ideally in a 

multi-lab study [64]). Nonetheless, the possible negative effects that mental fatigue could have on 

human physical performance cannot be ruled out, but the current evidence suggests that perhaps 

expectations about this effect should be reduced [1–3,59]. Finally, researchers cannot survive as 

transparent individuals in a system in which the lack of Open Science practices is the norm [65] and we 

strongly encourage researchers to preregister study protocols, conduct pre-study power calculations for 

sample size justification and make data and materials publicly available to improve credibility [39,66–

68]. Considering the present findings, we encourage caution when making claims or making 

recommendations on how to counteract mental fatigue's detrimental effects on exercise performance. 
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