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ABSTRACT 
The eggbeater kick is an important skill in artistic swimming 
necessary to lift the body above water level. Previous attempts to 
model its performance included complex biomechanical parameters 
that cannot be easily used to guide strength and conditioning 
training. The objective of this study was to model the relationship 
between hip strength and eggbeater performance through a 
machine learning algorithm. We assessed hip function of 92 elite 
artistic swimmers with six easily performed isometric tests. These 
data were fed to a gradient boosting model to predict three technical 
variables: body boost height [BB-H], eggbeater height [EB-H] and 
eggbeater force [EB-F]. Group mean differences (𝛥𝜇) between 
predicted and measured variables were reported. Then, the model 
was used to propose training tips for two hypothetical case studies. 
Our model predicted performances with errors within the resolution 
of the scale used during competitions: absolute error of 0.32 ± 0.21 
and 0.49 ± 0.39 in EB-H and BB-H, respectively. The predicted 
performance was similar to the measured one for all technical tests 
(EB-F: 𝛥𝜇 = 0.29; EB-H: 𝛥𝜇 = 0.13; BB-H: 𝛥𝜇 = 0.23). We illustrated 
some of the important predictors (hip internal rotation, abduction, 
and left-right imbalances) of the eggbeater kick performance and 
highlighted personalized strategies to improve performance
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INTRODUCTION 
Artistic swimmers keep their heads out of the water for about 40% of their routine 

duration.1 Most of that time is associated with the use of eggbeater kicks. The eggbeater kick is 
a complex movement,2,3 but an efficient technique to keep the body above the water surface 
allowing the swimmer to perform artistic arm movements.4 It can be used to maintain the body 
in an elevated pose (termed as sustained) or can be modified to drive the body explosively out 
of water (termed as body boost). The quality of the eggbeater is evaluated based on the FINA 
guiding scale for height from 3.5 to 9.5 points.5 This guide attaches a score to the stable or 
dynamic height reached, based on the water level of body parts. 

While the eggbeater is a fundamental skill in artistic swimming, its complexity makes it 
difficult to train. Various studies tried to investigate the eggbeater kick to improve teaching, and 
ultimately performance. Highly eggbeater-skilled swimmers seemed to favor a “horizontal kick 
type” rather than a vertical one.3 They achieved it through widening their knees, and holding 
their heels near the water surface with a strong internal rotation of the thighs.3 Indeed, Sanders2 
concluded that an effective sustained eggbeater technique is one that utilizes lift forces more 
than drag forces through sculling the feet with large horizontal components. Similar conclusions 
were reached to achieve a higher body boost.6 To achieve this sculling motion, Sanders7 
recommended training all hip muscle groups for strength, power and flexibility. Particularly, as 
the feet need to move quickly throughout the kick, it becomes important to train lower limb 
joints for strength to ensure speed despite the unnatural position at the time of maximal hip 
abduction.2 Zinner et al.8 showed that water-polo players with higher isometric hip abductor 
muscle strength performed better in eggbeater kick, consolidating the link between hip strength 
and eggbeater performance. Finally, the importance of both lower limbs in the eggbeater was 
underlined, since downward forces produced by the non-dominant limb led to a decreased 
propulsive force.9 While this study concluded that differences during the cycle are not related to 
bilateral differences in strength, the authors only examined knee and ankle strengths. However, 
they observed significant differences in hip joint kinematics between both limbs. This could point 
out to the importance of the hip joint strength balance between the left and right side. 

Despite the apparent link between hip joint and eggbeater kick proficiency,10 it remains 
difficult to establish training programs for a given swimmer. Thus, models that link each of the 
hip joint parameter to the eggbeater performance are needed to improve this skill’s training. 
Sanders2,6 performed multiple linear regressions to predict height based on foot speed, range 
of knee extension and initial angle of the upper body. Their predictive models of sustained and 
dynamic height explain 90% and 79% of the variance. Similarly, Oliveira et Sanders9 and Homma 
et Homma3 reported modest to strong correlations between height and kinematics variables 
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such as orientation and speed of the limbs. Unfortunately, these predictive models are based 
on small samples size (4 < 𝑛 < 16) and were not cross-validated. Furthermore, they cannot 
easily be implemented in a training environment as they rely on biomechanical parameters that 
require 3D kinematic analyses. 

Machine learning algorithms have been gaining popularity as a tool for performance 
prediction.11–13 They seem to be able to outperform more classical regression approaches.11,12,14 
Particularly, gradient boosting algorithms are a tree-based approach that uses sequential 
learning to improve weak learners. They are highly customizable and powerful tools for learning 
and analyzing problems with heterogeneous parameters and noisy data with complex 
interactions.15 However, their increased accuracy sacrifices their interpretability. A recent unified 
framework for interpreting  machine learning predictions16 might offer a tool to harness gradient 
boosting models to develop personalized training plans for athletes. 

The current study aims to investigate the relationship between hip muscle strength in 
elite artistic swimmers and performance in eggbeater kicks using a gradient boosting algorithm. 
The predictive model accuracy should be inferior to the FINA guiding scale for height resolution 
(0.5 points), and its input data should be easily accessible in a training environment. A 
supplementary objective is to illustrate how the model can be used to develop a data-driven 
conditioning support system. 

METHOD 

Participants 

Artistic swimmers with provincial, national and international levels participated in the 
study (n=92; age: 12-25 years old; height: 164.6±7.0 cm, weight: 55.4±7.7 kg; training load: "≥ 4"  
days/week). They were free from hip pain or injury at the time of testing and had no history of 
hip surgery. Prior to the experimental procedure, the participants—and their guardians for 
swimmers under 17 years old—signed an informed consent form approved by the ethics 
committee (17-163-CERES-D). 

Experimental procedures 

First, swimmers hip function was assessed using three maximal voluntary isometric 
contractions (MVIC) lasting three seconds each in six positions (Figure 1, with details in appendix 
1). MVIC were recorded after a standard dry-land warm up using the Groin Bar (Vald 
Performance, Queensland, Australia; 0.5 N resolution) at 50 Hz. Participants were strongly 
encouraged and were given at least 5-s rest between contractions.17 Swimmers then performed 
three technical tests to assess the quality of the eggbeater kick (Figure 2, with details in appendix 
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2). First, the maximal height attained after a body boost (BB-H) and the mean sustained height 
during a 15-seconds double arm eggbeater (EB-H) were evaluated using the FINA guiding scale 
for height.5 Heights were estimated from 120 frames-per-second videos. The maximal upward 
force during a 5-s sustained eggbeater (EB-F) was measured using a hand-held dynamometer at 
40 Hz (Lafayette Model 01165, Indiana, USA). The evaluator positioned the dynamometer on the 
athletes’ heads. They were instructed to push vertically with their head using solely their 
eggbeater kick for 5 s. Each test was repeated twice. 

 

Figure 1. Isometric hip strength positions using the GroinBar. Positions included abduction and adduction 
(ABD – ADD), internal and external rotations (IR – ER), extension (EXT) and flexion (FLEX). More detailed 
descriptions are included in appendix 1. 

 
Figure 2. Description of the technical tests: The evaluator positioned the hand-held dynamometer on the 
swimmer’s head. Using solely their eggbeater kick, the swimmer pushed vertically with their head against 
the dynamometer (EB-F); The swimmer sustained an eggbeater kick for 15 seconds (EB-H). According to 
the FINA scale, the body part at water surface level defined the EB-H score; The swimmer propelled out 
of the water using a body-boost kick (BB-H). Similar to EB-H, the body part at water surface level defined 
the BB-H score. More detailed descriptions are included in appendix 2. 
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Modeling 

From the tests previously described, MVIC force signals were low-pass filtered using a 
zero-lag fourth-order 10 Hz Butterworth filter MVIC envelopes were extracted using a moving 
root-mean-squared average on a 200-ms window. These timeframe envelopes were then 
reduced by taking the mean of the highest consecutive values during 0.2 second. From these 
values, a force score was calculated using forces from left and right legs such as 𝐹 =

2 ×
 ×

  
. Left-right imbalance was also computed using the relative difference. 

The predictive model had 14 input variables: force scores and imbalances for the 6 hip 
tests as well as anthropometric measurements (height and mass, described in appendix 3). We 
used the three technical tests (maximum BB-H, mean EB-H and mean EB-F) as output variables. 
This dataset, composed of the input and output variables mentioned above, was randomly split 
into training (80%, 𝑛 = 73) and test (20%, 𝑛 = 19) sets. 

A gradient-boosting algorithm was fitted for each output variable (BB-H, EB-H and EB-F) 
with the training set using the Python Catboost library.18 This particular algorithm was chosen as 
it provided the best cross-validation error on our dataset. Once trained, we evaluated the 
generalization error on the test set and reported the difference in mean absolute error (MAE) 
and mean absolute percentage error (MAPE). MAPE differences between real and predicted 
performance were investigated using Bayesian estimation described in Kruschke,19 which 
provides distributions of credible values for the effect size (𝑑) and the group means 
differences (𝛥𝜇). We reported the mean of the posterior distribution and the 95% highest 
posterior density (HPD) interval, which contains 95% of the posterior distribution. We define a 
statistically significant difference when the HPD of the difference between predicted and real 
values does not contain zero. The percentile of the HPD within which a zero mean difference 
can be found are also reported (𝑝 < 0 < 𝑝 ). The most important variables and their impact 
on the technical tests are evaluated using the Shap Python library.16 

To showcase how the model can help define conditioning goals to improve the eggbeater 
performance, two random participants (swimmers A and B) were selected as the subjects of two 
case studies. In the first, we evaluated the projected performance in BB-H with an independent 
increase (10%) of each force score or decrease in imbalance. In the second, we predicted the 
minimum change required to achieve a 0.5-points improvement (𝐹 ) in BB-H. We solved an 
unconstrained multi-objective (𝐹 , minimize change in forces and imbalances) optimization 
problem with a particle swarm optimization algorithm.20 The variables were weighted by the 
normalized impact factors estimated by the Shap library to ensure a fast convergence of the 
evolutionary algorithm toward a global optimal solution. 



 
6 

Results 

Variables distribution 

Hip adduction-abduction generated the highest forces among the MVIC (ADD: 26.1 ±

4.8 kg, ABD: 23.1 ± 4.5 kg), followed by hip flexion-extension (FLEX: 17.1 ± 3.5 kg, EXT: 16.7 ±

6.1 kg) and hip internal-external rotations (IR: 9.8 ± 2.5 kg, ER: 8.2 ± 1.6 kg) (Figure 3, left panel). 
With 22.3 ± 18.4%, EXT reached the highest left-right imbalance (Figure 3, right panel) while all 
other tests did not exceed 10% (FLEX: 9.5 ± 7.6%, IR: 9.5 ± 7.2%, ER: 8.1 ± 6.6%, ABD: 5.7 ± 4.5% 
and ADD: 4.9 ± 3.7%). 

 
Figure 3. Tukey box plot showing force (left panel) and imbalance (right panel) evaluated on the MVIC with 
median (vertical lines), first-third interquartile range (bars, 𝐼𝑄𝑅 = [𝑄1, 𝑄3]), whiskers range (horizontal 
lines, [𝑄1 − 1.5 ∗ 𝐼𝑄𝑅, 𝑄3 + 1.5 ∗ 𝐼𝑄𝑅]). Data beyond the whiskers are considered outliers (circles). 

 
Figure 4. Tukey box plot showing the three sport-specific tests performances with median (vertical lines), 
first-third interquartile range (bars, 𝐼𝑄𝑅 = [𝑄1, 𝑄3]), whiskers range (horizontal lines, [𝑄1 − 1.5 ∗ 𝐼𝑄𝑅, 𝑄3 +

1.5 ∗ 𝐼𝑄𝑅]). Data beyond the whiskers are considered outliers (circles). 

Model evaluation 

Our predictive model averaged a MAPE of 6.10 ± 5.86% on the test set. The largest errors 
(Figure 5) were found in EB-F (MAE: 0.66 ± 0.71 kg, MAPE: 8.71 ± 8.42%) although the predictions 
remained similar to the measured performances (𝛥𝜇 = 0.29 kg, 17.0% < 0 < 83.0%, 𝑑 = 0.32, 
posterior distribution in appendix 4). The MAE error in BB-H (MAE: 0.49 ± 0.39, MAPE: 5.38 ±

4.18%) and EB-H (MAE: 0.32 ± 0.21, MAPE: 4.21 ± 2.62%) predictions were smaller than the 
resolution of the FINA guiding scale for height (0.5 points). The predicted performance was 
similar to the measured performance for both BB-H (𝛥𝜇 = 0.23, 10.8% < 0 < 89.2%, 𝑑 = 0.40) 
and EB-H (𝛥𝜇 = 0.13, 24.7% < 0 < 75.3%, 𝑑 = 0.22). 
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Figure 5. Empirical cumulative distribution function (ECDF) of the MAE (left panel) and MAPE (right panel) 
measured on the test set (n=19) for BB-H (blue), EB-H (orange) and EB-F (red). The ECDF evaluated at x is 
defined as the fraction of data points that are ≤ x. Mean value are also displayed (vertical lines). 

A different set of feature importance was reported for each technical test (Figure 6). The 
three technical tests had a weak relationship as their correlation coefficients ranged from 
0.01 (EB-H and EB-F), to 0.16 (BB-H and EB-F) and 0.30 (BB-H and EB-F). While BB-H requires to 
be tall and have strong internal rotation according to the model (Figure 6, left panel), EB-H is 
likely to increase with strong external and internal rotations and a low internal rotation 
imbalance. (Figure 6, middle panel). Heavier athletes with a moderately strong external rotation 
and extension, and a strong abduction seem to perform better in EB-F (Figure 6, right panel). 
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Figure 6. SHAP summary plot of the three gradient boosting models (left: BB-H, middle: EB-H, right: EB-F). The higher the SHAP value (x-axis) of a 
feature (y-axis), the higher the log of the target output. Only the six most important variables are displayed and ranked from most important (top) 
to least (bottom). Every participant is run through each model and a dot is created for each feature attribution value. Dots are colored by the 
feature value (red when the variable is high, blue when it is low) and pile up vertically to show density. For example, BB-H predicted performance 
increases if IR increases. 
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Model interpretation and conditioning goals 

The BB-H performance projection after the strength increase or the imbalance decrease 
differed between the two athletes. A 10% strength increase in flexion was slightly beneficial for 
the swimmer A (Figure 7, top-left panel), while a 10% decrease in imbalance seemed to be most 
beneficial in abduction (+0.23) and internal rotation (+0.13). On the other hand, the performance 
of swimmer B was not likely to improve with a 10% imbalance decrease (Figure 7, bottom-right 
panel). Additionally, while a 10% stronger external rotation was likely beneficial (+0.10), a 
stronger abduction would slightly decrease the BB-H performance. 

 
Figure 7. First simulation with a 10% increase in strength (left panel) and a 10% decrease in imbalance 
(right panel) in each individual hip strength test (y-axis) and its impact on the BB-H performance prediction 
(x-axis) for two random swimmers (A and B). The baseline prediction is also displayed (vertical lines). 

The second simulation, while sharing similarities with the first one, predicted different 
strategies to achieve a 0.5-point improvement (Figure 8). First, and similarly to the first 
simulation, the optimization tried to reduce the left-right imbalance in swimmer A in ABD (-
4.62%), FLEX (-2.97%) and IR (-1.24%) but also in ER (-2.40%), ADD (-1.22%) and EXT (-1.02%), 
while imbalance remained the same for swimmer B. Second, and in contrast with the first 
simulation, the optimization increased strength in ABD (+5.36 kg), ADD (+4.36 kg), ER (+0.35 kg) 
and EXT but also in FLEX (+2.41 kg) in swimmer A and in ADD (+5.56 kg) and FLEX (+2.94 kg) in 
swimmer B. Some large decrease in strength occurred in EXT (-7.51 kg) and IR (-3.05 kg) in 
swimmer B. 
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Figure 8. Second simulation with the optimal set of hip strength of both left (L) and right (R) legs (points) 
to achieve an improvement of 0.5 points in BB-H for two random swimmers (left panel: A, right panel: B). 
The baseline values are also displayed (horizontal lines). 

Discussion 
Research at the intersection of sports sciences and machine learning offers great 

promise to advance training decision-making and human movement research. In this study, we 
used a machine learning algorithm to model the relationship between a series of six hip MVIC 
and the performance of key skills in artistic swimming. In accordance with our hypothesis, our 
results showed that hip muscle strength can be used to predict eggbeater kick performance in 
elite artistic swimmers. The model predictions could help in building personalized and potentially 
efficient conditioning programs, as well as guide decisions in a selection setting. 

Variables distribution 

The model was fed with body mass, height and six hip MVIC recorded with a GroinBar, 
an easy-to-use and reliable hip strength assessment system.17 Swimmers generated the highest 
forces during hip adduction-abduction, followed by hip flexion-extension and hip internal-
external rotations. These forces levels are consistent with those reported by Cichanowski et al.21 
in female collegiate athletes (once normalized by body mass, see appendix 5). The increased 
inter-participant and inter-leg variability observed for the extension test suggests that hip 
extension is a difficult test to perform and replicate, as reported in Scott et al.22 As the maximum 
height was calculated from the head in Sanders,2 from the hand in Stirn et al.23 and using the 
FINA guiding scale for height5 in the present study, it is difficult to compare performance with 



 
11 

previous studies. The upward force magnitude was comparable to the force reported for female 
water-polo athletes (60-120 N).24 

Model evaluation 

A common study design in machine learning is to split the sample into a training set to 
train the model and an independent test set to evaluate its performance on unseen data. This 
design remains unusual is sports sciences due to small sample sizes.25 Unlike previous models 
of sustained and dynamic eggbeater height,2,3,9 we used a train-test split to make sure that our 
evaluation is representative of the generalization error of the model. The predictions were 
comparable to the real performances in all three tests, with an average relative error of 4%, 5% 
and 9% in the predicted BB-H, EB-H and EB-F, respectively. Measured EB-F large variability could 
explain its higher prediction error. Since the gradient booster algorithm performs well on 
medium to larger datasets, we expect our current result to improve if we increase the number 
of athletes. Nevertheless, as we used a Bayesian approach to evaluate the difference between 
the model’s prediction and the test set, we can draw better conclusions about the credibility of 
the model. The current posterior distribution mean difference mean value for BB-H (𝛥𝜇 = 0.23) 
and EB-H (𝛥𝜇 = 0.13) is smaller than half the FINA resolution. Thus, the prediction error is within 
the measurement error of the training set. As, for EB-F (𝛥𝜇 = 0.29 kg), the use of a handheld-
dynamometer might have not offered a great accuracy, as the measured force might have not 
always been aligned with the exact vertical axis. Accordingly, an improved eggbeater force 
measuring technique might decrease the prediction error. 

Model interpretation and conditioning goals 

Different sets of feature importance were reported for each of the three technical tests, 
which suggest that these tests would require different physical capacities. Anthropometry could 
improve only BB-H (taller athletes) and EB-F (heavier athletes). Being taller can be beneficial for 
a body booster as longer limbs increase the contact surface.26,27 On the other hand, as the EB-F 
counteracts in part the body weight, a heavier athlete will require a higher force to achieve a 
similar EB-H. Despite these differences, some criteria seem to be important for all technical tests. 
First, having a high internal rotation strength is beneficial for an improved height score, which is 
coherent with coaching tips.3 On the other hand, a high internal rotation could lead to a 
decreased EB-F. Indeed, it has been observed that with fatigue, swimmers vertical force 
decreased while their internal rotation increased.10 Oliveira et al.10 suggested that this increase 
might be an adaptation to counter the fatigue-induced weakness of the hip abductors and 
flexors, as internal rotation migh be less demanding. Thus, the athletes with stronger internal 
rotation might have developed overtime this strength to counter their abduction weakness. This 
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adaptation might not be the best scheme, as it would put the athlete at a greater risk of patella 
misalignment and injury.10 Second, an increase in abduction hip strength was not necessarily 
linked to a higher eggbeater, yet seemed to increase the eggbeater force. Hip abduction is used 
during the recovery phase of the kick. Due to the drag force, a stronger abduction at this phase 
might sink the hip deeper. From a deeper starting position, the athlete would require a higher 
EB-F to move a larger portion of the body out of the water, without necessarily achieving a higher 
kick. Thus, the flexibility of the hip joint in abduction might be a better indicator of performance.3 
Endurance in abduction could also be a required quality to sustain high eggbeater kick 
performance and we could therefore include such tests in the hip function assessment.10 Finally, 
an increase in left-right imbalance-based variables was not always associated with decreased 
performance. As asymmetries observed in the kinematics were attributed to neurological 
differences,9 the link between strength asymmetry and performance might not be 
straightforward. This highlights the necessity for models that can account for various input 
parameters and their interactions. Note that these interpretations just explain how the model 
works. Since the model is trained from observational data, it is not necessarily a causal model, 
and just because changing a factor increased the model’s prediction of performance, it does not 
necessarily mean it would raise the actual performances—despite the acceptable generalization 
error. 

A secondary objective of this study was to illustrate how the model can be used to build 
personalized and potentially efficient conditioning programs. First, we evaluated how a 10% 
increase in force score or a 10% decrease in imbalance could modify BB-H score. Interestingly, 
despite having a similar BB-H, swimmers A and B had different BB-H projections following 
strength and balance modifications. This highlights that different techniques could be used to 
achieve a similar score. Thus, an optimal training plan is one that accounts for the hip strength 
at that time. Nevertheless, it would practically be difficult to modify solely one of the inputs of 
the BB-H model. Thus, the second simulation might offer more flexibility to coaches. Swimmer A 
conditioning plan seems easier to implement, as she would need to overall improve her muscle 
strength and left-right balance. Swimmer B plan might be more problematic particularly as 
reducing abduction and extension while increasing adduction and flexion might lead to hip 
dysfunction. Swimmer B might benefit from flexibility or endurance training. Thus, including such 
variables will most probably improve our models. 

Methodological considerations 

Our study had some limitations. First, we only included high-level artistic swimmers, 
which led to a small variability of both sustained and dynamic eggbeater heights (SD of 0.6 
points). Since the FINA guiding scale for height resolution is 0.5 points, the low variability of these 
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target variables may lead to a model with poor predictive capability for sports applications. 
Including low-level swimmers may reduce the predictive accuracy since this population is more 
heterogeneous in terms of technique and flexibility, which are essential for the eggbeater skill.2,3 
Including data from water polo players could also extend the reach of the model by increasing 
the variability in both predictor and target variables. Additional tests on complementary skills—
such as technique and flexibility—could help to include swimmers with various levels and coming 
from various sports. Second, despite the eggbeater being a dynamic skill, we used isometric 
predictors. While isokinetic force assessment, as in Yamamura et al.,28 would provide a more 
accurate prediction, isometric tests are more suited for training settings as they can be easily 
implemented. Third, the performance in sustained eggbeater kick was defined as an average 
value. The standard deviation in force and height might also be a key performance indicator 
associated with hip function. Oliveira et al.29 showed force variation of about 40% throughout 
the eggbeater cycle. This variation may be related to bilateral asymmetries9 as well as a variable 
feet speed throughout the cycle. 

Practical applications 

Our results showed that hip joint isometric strength could be used to predict eggbeater 
kick performance in elite artistic swimmers within the resolution of the sport’s notation scale. 
We also highlighted some of the important predictors of key technical skills in artistic swimming. 
Those new findings support the use of predictive modelling to select athletes and to design 
personalized conditioning goals. It also provides coaches, athletes and other researchers in 
sports physiology and sports performance with hip strength normative data in elite artistic 
swimmers. 

Our model may accurately predict future performances as the generalization error was 
comparable to the resolution of the FINA guiding scale for height. In addition, we used a set of 
interpretation and simulation methods to show that our model could provide practical 
guidelines to build effective and personalized conditioning programs. The model can be easily 
implemented in elite training structures as the required tests can easily be performed on a 
weekly basis, without the need for a physiotherapist or a scientist. We hope that our results 
would provide sports scientists and coaches with new opportunities upon which to build modern 
training programs that enhance the athlete’s performance. 
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Appendices 

Appendix 1 

Table 1. Description of the isometric hip strength tests 

Test 
Body 

position 

Hip 
flexion 

Knee 
flexion 

Sensor position 

Hip 
bilateral 

Abduction (ABD) Supine 60° 60° Lateral femoral condyles 

Adduction (ADD) Supine 60° 60° Medial femoral condyles 

Internal rotation (IR) Supine 90° 90° Lateral malleoli 

External rotation (ER) Supine 90° 90° Medial malleoli 

Hip 
unilateral 

Flexion (FLEX) Supine 90° 90° 
Distal part of the 

quadriceps 

Extension (EXT) Prone Neutral 90° Distal part of the hamstring 
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Appendix 2 

Table 2. Description of the technical tests 

Test Duration Body position Metric Indicator 

Body boost height 
 (BB-H) 

N/A Arms along the body 
FINA guiding 

scale for height 
Max 

Eggbeater height  
(EB-H) 

15 s 
Arms extended vertically 
above the head 

FINA guiding 
scale for height 

Mean 

Eggbeater force 
(EB-F) 

5 s 
Arms parallel to and above 
the water 

kg Max 
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Appendix 3 

 
Figure S1. Empirical cumulative distribution function (ECDF) of the participant’s height (left panel) 
and mass (right panel). The ECDF evaluated at 𝑥 is defined as the fraction of the data points that 
are ≤ 𝑥.  
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Appendix 4 

 
Figure S2. Posterior distributions (bars) of the mean difference (left panel) and effect size (right 
panel) estimated with the Bayesian model described in Kruschke19 with 95% HPD (horizontal 
lines) for every sport-specific test. Mean and proportions relative to zero (vertical lines) are 
displayed in the top right of each plot.  
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Appendix 5 

 
Figure S3. Tukey box plot showing the normalized force evaluated on the MVIC with median 
(vertical lines), first-third interquartile range (bars, 𝐼𝑄𝑅 = [𝑄1, 𝑄3]), whiskers range (horizontal 
lines, [𝑄1 − 1.5 ∗ 𝐼𝑄𝑅, 𝑄3 + 1.5 ∗ 𝐼𝑄𝑅]). Data beyond the whiskers are considered outliers 
(circles).  
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