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Abstract 

Tennis is an open skill sport where players often have a range of choices on shot 
selection (Wang, Chang, 2013). One potential choice relates to how early or late a 
player decides to (or is forced to) hit the ball, often these decisions are referred to 
as ‘taking the ball on the rise’, ‘hitting the ball at the peak of the bounce’ or ‘letting 
the ball drop’. Tennis coaches and commentators often speculate about the 
advantage or disadvantage of each option for a player from a strategic perspective. 

An inhibition to validating these claims is due to data not readily being available on 
how early or late a player takes the ball in relation to the post bounce peak ball 
height. Hawk-eye datasets provide the data point for post bounce peak ball height, 
but when the player makes contact with the ball early, the value of the post bounce 
peak ball height is the same as where the player makes contact with the racquet , 
hence inhibiting the accurate calculation of how early a player makes contact with 
the ball.  

In this paper, various models were trained on Hawk-eye data and evaluated in order 
to determine the best model to predict post bounce ball location. Two separate 
approaches were examined, the first a multi-output regressor prediction (MORP) 
where the models would predict the location (x,y,z) as one prediction, the second 
approach a separate regression prediction predicted the post bounce peak 
horizonal, vertical and lateral (x,y,z) separately.  It is hoped that one or both 
approaches with sufficient model performance can unlock the ability to calculate 
balls taken on the rise, at the peak or on the drop. 

A range of models starting from simple linear regression models to more complex 
Neural Networks like TabNet and Advanced Tree based models like XGBooost were 
examined in this paper. 

We found that the XG Boot model performed the best under the MORP approach 
when considering the RMSE, R2 and Training time for the model, whilst XG Boost 
also performed better under the SRP approach in predicting the x and y axis, and 
was equal in performance with TabNet in predicting the z axis.  

The MORP approach is recommended if you want to calculate both the vertical and 
horizonal difference from post bounce peak height, where as the SRP approach may 
be preferred to calculate only the vertical height difference.  

  



Introduction 

The model will predict the x, y, z coordinates of the post bounce peak height (peak 
height)- hit_peak_x, hit_peak_y and hit_peak_z using variables directly from and 
derived from the Hawk-eye dataset. 

From the Hawk-eye dataset you can attain the peak height of the ball before contact 
is made with the racquet however you can only use it to determine shots hit after 
the peak height, because the peak provided will  always match the contact when the 
ball is taken early (e.g., hit_peak_z = hit_z if the ball is hit on the rise). Hence, you 
will not be able to determine how early the player took the ball directly with the 
Hawk-eye dataset. To get around this dataset shortfall , predicting the peak height is 
required. 

We will take two different prediction approaches (figure 1): 

- a Multi Output Regressor prediction – e.g. treat x,y,z coordinates as one 
prediction (MORP) 

- 3 separate regression predictions – e.g. predict x, y, z separately (SRP) 

 

 

Figure 1 MORP and SRP prediction approaches 

Why predicting post bounce peak height is valuable and its potential application 

Being able to tell if player is contacting the ball earlier, around the peak or later 
than the ball reaching its peak bounce height (on the rise vs at the peak vs on the 
fall) can help players understand their game better as well as help understand  the 
game style of opponents they will face.  

Additionally knowing the relationship between where the player took the ball and 
where the ball was going to bounce up to, used alongside other metrics/statistics 
like winners, forced errors, unforced errors, spin rate off the racquet, speed of shot 
off the racquet and time pressure can help provide context for tv audiences and 
performance coaching. 



Once the post bounce peak height is predicted, the difference of the of z axis values 
with racquet contact can determine vertical height difference between contact and 
post bounce peak height.  

The distance between the contact location and where the ball is predicted to have 
peaked post bounce can be determined using Pythagorean theorem to find distance 
between two coordinate points. 

Rise-Peak-Fall 

Shots taken on the rise (rise), at the peak of the bounce (peak) or on the fall (fall) 
can be worked out by determining contact location, one example could be to split 
rise, peak and fall based on 5% horizonal distance from hit_peak_x like figure 2.  

 

 

Figure 2 Calculate shots taken on the rise, at the peak and on the fall once post bounce peak (hit_peak) is predicted 

Method 

From the Hawk-eye Json files extract relevant variables relating to bounce, speed, 
spin, ball contact and peak bounce height, net clearance, whether the ball clipped 
the net and velocity off the court for each event. 

Manipulate the data to bring the previous shot info for bounce, speed, spin, ball 
contact and net clearance to the current event. Derive the distance to the net and 
the distance to the bounce of the ball from the previous shot.  Create a Boolean 
variable (hit_peak_match) looking at if contact point is equal to peak bounce height 
in the Hawk-eye dataset (hit_z = hit_peak_z). 

Filter the dataset to be used for training to only have hit_peak_match = FALSE. This 
is because we only want situations where the peak bounce height is known and does 
not equal the contact point of the ball. We will use this data to train and validate 



the prediction model and then apply the model to the rows of data where 
hit_peak_match = TRUE (see figure 3). 

 

Figure 3 Preparing the dataset – Training on data where contact and post bounce peak is not the same, then applying on 
data where pounce bounce peak and contact is the same 

 

Dataset 

Variable selection 

The variables (Figure 1) were selected in consultation with a subject matter expert 
(High Performance Coach) and evaluation of feature importance to predicting 
hit_peak_x, hit_peak_y and hit_peak_z (the point where the bounce is at the peak).  

 

 



 

 

Figure 4: Variables used for predicting peak bounce height 

Over 500,000 rows contacting bounce peak events were used in the data sample for 
the prediction. The distribution of each variable presented in Figure 5, with the 
correlation presented in Figure 6. 

 

Figure 5 Variable Distributions: Input Data Size: (504506, 17) 

 



 

Figure 6  Correlation of variables plot 

Under MORP approach a single prediction of the location is sought  using a multi-
output regressor, while under the SRP approach hit_peak_x, hit_peak_y, hit_peak_z 
are our (x,y,z) coordinates target that require separate predictions.  

Data Transformation and Cleaning 

In the dataset the rows which have null values were removed and data types were 
unified for input into the various machine learning models.  

Machine Learning Models and their Evaluation 

We evaluate in this paper some simple prediction models and some complex 
machine learning models and compare their performance for both the MORP and 
SRP approach.  

Evaluation Metric 

Four evaluation metrics will be primarily used for our regression analysis  



1) Mean Squared Error (MSE) 
MSE is the average of the square of the errors. The larger the number the 
larger the error. Error in this case means the difference between the 
observed values and the predicted ones.  
 

2) Root mean squared error (RMSE): is the square root of the average of 
squared differences between prediction and actual observation.  
The lower the MSE and RMSE the better the model. 
 

3) R2 Score 
R2 Score is a statistical measure of fit that indicates how much variation of a 
dependent variable is explained by the independent variable(s) in a 
regression model. The higher the R2 the better the model.  
 

4) Training time 
Training time is also used to compare the models give some additional 
context to the effort required to train the model.  
 
 

Results 

MORP Approach 

Machine Learning Models 

The machine learning models that we will be using are as follows with the MORP 
evaluation result outputs presented.  

1) L1 Linear regression (Lasso Regularization) 
 
A simple linear regression model (Schneider, Hommel, Blettner, 2010) is 
developed using L1 (Lasso) regularization. L1 regularization is a technique for 
reducing the complexity of a model by adding a penalty term to the loss 
function that is proportional to the sum of the absolute values of the weights . 
This can help to reduce overfitting and improve the interpretability of the 
model (Vidaurre, Bielza, Larrañaga,2013). 
 
This model can be a comparison to more complex models.  
 
 
The MSE for Linear Regression Lasso is: 1.9074, the RMSE is : 1.3811 and r2 score is: 63.8385% 

 

2) L2 Linear Regression (Ridge Regularization) 
 
A linear regression model with L2 Regularization (Ridge Regularization). L2 
regularization adds a penalty term to the loss function that is proportional to 
the square of the weights whereas L1 regularization adds a penalty term to 



the loss function that is proportional to the sum of the absolute values of the 
weights (Cortes, Mohri, Rostamizadeh, 2009)  
 

The MSE for Linear Regression Ridge is: 1.8029, the RMSE is: 1.3427 and r2 score is: 82.3219% 

3) Simple Random Forest 
 
A random forest is an ensemble learning method that can be used for 
regression predictions. It is called a random forest because it is made up of a 
collection of decision trees, each of which is trained on a random subset of 
the data (Brieman, 2001). For this model we will set a max depth of 2. This 
means that each decision tree in the forest is limited to having a maximum of 
2 levels, or 2 "splits" on the input data. It is considered relatively shallow, and 
therefore each tree will have a simpler structure. This can be advantageous 
because it can help to prevent overfitting and improve the interpretability of 
the model (Nadi, Moradi, 2019). 
 

The MSE for Simple Random Forest is: 1.6980, the RMSE is: 1.3031 and r2 score is: 72.4230% 

 
4) Multi-Layer Perceptron (MLP) Neural Network 

An MLP is a neural network made up of multiple layers of interconnected 
neurons. An MLP has an input layer, one or more hidden layers, and an 
output layer. The input layer receives the input data, and each subsequent 
layer transforms the data using an activation function, until the output layer 
produces the final output of the model. MLPs are trained using a variant of 
the backpropagation algorithm, which adjusts the weights of the connections 
between the nodes in order to minimize the error between the predicted 
output and the actual output (Ramchoun, Idrissi, Ghanou, Ettaouil, 2016) 

In this model we used drop out regularization to ensure the model learned a 
more general representation of the data and therefore generali ses better to 
unseen data (i.e. prevent overfitting). RELU activation is also used to improve 
the performance of the model and deal with vanishing gradients problem 
(Byrd, Lipton,2019).  

The model has 500 iterations with early stopping enabled. 

The MSE for MLP is: 0.8253, the RMSE is: 0.9084 and r2 score is: 82.8666% 

5) Random Forest with Hyperparameter optimization 
 
The random forest is a collection of trees so when ensembling such model 
there is a need to optimize the hyper parameter.  
 



Hyperparameter tuning refers to the process of selecting the optimal values 
for the hyperparameters of a model. Hyperparameters are parameters that 
are not learned during training but are instead set by the practitioner before 
training begins. Examples of hyperparameters include the learning rate, the 
number of trees in the random forest, and the maximum depth of each tree  
(Probst, Wright, Boulesteix,2019) 
 
Tuning the hyperparameters of a random forest can help to improve the 
performance of the model and make it more effective at fitting the data. This 
can be done by using a method such as grid search, which involves training 
the model with a range of different hyperparameter values and selecting the 
combination that performs the best (Probst, Wright, Boulesteix,2019). 
 
The MSE for RF Tuned Hyperparameter is: 0.4670 the RMSE is: 0.6834 and r2 score is: 84.3428% 

 
 
 

6) Deep Learning Neural Network – TabNet 
 
TabNet is a deep learning architecture for tabular data, which is data that is 
organized into rows and columns. 
 
TabNet is designed to be an efficient and interpretable model for tabular 
data. It combines several different techniques, including attention 
mechanisms, batch normalization, and sparsity-inducing regularization, to 
achieve good performance on a variety of tasks. It also includes a feature 
called virtual batch normalization that allows it to adapt to the distribution of 
the input data in a way that is similar to batch normalization, but without the 
need to compute statistics over the entire dataset  (Arik, Pfister, 2021). 

Training on 500 Epochs with early stopping, the following results were 
achieved 

Early stopping occurred at epoch 394 with best epoch = 198 and best_rmse 0.1876  

 

7) LightGBM 

LightGBM is a tree based gradient boosting framework model. It uses a 
histogram-based algorithm to approximate the value of the gradient, rather 
than computing it exactly. This has the effect of reducing the amount of 
computation required to train the model and can make it possible to train 
large-scale models that would be impractical to train using traditional random 
forest models (Meng, 2017). 

The MSE for LightGBM is: 0.4129 the RMSE is: 0.6426 and r2 score is: 86.8931% 

 

8) CatBoost 



CatBoost is another tree based gradient boosting framework model, one of 
the key features of CatBoost is its ability to handle categorical features .  
CatBoost can automatically encode these features in a way that is 
appropriate for gradient boosting, which can improve the performance of the 
model compared to other methods that require the categorical features to be 
pre-processed (Dorogush, Ershov, Gulin, 2018).  

 

The MSE for CatBoost is: 0.2811 the RMSE is: 0.5302 and r2 score is: 86.2662% 

 
9) XGBoost (eXtreme Gradient Boosting) 

XG Boost is another tree-based gradient boosting model. It is an ensemble 
learning method that involves combining the predictions of multiple models 
to make a final prediction. Like other decision trees-based models it is well-
suited to structured/ tabular data because it can easily handle complex 
interactions between multiple features. XGBoost also uses regularization 
techniques like L1 and L2 regularization, which help prevent overfitting and 
improve the generalizability of the model (Chen, Guestrin, 2016). 

The MSE for XGBoost is: 0.0108 the RMSE is: 0.1039 and r2 score is: 99.3612% 

 

Algorithm  MSE RMSE R2 Score Training Time  

Linear Regression 
Lasso 

1.91 1.38 63% 0.14 sec 

Linear Regression 
Ridge 

1.80 1.34 82% 0.05 sec 

Random Forest - 
Simple 

1.70 1.30 72% 63 sec 

Neural Network - MLP 0.83 0.91 83% 51 sec 

Random Forest 
Hyperparameter 
Optimization 

0.47 0.68 84% 1 hour 

Neural Network - 
TabNet 

0.03 0.18 88% 33 min per 
epoch 

LightGBM 0.41 0.64 87% 10 seconds 

CatBoost 0.28 0.53 86% 55 Seconds 

XG Boost 0.01 0.10 99% 3 minutes 
Table 1 MORP Model Results trained with Google Colabs GPU 

  



SRP Approach 

Under the SRP approach the models will be predicting hit_peak_ x, hit_peak_y, hit_peak_z 
independently.  

Similar to the MORP approach a linear regression model was used as a baseline comparison. A quick 
feature importance analysis was also conducted to get an understanding of the importance of each 
of the variables in predicting the three target variables.   

Tuning for better predictions of each hit peak axis 

In order to achieve better predictions for each axis, the grid search for hyper tuning was applied to 
observe which set of hyper parameters the Random Forest shows better metrics for the given axis.  

Result Tables 

Predicting the X axis of the post bounce peak location  

Algorithm  MSE RMSE R2 Score Training Time  

Linear Regression 
Lasso 

2.41 1.55 90% 0.11 sec 

Linear Regression 
Ridge 

1.89 1.37 93% 0.05 sec 

Random Forest - 
Simple 

1.69 1.30 94% 51 sec 

Neural Network - MLP 1.09 1.04 90% 54 sec 

Random Forest 
Hyperparameter 
Optimization 

0.67 0.82 91% 55 min 

Neural Network - 
TabNet 

0.15 0.38 96% 27 min per 
epoch 

LightGBM 0.60 0.77 94% 7 seconds 

CatBoost 0.59 0.76 91% 50 Seconds 

XG Boost 0.02 0.13 98% 2 minutes 
Table 2 SRP Model Results predicting hit_peak_x trained with Google Colabs GPU 

Predicting the Y axis of the post bounce peak location 

Algorithm  MSE RMSE R2 Score Training Time  

Linear Regression 
Lasso 

1.13 1.06 96% 0.12 sec 

Linear Regression 
Ridge 

1.09 1.04 95% 0.04 sec 

Random Forest - 
Simple 

0.22 0.47 92% 50 sec 

Neural Network - MLP 0.20 0.44 95% 51 sec 

Random Forest 
Hyperparameter 
Optimization 

0.11 0.33 94% 55 min 

Neural Network - 
TabNet 

0.02 0.13 96% 27 min per 
epoch 

LightGBM 0.02 0.14 94% 7 seconds 

CatBoost 0.02 0.14 97% 47 Seconds 

XG Boost 0.01 0.11 99% 2 minutes 
Table 3 SRP Model Results predicting hit_peak_y trained with Google Colabs GPU 



Predicting the Z axis of the post bounce peak location  

Algorithm  MSE RMSE R2 Score Training Time  

Linear Regression 
Lasso 

0.08 0.28 54% 1.2 sec 

Linear Regression 
Ridge 

0.08 0.28 63% 1.3 sec 

Random Forest - 
Simple 

0.07 0.26 60% 48 sec 

Neural Network - MLP 0.05 0.22 78% 2 min 

Random Forest 
Hyperparameter 
Optimization 

0.03 0.17 84% 64 min 

Neural Network - 
TabNet 

0.002 0.04 98% 33 min per 
epoch 

LightGBM 0.03 0.14 94% 7 seconds 

CatBoost 0.02 0.09 97% 47 Seconds 

XG Boost 0.002 0.05 98% 2 minutes 
Table 4 SRP Model Results predicting hit_peak_z trained with Google Colabs GPU 

Discussion 

Under the MORP approach the XG Boost model performed significantly better than 
the other models. It had the lowest RMSE (0.10), meaning the model is making post 
bounce height predictions relatively close (average difference of 0.1m) to the actual 
post bounce height. The XG Boost model also had the best R2 score of 99%, meaning 
the model can almost perfectly explain the variance in the outcome variable  making 
it a stronger model. While some of the other models had a faster training time, the 3 
minutes to train the model on over 500,000 rows of data is not too onerous, and the 
benefits of the superior RMSE and R2 outweigh the slightly slower training time. 

Under the SRP approach, the models were evaluated separately for performance in 
predicting the post peak bounce for the x, y, z axis. The XG Boost model was clearly 
the superior model in predicting the post bounce peak x axis with a much lower 
RMSE (0.13) and the best R2 Score of 98%, and the training time of only 2 minutes. 
With predicting the post peak bounce peak y axis, the results between the models 
were a lot more converged, with the XG Boost model having the lowest RMSE (0.11) 
and best R2 score (99%) with a relatively fast training time. When predicting the post 
peak bounce peak z axis the TabNet neural network slightly outperformed the 
XGBoost RMSE 0.04 to 0.05 respectively. Both models had an R2 score of 98%, but 
the XG Boost model only had a 2 min training time compared to 33 min per epoch 
for TabNet.  

While the evaluation of whether the MORP or SRP approach is better was not 
conducted in this paper, either approach provides sufficient accuracy to calculate 
post bounce peak and to subsequently calculate shots taken on the rise, at the peak 
or on the fall.  
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