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ABSTRACT13

Recent discussions in the sport and exercise science community have focused on the appropriate use
and reporting of effect sizes. Sport and exercise scientists often analyze repeated-measures data,
from which mean differences are reported. To aid the interpretation of these data, standardized mean
differences (SMD) are commonly reported as description of effect size. In this manuscript, we hope
to alleviate some confusion. First, we provide a philosophical framework for conceptualizing SMDs;
that is, by dichotomizing them into two groups: magnitude-based and signal-to-noise based SMDs.
Second, we describe the statistical properties of SMDs and their implications. Finally, we provide
high-level recommendations for how sport and exercise scientists can thoughtfully report raw effect
sizes, SMDs, or other effect sizes for their own studies. This conceptual framework provides sport and
exercise scientists with the background necessary to make and justify their choice of an SMD. The
code to reproduce all analyses and figures within the manuscript can be found at the following link:
https://www.doi.org/10.17605/OSF.IO/FC5XW.
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INTRODUCTION26

Effect sizes are a family of descriptive statistics used to communicate the magnitude or strength of27

a quantitative research finding. Many forms of effect sizes exist, ranging from mean raw values to28

correlation coefficients. In sport and exercise science, a standardized mean difference (SMD) is commonly29

reported in studies that observe changes from pre- to post-intervention, and for which units may vary30

from study-to-study (e.g., muscle thickness vs. cross-sectional area vs. volume). Put simply, an SMD31

is any mean difference or change score that is divided, hence standardized, by a standard deviation or32

combination of standard deviations. Thus, even among SMDs, there exist multiple calculative approaches33

(Lakens, 2013; Baguley, 2009). A scientist must therefore decide which SMD is most appropriate to report34

for their particular study, or if to report one at all. In this manuscript, we will exclusively be focusing35

on SMD calculations for studies involving repeated-measures since this is a common feature of sport36

and exercise science studies; other study designs (i.e., between-subjects) have already been extensively37

covered elsewhere (Baguley, 2009; Kelley and Preacher, 2012; Hedges, 2008).38

Different forms of SMDs communicate unique information and have distinct statistical properties.39
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whatever statistics are needed to appropriately answer their question. Importantly, this freedom should46

not be encroached on by broad recommendations that ignore the objectives of an individual scientist. To47

facilitate these reporting decisions, it is imperative to understand what to report and why.48

In this paper, we broadly focus on three things to consider when reporting an SMD. First, before49

choosing an SMD, a scientist must decide if one is necessary. When making this decision, it is prudent to50

consider arguments for and against reporting SMDs, in addition to why one should be reported. Second,51

we broadly categorize repeated-measures SMDs into two categories: signal-to-noise and magnitude-based52

SMDs. This dichotomy provides scientists with a philosophical framework for choosing an SMD. Third,53

we describe the statistical properties of SMDs, which we believe scientists should try to understand if54

they are to report them. We relate these perspectives to previous discussions of SMDs, make general55

recommendations, and conclude by urging scientists to think carefully about what effect sizes they are56

reporting and why.57

SHOULD I REPORT A STANDARDIZED MEAN DIFFERENCE?58

Before reporting an SMD—or any statistic for that matter—a researcher should first ask themselves59

whether it is necessary or informative. When answering this, one may wish to consider arguments both60

for and against SMDs, in addition to field standards. Here, we briefly detail these arguments, in addition61

to SMD reporting within sport and exercise science.62

Proponents and Opponents of Standardized Effect Sizes63

Opponents64

Although SMDs may be useful in some contexts, they are far from a panacea. Arguments against the65

use of SMDs, including those by prominent statisticians, are not uncommon. These arguments should66

be considered when choosing whether or not to report an SMD. In particular, the evidentiary value of67

reporting an SMD must be considered relative to the strength of the general arguments against SMDs.68

Below, we have briefly summarized some of the major arguments against the use of SMDs.69

As far back as 1969, the use of standardized effect sizes—and by proxy, SMDs—has been heavily70

criticized. The eminent statistician John Tukey stated that “only bad reasons seem to come to mind” for71

using correlation coefficients instead of unstandardized regression coefficients to interpret data. To put it72

simply, scientists should not assume that standardized effect sizes will make comparisons meaningful73

(Tukey, 1969). This same logic can also be applied to qualitative benchmarks (e.g., Cohen’s d = 0.2 is74

“small”); we believe it is likely that Cohen would also argue against the broad implementation of these75

arbitrary benchmarks in all areas of research. Similar arguments against the misuse of standardized effect76

sizes have been echoed elsewhere (Lenth, 2001; Kelley and Preacher, 2012; Baguley, 2009; Robinson77

et al., 2003).78

Others have outright argued against the use of standardized effect sizes because they oversimplify79

the analysis of, and distort the conclusions derived from, data. In epidemiology, Greenland et al. (1986)80

provided a damning indictment of the use of standardized coefficients; namely, because they are largely81

determined by the variance in the sample, which is heavily influenced by the study design. In psychology,82

Baguley (2009) offers a similarly bleak view of standardized effect sizes. He argues that the advantages of83

standardized effect sizes are far outweighed by the difficulties that arise from the standardization process.84

In particular, scientists tend to ignore the impact of reliability and range restriction on effect size estimates,85

in turn overestimating the generalizability of standardized effect sizes to wider populations and other86

study designs (Baguley, 2009).87

Proponents88

Conversely, prominent statisticians have also argued in favor of standardized effect sizes, especially for89

facilitating meta-analysis (Hedges, 2008). Cohen (1977) was the first to suggest the use of standardized90

effect sizes to be useful for power analysis purposes. This is because, unlike the t-statistic, (bias-corrected)91

standardized effect sizes are not dependent on the sample size. Similarly, while p-values indicate the92

compatibility of data with some test hypothesis (e.g., the null hypothesis) (Greenland, 2019), SMDs93

provide information about the ‘effect’ itself (Rhea, 2004; Thomas et al., 1991). Thus, p-values and94

t-statistics provide information about the estimate of the mean relative to some test hypothesis and thus95

are sensitive to sample size, while SMDs strictly pertain to the size of the effect and thus are insensitive to96

sample size. Moreover, any linear transformation of the data will still yield the exact same standardized97
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effect size (Hedges, 1981). The scale invariance property of a standardized effect size theoretically allows98

them to be compared across studies, various outcomes, and incorporated into a meta-analysis. Therefore,99

scientists can measure a phenomenon across many different scales or measurement tools and standardized100

effect sizes should, in theory, be unaffected. Finally, SMDs can provide a simple way to communicate the101

overlap of two distributions (https://rpsychologist.com/d3/cohend/).102

Comments on Standardized Mean Differences in Sport and Exercise Science103

Sport and exercise scientists have also commented on the use of standardized effect sizes (Dankel et al.,104

2017; Dankel and Loenneke, 2018; Rhea, 2004; Thomas et al., 1991; Flanagan, 2013). The discussion105

has focused on the need to report more than just p-values, emphasizing that scientists have to discuss106

the magnitude of their observed effects. Rhea (2004) also provided new benchmarks for SMDs specific107

to strength and conditioning research, which is certainly an improvement from just using Cohen’s108

benchmarks.109

If SMDs are to be reported, they should not be done so in lieu of understanding effects on their natural110

scales. To this end, we agree with the laments of Tukey (1969): too often, standardized effects sizes,111

particularly SMDs, are relied upon to provide a crutch for interpreting the meaningfulness of results.112

Default and arbitrary scales, such as “small” or “large” based on those proposed by Cohen (1977), should113

generally be avoided. SMDs should be interpreted on a scale calibrated to the outcome of interest. For114

example, Rhea (2004) or Quintana (2016) have demonstrated how to develop scales of magnitude for a115

specific area of research. When possible, it is best practice to interpret the meaningfulness of effects in116

their raw units, and in the context of the population and the research question being asked. For example,117

a 5 mmHg decrease in systolic blood pressure may be hugely important or trivial, depending on the118

context—here, the SMD alone cannot communicate clinical relevance.119

In our opinion, standardized effect sizes can be useful tools for interpreting data when thoughtfully120

employed by the scientists reporting them. However, sport and exercise scientists should be careful when121

selecting the appropriate SMD or effect size, and ensure that their choice effectively communicates the122

effect of interest (Hanel and Mehler, 2019). Herein, we will discuss things to consider when reporting an123

SMD, and we will close by providing general recommendations and examples that we believe sport and124

exercise scientists will find useful.125

WHICH STANDARDIZED MEAN DIFFERENCE SHOULD I REPORT?126

To facilitate a fruitful discussion of SMDs, here, we categorize them based on the information they convey.127

We contend that there are two primary categories of SMDs that sport and exercise scientists will encounter128

in the literature and use for their own analyses. The first helps to communicate the magnitude of an129

effect (magnitude-based SMD), and the second is more related to the probability that a randomly selected130

individual experiences a positive or negative effect (signal-to-noise SMD). These categories serve distinct131

purposes, and they should be used in accordance with the information a scientist is trying to convey to the132

reader. We will contrast these SMD categories in terms of the information that they communicate and133

when scientists may wish to choose one over the other. In doing so, we will show that both approaches to134

calculating the SMD are distinctly valuable. Finally, we demonstrate that, when paired with background135

information and other statistics—whether they be descriptive or inferential—each SMD can assist in136

telling a unique, meaningful story about the reported data.137

Signal-to-noise Standardized Mean Difference138

The first category of SMDs can be considered a signal-to-noise metric: it communicates the average139

change score in a sample relative to the variability in change scores. This is called Cohen’s dz, and it is140

an entirely appropriate way to describe the change scores in paired data. The Z subscript refers to the141

difference being compared is no longer between the measurements (X or Y ) but the difference (Z =Y −X).142

This SMD is directly estimating the change standardized to the variation in this response, making it a143

mathematically natural signal-to-noise statistic.144

Cohen’s dz can be calculated with the mean change, δ̄ , and the standard deviation of the difference,
σδ ,

dz =
δ̄

σδ

. (1)
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Alternatively, for convenience, can be calculated from the t-statistic and the number of pairs (n),

dz =
t√
n
. (2)

In Eq. 2, one can see that dz is closely related to the t-statistic. Specifically, the t-statistic is a signal-to-145

noise metric for the mean (i.e., using its sampling distribution), while dz is a signal-to-noise metric for the146

entire sample. This means that the t-statistic will tend to increase with increases in sample size, since147

the estimate of the mean becomes more precise, while (bias-corrected) Cohen’s dz will not change with148

sample size.149

Although Cohen’s dz may be useful to describe the change in a standardized form, it is typically not150

reported in meta-analyses since it cannot be used to compare differences across between- and within-151

subjects designs (see SMDs below). It is difficult to interpret the value of this type of SMD; that is, since152

the signal-to-noise ratio itself is more related to the consistency of a change, one can wonder how much153

consistency constitutes a ‘large’ effect? This is in contrast to other types of SMDs, wherein the statistic154

conveys information about the distance between two central tendencies (mean) relative to the dispersion155

of the data (standard deviation). Moreover, it appears that, to sport and exercise scientists, the value of this156

SMD is measuring the degree of the change in comparison to the variability of the change scores (Dankel157

and Loenneke, 2018). Therefore, scientists’ intent on using dz should consider reporting the common158

language effect size (CLES) (McGraw and Wong, 1992), also known as the probability of superiority159

(Grissom, 1994). In contrast to dz, CLES communicates the probability of a positive (CLES > 0.5) or160

negative (CLES < 0.5) change occurring in a randomly sampled individual (see below).161

Alternative to the signal-to-noise Standardized Mean Difference162

The information gleaned from the signal-to-noise SMD (Cohen’s dz) can also be captured with the CLES163

(McGraw and Wong, 1992; Grissom, 1994). In paired samples, the CLES conveys the probability of164

a randomly selected person’s change score being greater than zero. The CLES is easy to obtain; it is165

simply the Cohen’s dz (SMD) converted to a probability (CLES = Φ(dz), where Φ is the standard normal166

cumulative distribution function). Importantly, CLES can be converted back to a Cohen’s dz with the167

inverse normal cumulative distribution function (dz =Φ−1(CLES)). CLES is particularly useful because it168

directly conveys the direction and variability of change scores without suggesting that the mean difference169

itself is small or large. Further, current evidence would suggest that the CLES is easier for readers to170

comprehend than a signal-to-noise SMD (Hanel and Mehler, 2019).171

Magnitude-based Standardized Mean Difference172

The second category of SMDs can be considered a magnitude-based metric: it communicates the size of an
observed effect relative to spread of the sample. The simplest and most understood magnitude-based SMD
is Glass’s ∆, which is used to compare two groups, and is standardized to the standard deviation of one of
the groups. However, a conceptually similar version of Glass’s ∆, which we term Glass’s ∆pre, can also be
employed for repeated-measures. In ∆pre the mean change change is standardized by the pre-intervention
standard deviation.1 For basic pre-post study designs, Glass’s ∆pre is fairly straightforward; mean change
is simply standardized to the standard deviation of the pre-test responses. There are other effect sizes for
repeated measures designs such as Cohen’s dav and drm, but for brevity’s sake these are described in the
appendix. Of note, ∆pre, dav, and drm are identical when pre- and post-intervention variances are the same
(see Appendix).

∆pre =
δ̄

σpre
(3)

Importantly, ∆pre is well-described (Morris and DeShon, 2002; Morris, 2000; Becker, 1988) and can
also be generalized to parallel-group designs; in particular, when there are 2 groups, typically a control
and treatment group, being compared over repeated-measurements (Morris, 2008). Typically, in these
cases, a treatment and control group are being directly compared in a ‘pretest-posttest-control design’
(PPC). A simple version of the PPC-adapted ∆pre is

∆ppc = ∆T−∆C (4)

1Although conceptually similar, Glass’s ∆ and ∆pre have different distributional properties (Becker, 1988).
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where ∆T and ∆C are the ∆pre from the treatment and control groups, respectively. There are several other173

calculative approaches which should be considered for comparing SMDs in a parallel-group designs. We174

highly encourage further reading on this topic if this type of design is of interest to readers (Morris, 2008;175

Becker, 1988; Viechtbauer, 2007).176

Summary of Standardized Mean Differences177

Our distinction between signal-to-noise (namely, Cohen’s dz) and magnitude-based SMDs (including178

Glass’s ∆pre, Cohen’s dav, and Cohen’s drm) provides a conceptual dichotomy to assist researchers in179

picking an SMD (summarized in Table 1). However, along with the conceptual distinctions, researchers180

should also consider the the properties of these SMDs. In the following section, we briefly go over the181

math underlying each SMD and its implications. The properties that follow from the math complement the182

conceptual framework we just presented, in turn providing researchers with a theoretical, mathematical183

basis for choosing and justifying their choice of an SMD.184

Table 1. Types of Standardized Mean Differences for Pre-Post Designs

Magnitude-based Glass’s ∆pre, Cohen’s dav, Cohen’s drm
Signal-to-noise Cohen’s dz

WHAT ARE THE STATISTICAL PROPERTIES OF STANDARDIZED MEAN185

DIFFERENCES?186

An SMD is an estimator. Estimators, including SMDs, have basic statistical properties associated with187

them that can be derived mathematically. From a high level, grasping how an estimator behaves—188

what makes it increase or decrease and to what extent—is essential for interpretation. In addition, one189

should have a general understanding of the statistical properties of an estimator they are using; namely,190

its bias and variance, which together determine the accuracy of the estimator (mean squared error,191

MSE = Bias(θ̂ ,θ)2 +Varθ (θ̂), for some true parameter, θ , and its estimate, θ̂ ). These properties depend192

on the arguments used in the estimator. As a result, signal-to-noise and magnitude-based SMDs are not193

only distinct in terms of their interpretation, but also their statistical properties. Although these properties194

have been derived elsewhere (e.g., Hedges (1981); Morris and DeShon (2002); Morris (2000); Gibbons195

et al. (1993); Becker (1988)), their implications are worth repeating. In particular, there are several salient196

distinctions between the properties of each of these metrics, which we will address herein. Although this197

section is more technical, we will return to a higher-level discussion of SMDs in the next section.198

Estimator Components199

Before discussing bias and variance, we will briefly discuss the components of the formulae and their200

implications. Of course, all SMDs contain the mean change score, δ̄ , in the numerator, and thus increase201

linearly with mean change (all else held equal). Since this is common to all SMDs, we will not discuss it202

further.203

More interestingly, the signal-to-noise and magnitude-based SMDs contain very different denomi-
nators. To simplify matters, let us assume the pre- and post-intervention standard deviations are equal
(σpre = σpost = σ ). This assumption is reasonable since pre- and post-intervention standard deviations
typically do not substantially differ in sports and exercise science. In this case, the standard deviation of
change scores can be found simply:

σδ =
√

2σ2(1− r).

With these assumptions, drm = dav = ∆pre for −1 < r < 1, where r is the observed pre-post correlation204

(Appendix). Greater pre-post correlations, r, are indicative of more homogeneous change scores. This205

makes the behavior of the magnitude-based SMDs fairly straightforward; that is, the estimates themselves206

will not be affected by the correlation between pre- and post-intervention scores. Their dependence on σ207

means that the magnitude-based SMD will blow up as σ → 0. This is in contrast to dz, whose denominator208

contains both σ and r (Figure 1, top), making it blow up if either σ → 0 or r→ 1.209

The parsimonious nature of magnitude-based SMDs arguably makes their interpretation easier; with210

reasonable assumptions, they only depend on the mean change score and the spread of scores in the211
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Figure 1. Standardized mean differences for a range of pre-post correlations and
pre-intervention standard deviations. Standardized mean differences (SMD) were calculated for a
pre-post design study with 20 participants to depict the different properties of the different SMDs. We
calculated SMDs for a range of pre-post correlations (r) and pre-intervention standard deviations (σpre),
each with a mean change score of 1. (Top) Magnitude-based SMDs have similar estimates across the
range of pre-post correlations and largely only vary as a function of σpre, whereas signal-to-noise SMDs
are a function of both σpre and r. Note, dz blows up as r→ 1, and all SMDs blow up as σpre→ 0.
(Bottom) The standard error of each estimator increases as σpre→ 0. Importantly, ∆pre has lower or
similar standard errors as r→ 1, whereas dz has greater standard errors as r→ 1. Additional simulations,
including those of other SMDs, can be found in online supplemental material
https://www.doi.org/10.17605/OSF.IO/FC5XW

sample. On the other hand, when breaking dz down into its constituent parts, it depends on the mean212

change score, the spread of scores in the sample, and the correlation between pre- and post-intervention213

scores—the latter two will create σδ . These sensitivities should be understood before implementing an214

SMD.215

Bias216

Bias means that, on average, the estimate of a parameter (θ̂ ) differs from the “true” parameter being
estimated (θ ). Most SMDs follow a non-central t-distribution, allowing the bias to be easily assessed and
corrected. As shown by Hedges (1981), SMDs are generally biased upwards with small sample sizes; that
is, with smaller samples, SMDs are overestimates of the true underlying SMD (θ̂ > θ ). This bias is a
function of both the value of the SMD obtained and the sample size:

E[d] = d̂ =
d

c(n−1)
(5)

=⇒ Bias[d̂,d] = d̂−d = d (1/c(n−1)−1) , (6)

where d is the “true” parameter being estimated, d̂ is its estimate, and c(m) = 1− 3
4(m)−1 is Hedges’217

bias-correction factor (Hedges, 1981) and m = n−1 is the degrees of freedom for a paired sample. Please218

note that this degrees of freedom will differ for different study designs and standard deviations. For219

example, with two groups and a pooled standard deviation, m = n1+n2−2. We have noticed the incorrect220

use of degrees of freedom in some published papers within sport and exercise science, so we urge authors221

to be cautious.222

Because SMDs are biased, especially in small samples, it is advisable to correct for this bias. Thus,
when using Cohen’s d in small sample settings, most sport and exercise scientists should apply a Hedges’
correction to adjust for bias. A bias-corrected d̂ is typically referred to as Hedges’ g:

g = d̂ · c(n−1), (7)
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where d̂ can represent any of the SMD estimates outlined above. This correction decreases the SMD by223

about 10 and 5% with 10 and 15 participants, respectively; corrections are negligible with larger sample224

sizes. Bias correction can also be applied via bootstrapping (Rousselet and Wilcox, 2019).225

More generally, we stress to readers that bias per se is not a bad thing or undesirable property.226

Especially in multidimensional cases, bias can improve the accuracy of an estimate by decreasing its227

variance—this is known as Stein’s paradox (Efron and Morris, 1977). Indeed, biased (shrunken) estimators228

of SMDs have been suggested which may decrease MSE (Hedges and Olkin, 1985). However, these are229

not commonly employed. Having said this, the upward bias of SMDs is generally a bad thing. As will230

be discussed in the next subsection, by correcting for the upward bias, we also improve (decrease) the231

variance of the SMD estimate, in turn decreasing MSE via both bias and variance (Hedges, 1981; Hedges232

and Olkin, 1985).233

Variance234

While bias tells us about the extent to which an estimator over- or underestimates the value of a true235

parameter, variance tells us how variable the estimator is. Estimators that are more precise (less variable)236

will have tighter standard errors and thus confidence intervals, allowing us to make better judgments as to237

the “true” magnitude of the SMD.238

By looking at formulae for variance and its arguments, we can gain a better understanding of what
affects its statistical properties. Below are the variance formulae for Cohen’s dz and Glass’s ∆pre, which
are the two best understood SMDs for paired designs (Becker, 1988; Gibbons et al., 1993; Goulet-Pelletier
and Cousineau, 2018; Morris, 2000; Morris and DeShon, 2002).

Var[dz] =
n−1

n(n−3)
(1+d2

z n)−
d2

z

c(n−1)2 (8)

Var[∆pre] =
n−1

n(n−3)
(
2(1− r)+∆

2
pren
)
−

∆2
pre

c(n−1)2 (9)

Variances for the biased SMDs (above) can be easily converted to variances for the bias-corrected SMDs239

by multiplying each formula by c(n−1)2, which is guaranteed to decrease variance since c(·)< 1 (Hedges,240

1981).241

Each variance formula contains the SMD itself, meaning that variance will tend to increase with an242

increasing SMD. This also complicates matters for dz; since σδ can increase from a smaller σpre or greater243

r, dz’s variance explodes with homogeneous populations or change scores (Figure 1). Such a quality is244

not very desirable, as typically, we would like more precision as effects become more homogeneous; this245

property is a further indication that dz is not a measure of effect magnitude. This is in contrast to the246

magnitude-based SMDs, which become more precise as the effect becomes more homogeneous (Figure247

1). Of note, these differences in variance behaviors do not reflect differences in statistical efficiency; after248

adjusting for scaling, all are unbiased and equally efficient.249

By investigating and understanding the statistical properties of a statistic—here, the SMDs—we can250

gain a better understanding of what we should and should not expect from an estimate. These properties251

provide us with an intuitive feel for the implications of the mathematical machinery underlying each252

SMD, in turn helping us choose and justify an SMD.253

Considering Previous Arguments for Signal-to-noise Standardized Mean Differences254

There have been arguments against SMDs—at least certain calculative approaches—with one particular255

article claiming that magnitude-based SMDs are flawed (Dankel and Loenneke, 2018). Specifically,256

Dankel and Loenneke (2018) profess the superiority of Cohen’s dz over magnitude-based SMDs—257

specifically, Glass’s ∆pre—because of its statistical properties2 and its relationship with the t-statistic.258

Regarding the former, Dankel and Loenneke (2018) opine that the magnitude-based SMD is “dependent259

2Dankel and Loenneke (2018) suggest that, “... normalizing effect size values to the pre-test SD will enable the calculation of a
confidence interval before the intervention is even completed ... This again also points to the flaws of normalizing effect sizes to the
pretest SD because the magnitude of the effect ... is dependent on the individuals recruited rather than the actual effectiveness of the
intervention” (p. 4). This is of course not the case, since the variance of the SMD will depend on, among other things, the change
scores themselves. Thus, the confidence interval of the magnitude-based SMD estimate cannot be calculated a priori.
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on the individuals recruited rather than the actual effectiveness of the intervention.” We do not find this260

to be a compelling argument against magnitude-based SMDs for several reasons. First, it is in no way261

specific to magnitude-based SMDs; all descriptive statistics are always specific to the sample. Second,262

if the data are randomly sampled (a necessary condition for valid statistical inference), then the sample263

should, on average, be representative of the target population. If imbalance in some relevant covariate is a264

concern, then an analysis of covariance, and the effect size estimate from this statistical model, should be265

utilized (Riley et al., 2013).266

It is certainly the case that Cohen’s dz has a natural relationship with the t-statistic. Stemming from267

this relationship, Dankel and Loenneke (2018) suggest that it is a more appropriate effect size statistic268

for repeated-measures designs. Although it is true that dz is closely related to the t-statistic, this does269

not imply that dz is the most appropriate SMD to report. First, the t-statistic and degrees of freedom270

(which should be reported) together provide the required information to calculate a Cohen’s dz, meaning271

dz may contain purely redundant information. Second, although Cohen’s dz has a clear relationship with272

the statistical power of a paired t-test, we want to emphasize that utilizing an observed effect size in273

power analyses is an inappropriate practice. Performing such power analyses to justify sample sizes of274

future work implicitly assumes that 1) the observed effect size is the true effect size; 2) follow-up studies275

will require this observed SMD; and 3) this effect size is what is of interest (rather than one based on276

theory or practical necessity). In most cases, observed effect sizes do not provide accurate estimates of277

the population-level SMD, and utilizing the observed SMD from a previous study will likely lead to an278

underpowered follow-up study (Albers and Lakens, 2018), and moreover, relying on previously reported279

effect sizes ignores the potential heterogeneity of observed effect sizes between studies (McShane and280

Böckenholt, 2014). Rather, there exist alternative approaches to justifying sample sizes (Appendix 2).281

In general, and in contrast to Dankel and Loenneke (2018), we believe that SMDs can be used282

for different purposes—whether to communicate the size of an effect, calculate power, or some other283

purpose—and what is best for one objective is not necessarily what is best for the others. Furthermore,284

we want to emphasize that these are not arguments against the use of signal-to-noise SMDs, but rather a285

repudiation of arguments meant to discourage the use of magnitude-based SMD by sport and exercise286

scientists.287

RECOMMENDATIONS FOR REPORTING EFFECT SIZES288

In most cases, sport and exercise scientists are strongly encouraged to present and interpret effect sizes289

in their raw or unstandardized form. As others previously discussed, journals should require authors to290

report some form of an effect size, along with interpretations of its magnitude, instead of only reporting291

p-values (Rhea, 2004; Thomas et al., 1991). However, an SMD, along with other standardized effect sizes,292

do not magically provide meaning to meaningless values. They are simply a convenient tool that can293

provide some additional information and may sometimes be helpful to those performing meta-analyses294

or who are unfamiliar with the reported measures. Specifically, there are situations where the outcome295

measure may be difficult for readers to intuitively grasp (e.g., a psychological survey, arbitrary units from296

Western Blots, moments of force). In such cases, a magnitude-based SMD—in which the SD of pre-297

and/or post-intervention measures is used in the denominator—can be used to communicate the size of298

the effect relative to the heterogeneity of the sample. In other words, a magnitude-based SMD represents299

the expected number of sample SDs (not the change due to the intervention) by which the participants300

improve.301

Let us consider examples presented previously in the sport and exercise science literature. The302

examples presented in Figure 1 by Dankel and Loenneke (2018), in which both interventions have a pre-303

intervention SDpre = 6.05 and undergo a change of Δ= 3.0 (SMD = 3.0
6.05 = 0.5). This can be interpreted304

simply: the expected change is 0.5 standard deviation units relative to the measure in the sample. Put305

differently, if the person with the median score (50th percentile) were to improve by the expected change,306

she would move to the 69th percentile.3 Like a mean change, this statistic is not intended to provide307

information about the variability of change scores. The magnitude-based SMD simply provides a unitless,308

interpretable value that indicates the magnitude of the expected change relative to the between-subject309

standard deviation. Of course, it can be complemented with a standard error or confidence interval if one310

is interested in the uncertainty around this estimate.311

3Assumes a normal distribution. We note that Dankel and Loenneke (2018) data vignettes are approximately uniformly
distributed which is an odd assumption to make about theoretical data, but nonetheless, sufficiently conveys the point.
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The above can be contrasted with Cohen’s dz, which uses the SD of change scores. Again, using the312

examples presented in Figure 1 of Dankel and Loenneke (2018), Cohen’s dz of 11.62 and 0.25 are reported313

for interventions 1 and 2, respectively. If one tries to interpret these SMDs in a way that magnitude-based314

SMDs are interpreted, he will undoubtedly come to incorrect conclusions. The first would suggest that a315

person with the median score who experiences the expected change would move to >99.99th percentile,316

and the second would imply that she moves to the 60th percentile. Clearly, both of these interpretations317

are wrong. As opposed to a magnitude-based SMD, Cohen’s dz is a signal-to-noise statistic that is related318

to the probability of a randomly sampled individual experiencing an effect rather than its magnitude alone.319

In our opinion, Cohen’s dz does not provide any more information than that which is communicated by the320

t-statistic and the associated degrees of freedom (which should be reported regardless of the effect size).321

Instead, if the signal-to-noise is of interest, a CLES may provide the information a sport and exercise322

scientist is interested in presenting. Going back to our earlier example (dz = 11.62 and 0.25 respectively),323

the CLES would be approximately > 99% and 59.9%, or the probability of a randomly sample individual324

undergoing an improvement is > 99% or 59.9% for intervention 1 and 2, respectively. As Hanel and325

Mehler (2019) demonstrated, the CLES may be a more intuitive description of the signal-to-noise SMD.326

While our personal recommendation leans towards the use of magnitude-based SMDs and CLES, it is up327

to the individual sport and exercise scientist to decide what effect size they feel is most appropriate for the328

data they are analyzing and point they are trying to communicate (Hönekopp et al., 2006).329

In choosing an SMD, we also sympathize with Lakens (2013), “... to report effect sizes that cannot330

be calculated from other information in the article, and that are widely used so that most readers should331

understand them. Because Cohen’s dz can be calculated from the t-value and the n, and is not commonly332

used, my general recommendation is to report Cohen’s dav or Cohen’s drm.” Along these same lines,333

if scientists want to present an SMD, it should not exist in isolation. It is highly unlikely that a single334

number will represent all data in a meaningful way. We believe that data are often best appreciated335

when presented in multiple ways. The test and inferential statistics (p-values and t-statistics) should be336

reported alongside an effect size that provides some type of complementary information. This effect337

size can be standardized (e.g., ∆pre) or unstandardized (raw), and should be reported with a confidence338

interval. Confidence intervals (CI) of a magnitude-based SMD will provide readers with information339

concerning both the magnitude and uncertainty of an effect size; CIs can be calculated using formulae, or340

perhaps more easily, using the bootstrap. In situations where the measurements are directly interpretable,341

unstandardized estimates are generally preferable. The CLES can also be reported when the presence of a342

change or difference between conditions is of interest.343

Percent Changes344

It is not uncommon for sport and exercise scientists to report their data using percentages (e.g., percent345

change). While this is fine if it supplements the reporting of their data in raw units, it can be problematic346

if it is the only way the data are presented or if the statistics are calculated based on the percentages. In347

the case of SMDs, an SMD calculated using a percent change is not the same as an SMD calculated using348

raw units. More importantly, the latter—which is often of greater interest to readers or those performing349

meta-analysis—cannot be back-calculated from the former. It is imperative that authors consider the350

properties of the values that they report and what readers can glean from them.351

Data Sharing352

To facilitate meta-analysis, we suggest that authors upload their data to a public repository such as353

the Open Science Framework, FigShare, or Zenodo (Borg et al., 2020). This ensures that future meta-354

analysis or systematic reviews efforts have flexibility in calculating effect sizes since there are multitude355

of possible calculative approaches, designs, and bias corrections (see Baguley (2009)). When data356

sharing is not possible, we highly encourage sport and exercise scientists to upload extremely detailed357

descriptive statistics as supplementary material (i.e., sample size per group, means, standard deviations,358

and correlations), or alternatively, a synthetic dataset that mimics the properties of the original (Quintana,359

2020).360

Examples361

In the examples below, we have simulated data and analyzed it in R (see supplementary material) to362

demonstrate how results from a study in sport and exercise science could be interpreted with the appropriate363

application of SMDs. For those unfamiliar with R, there is an online web application (https://364
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doomlab.shinyapps.io/mote/) and extensive documentation (https://www.aggieerin.365

com/shiny-server/introduction/) to simplify the process of calculating SMDs for those366

without R programming experience (Buchanan et al., 2019).367

Scenario 1: Interpretable Raw Differences368

In the first hypothetical example, let us imagine a study trying to estimate the change in maximal oxygen369

consumption (V̇O2; L·min-1) in long-distance track athletes before and after a season of training. For this370

study, maximal V̇O2 was measured during a Bruce protocol with a Parvomedics 2400 TrueOne Metabolic371

System. The results of this hypothetical outcome could be written up as the following:372

V̇O2 after a season of training with the track team (mean = 4.13 L·min-1, SD = 0.25) increased373

compared to when they joined the team (M = 3.89 L·min-1, SD = 0.21), t(7) = 3.54, p =374

0.009, δ̄ = 0.23 L·min-1 95% C.I. [0.07, 0.38]. The CLES indicates that the probability of a375

randomly selected individual’s V̇ O2 increasing after their first season with the team is 89%.376

Scenario 2: Uninterpretable Raw Differences377

Now, let us imagine a study trying to estimate the effect of cold water immersion on muscle soreness. For378

this hypothetical study, muscle soreness is measured on a visual analog scale before and after cold water379

immersion following a muscle damaging exercise. The muscle soreness score would be represented by380

cm on the scale measured left-to-right. Because sensations tend to be distributed lognormal (Mansfield,381

1974)—and are multiplicative rather than additive—it is sensible to work with the logarithm of the382

reported soreness levels. Since these logged scores are not directly interpretable, it is sensible to use an383

SMD to help interpret the change scores. The hypothetical study could be written up as follows:384

Muscle soreness was lower after cold water immersion (mean = 27, SD = 7) compared to385

before (mean = 46, SD = 11) cold water immersion, t(9) = -6.90, p < .001, Glass’s ∆pre386

= -2.2 95% CI [-3.2, 1.3]. The CLES indicates that the probability of a randomly selected387

individual experiencing a reduction in muscle soreness after cold water immersion is 99%.388

CONCLUSION389

We contend that the reporting of effect sizes should be specific to the research question in conjunction390

with the narrative that a scientist wants to convey. In this context, pooled pre- and/or post-study SDs391

are viable choices for the SMD denominator. This approach provides insight into the magnitude of a392

given finding, and thus can have important implications for drawing practical inferences. Moreover, the393

values of this approach are distinct and, in our professional opinion, potentially more insightful than394

signal-to-noise SMDs, which essentially provide information that is redundant with the t-statistic. At the395

very least, there is no one-size-fits-all solution to reporting an SMD, or any other statistics for that matter.396

Despite our personal preference towards other effect sizes, a sport and exercise scientist may prefer a397

signal-to-noise SMD (dz) and could reasonably justify this decision. We urge sport and exercise scientists398

to avoid reporting the same default effect size and interpreting them based on generalized, arbitrary scales.399

Rather, we strongly encourage sport and exercise scientists justify which SMD is most appropriate and400

provide qualitative (i.e., small, medium, or large effect) interpretations that are specific to that outcome401

and study design. Also, sport and exercise scientists should be careful to report the rationale for using an402

SMD over simply presenting raw mean differences. Lastly, the creation of statistical rituals wherein a403

single statistic, by default, is used to interpret the data is likely to result in poor statistical analyses rather404

than informative ones (Gigerenzer, 2018). As J.M. Hammersley once warned, “There are no routine405

statistical questions; only questionable statistical routines” (Sundberg, 1994).406

APPENDIX 1: STANDARDIZED MEAN DIFFERENCE CALCULATIVE AP-407

PROACHES408

Throughout the text, we use Glass’s ∆pre as our token magnitude-based SMD. However, there exist409

other approaches to calculating magnitude-based SMDs. Here, we briefly discuss two other common410

calculations of magnitude-based SMDs. Of note, these two other calculative approaches may contain411

some “effects” (variance) from the intervention in the denominator, arguably making Glass’s a more “pure”412

(in the sense that the denominator is uncontaminated by intervention effects) magnitude-based SMD.413
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Cohen’s dav: Some have argued that Cohen’s dz is an overestimate of the SMD, and instead advocate
for reporting an SMD very similar to the Cohen’s ds typically utilized for between-subjects (independent
samples) designs (Dunlap et al., 1996). The only difference between Cohen’s dav and Cohen’s ds is that
the average standard deviation between the two-samples (e.g., pre- and post-intervention assessments in a
repeated-measures design) is used rather than the pooled standard deviation.

dav =
δ̄

σpre +σpost/2
(10)

Cohen’s drm: The standardized difference between repeated-measures (hence “rm”) is arguably the
most conservative SMD among those reported. This approach “corrects” for repeated-measures by taking
into account the correlation between the two measurements.

drm =
δ̄√

σ2
pre +σ2

post−2 · r ·σpre ·σpost

·
√

2 · (1− r) (11)

=
δ̄

σδ

·
√

2 · (1− r) (12)

= dz ·
√

2 · (1− r) (13)

APPENDIX 2: JUSTIFYING SAMPLE SIZES414

There are more appropriate approaches to justifying sample sizes than using previously reported effect415

sizes. First, if authors have a question that, for some reason, necessitates null hypothesis significance416

testing, authors should first perform the necessary risk analysis to obtain their desired error rates. Next,417

authors can specify a smallest effect size of interest (SESOI) or minimal clinically important difference418

(MCID) (Hislop et al., 2014). Of note, the ontological basis for (or the rationale for the true existence419

of) such dichotomizations—both in the effect (SESOI, MCID) and p-value domains (α-level)—should420

be justified. Oftentimes, it is not the researcher, but a reader, clinician, or policymaker who must make421

a decision; for such decisions, proper, contextual decision analytic frameworks should be employed422

(Amrhein et al., 2019; Hunink et al., 2014; Vickers and Elkin, 2006). Second, if relying on estimation423

rather than hypothesis testing, sport and exercise scientists could determine a sample size at which they424

would have high enough “assurance” that the estimates would be sufficiently accurate (i.e., confidence425

intervals around the effect size are sufficiently narrow) (Maxwell et al., 2008). Third, authors may simply426

be working under constraints (e.g., time, money, or other resources) that prohibit them from recruiting427

more than n participants. We believe such pragmatic constraints are perfectly reasonable and justifiable.428

No matter the sample justification, it should be thoughtful and reported transparently. Importantly,429

the utility of an effect size or SMD should not be determined by its ability to be used in sample size430

justifications or calculations.431
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