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Abstract
Background Placing a stronger focus on subject-specific responses to footwear may lead to a
better functional understanding of footwear effects on running and its influence on comfort
perception, performance, and pathogenesis of injuries. Here, we investigate subject-specific
responses to different footwear conditions within ground reaction force (GRF) data during
running using a machine learning-based approach. We conduct our investigation in three steps,
guided by the following hypotheses: (I) For each subject x footwear combination, unique GRF
patterns can be identified. (II) For each subject, unique GRF characteristics can be identified
across footwear conditions. (III) For each footwear condition, unique GRF characteristics can be
identified across subjects.
Methods Thirty male subjects ran ten times at their preferred (self-selected) speed on a level and
approximately 15m long runway in five footwear conditions (barefoot, subject’s own running
shoe, and three standardised running shoes). We recorded three-dimensional GRFs for one
right-foot stance phase per running trial and classified the vectorised GRFs using support vector
machines.
Results The highest prediction accuracy was found for the subject x footwear classification
(hypothesis I). The median prediction accuracy was 95.7%. This is approximately 137 times higher
than the zero-rule baseline (ZRB) of 0.7%. Across footwear conditions, subjects could be
discriminated with a median prediction accuracy of 89.7% (approximately 27 times higher than
the ZRB of 3.3%). Across subjects, footwear conditions could be discriminated with a median
prediction accuracy of 76.3% (approximately 4 times higher than the ZRB of 20.0%).
Conclusion Our results suggest that, during running, responses to footwear are unique to each
individual subject and footwear design. As a result, considering subject-specific responses
contribute to a more differentiated functional understanding of footwear effects. Incorporating
holistic biomechanical data is auspicious for the (subject-specific) evaluation of the footwear
effects, as unique interactions between subjects and footwear manifest in versatile ways.
Machine learning methods have demonstrated their great potential to fathom subject-specific
responses when evaluating and recommending footwear.
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Introduction
Debates in sport biomechanics have discussed the effects of footwear on sports performance, com-
fort perception, and injury risks.1,2 From these debates, footwear designs emerged thatwere aimed
to reduce speculated risk factors of running-related injuries (e.g., excessive pronation or high im-
pact forces). The effects of such footwear designs, however, remain elusive as contradictory find-
ings regarding their influence on injury risks and biomechanics are frequently reported.3,4 Some
studies, for instance, showed that a shoe’s midsole hardness affected ground reaction force (GRF)
variables (e.g., loading rates, impact forces),5,6 while other authors reported no (or even opposing)
effects.7–9

One possible explanation for those contradictory findings could be methodological limitations.
Current research strategies commonly focus on average responses to footwear (e.g., using esti-
mates of central tendencies like mean values from groups of individuals). This approach, however,
neglects footwear-related effects on individual subjects.2,10 This is a crucial limitation as substan-
tial differences between anatomy,11,12 history of previous injuries,13 and milage13 were reported
across individuals. Runners, therefore, have unique response to different footwear designs.14 A
notion that is supported by the concept of movement signatures: the finding of uniquemovement
patterns for each individual in (barefoot) walking15,16 and running with one’s own shoe.17,18 Conse-
quently, group-based approachesmay have led to an incomplete functional understanding of how
footwear affects a subject’s (unique) movement.14,19,20

Research strategies with a stronger focus on subject-specific responses to footwear designs
have been discussed.21 Those research strategies are categorised into single-subject21 and func-
tional group2,22,23 based approaches. Either approach needs to consider holistic biomechanical
data (i.e., several multi-dimensional and time-continuous variables) to map subject-specific re-
sponses to footwear because previous findings have shown that movement signatures24,25 and
responses to footwear4 manifest in multiple interacting variables.

Machine learningmodels canprocess severalmulti-dimensional, time-continuous variables (e.g.,
three-dimensional lower-body joint angles).10 Consequently, no reduction of the measured data
andnopre-selection of single time-discrete variables is required. Thepotential ofmachine learning-
based approaches has been demonstrated in previous studies investigating the uniqueness of
movement patterns for each individual in (barefoot)walking15,16 and runningwith one’s own shoe.17,18,26
Machine learning, therefore, iswell suited to analyse themulti-faceted interactions in the responses
of subjects to footwear interventions.27–30

Here, we continue this work and aim to explore the uniqueness of individual responses to dif-
ferent footwear conditions using a machine learning-based classification via support vector ma-
chines (SVMs). We conduct our investigation in three steps, guided by the following hypotheses:

(I) For each subject x footwear combination, unique GRF patterns can be identified (30 subjects
x 5 footwear conditions = 150 unique patterns)

(II) For each subject, unique GRF characteristics can be identified across various footwear condi-
tions (30 subjects = 30 unique patterns)

(III) For each footwear condition, unique GRF characteristics can be identified across various sub-
jects (5 footwear conditions = 5 unique patterns)

Methods & Materials
Subjects and ethics statement
Thirty healthy, physically active male subjects (age: 20 - 28 yrs; height: 1.80 - 1.90m; mass: 71.4 -
100.0 kg) that were free of lower extremity injuries participated in the study. Prior any testing,
participants provided written informed consent. All experimental procedures were conducted in
accordance with the Declaration of Helsinki and were approved by the ethical committee of the
medical association Rhineland-Palatinate in Mainz (Germany).
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Experimental protocol
Subjects performed ten running trials at their preferred (self-selected) speed along a level, 15m
long runway in four shod and one barefoot condition. The four running shoes were the New Bal-
anceMinimus, Adidas Adistar Boost, ONCloudsurfer, and the subject’s own running shoe. Footwear
conditionswere counterbalanced across subjects. Prior data collection, subjects performed twenty
familiarisation runs in each new condition. Data acquisition took place on a single day in an indoor
laboratory.

Data acquisition
Per running trial, three-dimensional GRFs were recorded at a frequency of 1,000Hz for one right-
foot stance phase using a floor embedded force plate (Kistler - Type 9287CA, Switzerland) located
half-way along the runway. The recording was processed within the LabView 2010 (National In-
struments, USA) framework. Subjects were instructed to focus on a gender-neutral face emoji (i.e.,
simple, open eyes and a flat, closed mouth) on the opposing wall of the laboratory to direct their
visual attention away from targeting the force plate and ensure a natural run with an upright body
position.

Data processing
The recorded three-dimensional GRFs - vertical, anterior-posterior, andmedio-lateral -were filtered
using a secondorder Butterworth bidirectional low-pass filter at a cut-off frequency of 50Hz. Stance
phase was determined based on the filtered vertical GRF using a threshold value of 10N. Each GRF
signal was time-normalised to 101 data points, corresponding to 100% stance phase. GRF signals
were normalised to the body weight, measured separately for each footwear condition. Data pro-
cessing was performed exclusively within MATLAB 2021b (MathWorks, USA).

Data analysis
A total of 1,500 GRF recordings were classified using SVMs.31 The L2-regularised L2-loss support
vector classification of the Liblinear Toolbox 1.4.132 with a linear kernel function was applied. The
regularisation parameter C was experimentally determined using a grid search within the range
of C = 2-5, 2-4.75, . . . , 215 prior model training / testing. GRF signals were min-max normalised to
range from 0 to 1 and concatenated when passed to the SVM models. The grid search and deter-
mination of normalisation min /max values were conducted exclusively based on recordings that
were included in the training data. Three classification tasks were tested: (1) subject x footwear,
where each subject-footwear combination represented one of 150 (30 subjects x 5 footwear condi-
tions) possible classification outcomes (hypothesis (I)); (2) subject, where each subject represented
one of 30 possible classification outcomes (hypothesis (II)); and (3) footwear, where each footwear
represented one of 5 possible classification outcomes (hypothesis (III)).

Performance evaluation
For all classification tasks, a stratified five-fold cross-validation was used to evaluate the classifica-
tion performance. Additionally, each individual recording was part of the test data once. For the
subject x footwear classification, recordings from each combination of subject and footwear con-
dition were distributed equally among the cross-validation folds. For the subject classification and
the footwear classification, we ensured for each fold that the recordings of each footwear condi-
tion (in the subject classification) and each subject (in the footwear classification) were either part
of the training or the test data.

For the footwear classification task, we also tested the effect of the number of subjects used to
train the SVMmodel on the classification performance. For this purpose, a leave-subject out cross-
validation was used, in which the number of subjects used for training was iteratively increased.
The individual classification performances were compared to the zero-rule baseline, which refers
to the theoretical accuracy obtained by assigning class labels according to the prior probabilities
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of the classes. Specifically, the target labels were set to the class with the largest cardinality in
the training dataset, corresponding to 0.7%, 3.3%, and 20.0% for subject x footwear, subject, and
footwear, respectively.

Relevance score evaluation
Layer-wise relevance propagation33 was used to decompose the predictions of the trained SVM
models into relevance scores for each value 𝑖 of the corresponding input vector. The relevance
scores 𝑅𝑖 were calculated based on the product of each value 𝑥𝑖 of the input vector 𝑥 and the
weight 𝑤𝑖 of the weight vector w of the trained SVM models:

𝑅𝑖 = 𝑥𝑖 ∗ 𝑤𝑖 (1)

Relevance scores indicate which information was used by the SVM model for its prediction.
Positive scores represent variables supporting the classification, while negative scores represent
variables speaking against a given classification. For this work, the true class labels were decom-
posed, and only positive input relevance scores were analysed, as negative scores highlight input
values did not support the model’s prediction of the ground truth class.33 Subsequently, positive
relevance scores were normalised to their respective maximum. All data analysis was performed
within the MATLAB 2021b (MathWorks, USA) framework.

Results
Performance evaluation
Across classification tasks, themedian prediction accuracy across the five-fold cross-validation was
superior to the theoretical task-specific zero-rule baseline accuracy (Figure 1). The highest predic-
tion accuracy was found for the subject x footwear classification task (hypothesis (I)), with amedian
value of 95.7% (138 times higher than the respective zero-rule baseline of 0.7%). For the subject
classification task (hypothesis (II)), themedian accuracywas 89.7% (27 x zero-rule baseline of 3.3%).
For the footwear classification task (hypothesis (III)), the median accuracy was 76.3% (4 x zero-rule
baseline of 20.0%).

In addition to the fold-wise performance evaluation (Figure 1), the prediction accuracy of the
SVMmodelswas also summarised according to individual subjects (Figure 2) and individual footwear
conditions (Figure 3). The presented results (Figure 1- 3) are all based on the same SVM models.

The majority of individuals were correctly identified regardless of the footwear condition. A
few individuals (e.g., subject 10, 26), however, could not be identified across all footwear condi-
tions. Generally, matching movement patterns to individuals (across all footwear conditions) was
most precise when individuals ran in their own shoes (accuracy: 96.3%) and least accurate when
individuals ran barefoot (accuracy: 68.7%).

Regardless of the subject, running barefoot was identified most accurately with 86.7%. The
non-standardised footwear condition (i.e., subject’s own shoes) was recognised with the lowest
accuracy (58.0%). Interestingly, the accuracy at which footwear conditionswere correctly identified
varied greatly across individuals (38.0 - 100.0%).

As Figure 4 shows, the prediction accuracy of the SVM models reached a saturation when us-
ing data from at least 10 subjects (median accuracy: 76.0%), which could be slightly increased by
adding the data from further subjects (median accuracy for 22 subjects: 84.0%).

Relevance score evaluation
Across all classification tasks, aggregated relevance scores of the vertical ground reaction force (GRFV)
trajectory were lowest (Figure 5). Aggregated relevance scores of the medio-lateral (GRFML) and
anterior-posterior (GRFAP) ground reaction force trajectories were comparable in all but one clas-
sification tasks: within the footwear classification task, aggregated relevance scores in GRFAP were
substantially higher than aggregated scores in GRFML (Figure 5C).
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Figure 1. Performance evaluation across the five-fold cross-validation shown as violin plots with
median (solid line), mean (white dot), and prediction accuracy of the individual folds (coloured dots). Support
vector machine models were trained for the three employed classification tasks: subject x footwear (in blue
on the left), subject (in yellow in the middle), and footwear (in orange on the right). The task-specific zero-rule
baseline values (i.e., 0.7% (subject x footwear classification), 3.3% (subject classification), and 20.0% (footwear
classification)) are shown as a red line. Created using the MATLAB code provided by Bechtold et al. (2022).34

Figure 2. Performance evaluation across the subjects shown as violin plots with median (solid line),
mean (white dot), and prediction accuracy of the individual subjects (coloured dots). The numbers in the
violin plots represent selected subjects that are discussed in sections Performance evaluation, Subject
classification (across footwear conditions), and Footwear classification (across subjects). Support vector
machine models were trained for the three employed classification tasks: subject x footwear (in blue on the
left), subject (in yellow in the middle), and footwear (in orange on the right). The task-specific zero-rule
baseline values (i.e., 0.7% (subject x footwear classification), 3.3% (subject classification), and 20.0% (footwear
classification)) are shown as a red line. Created using the MATLAB code provided by Bechtold et al. (2022).34
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Figure 3. Performance evaluation across the footwear conditions shown as violin plots with median (solid
line), mean (white dot), and prediction accuracy of the individual footwear conditions (coloured dots). Support
vector machine models were trained for the three employed classification tasks: subject x footwear (in blue
on the left), subject (in yellow in the middle), and footwear (in orange on the right). The task-specific zero-rule
baseline values (i.e., 0.7% (subject x footwear classification), 3.3% (subject classification), and 20.0% (footwear
classification)) are shown as a red line. Created using the MATLAB code provided by Bechtold et al. (2022).34

Figure 4. Performance evaluation of the machine learning models trained for footwear classification with
different number of subjects used for training the support vector machine (SVM) models. The prediction
accuracy was obtained using a leave-subject-out cross-validation configuration shown as violin plots with
median (solid line) and mean (white dot). Created using the MATLAB code provided by Bechtold et al. (2022).34
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Figure 5. Input relevance evaluation of the machine learning models, created using the MATLAB code
provided by Hoitz et al. (2021).17 Input relevance scores obtained by Layer-wise Relevance Propagation (LRP)
for the employed classification tasks: (A) subject x footwear, (B) subject, (C) footwear. For each subfigure
(A-C): The top part on the left shows the summed contribution of the relevance scores for each of the 101
time points of the stance phase. In the bottom part on the left, lighter colours indicate variables of high
relevance, while darker colours indicate variables of low relevance. The bottom right part highlights the
summed contribution of relevance scores of each of the ground reaction forces (GRFs), namely
medio-lateral (GRFML), anterior-posterior (GRFAP), and vertical (GRFV).

From a temporal perspective, GRFs during the first 5 - 20% of the stance phasewere particularly
relevant to the predictions of SVM models in subject x footwear classification task (Figure 5A). For
the subject classification task (Figure 5B), regions with high summed relevance scores were more
spread throughout the stance phase. Regions of high relevance were observed at 0 - 40% (GRFAP)
and at 25 - 60% (GRFV) of stance. In the footwear classification task, input valueswith high relevance
scores were spread across the entirety of stance with peak scores in the range of 0 - 10% and 80 -
100% (Figure 5C).

Discussion
Movement patterns of thirty subjects that ran overground in four shod conditions and one bare-
foot conditionwere analysed using support vectormachines and layer-wise relevance propagation.
Specifically, three-dimensional ground reaction forces were classified across three tasks: subject x
footwear, subject, and footwear. The results for the different classification tasks will be discussed
separately as they provide unique and novel insights to the field of running biomechanics.

Subject x footwear classification
When movement patterns were classified according to their respective subject and footwear con-
dition, the accuracy of the support vector machine models were almost perfect (median accuracy:
95.7%). Hypothesis (I), therefore, was supported by the findings of this work. This outcome sug-
gests that each combination of runner and footwear results in a unique movement response that
is identified by machine learning-based analysis. In other words, for each possible combination of
runner and footwear, there is a high probability that unique and recognisable movement pattern
exist. A notion supported by previous studies that reported variation in responses to footwear be-
tween subjects.7,14 In combination with the works cited above, the presented results suggest that
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the effect of footwear on biomechanical variables should be studied by considering subject-specific
responses more strongly, as was suggested previously by Bates et al. (1983).14

Subject classification (across footwear conditions)
When movement patterns were classified according to their respective subject, the median accu-
racy of the SVM models was approximately 90%, supporting the second hypothesis of this work.
This outcome suggests that subjects expressed individual movement characteristics, regardless of
the tested footwear condition. An interpretation that is corroborated by previous findings that high-
lighted unique movement patterns for each tested individual in a barefoot15,16,24 or a single non-
standardised shod condition.17,18 These distinct differences in movement patterns are likely the
result of unique anatomical characteristics,11,12 muscle activation strategies,25,35 and prevalence
of previous injuries.13 Because participants were recognised regardless of the footwear condition,
one may speculate that subject-specific movement characteristics changed only minimally across
the different running conditions. This is relevant to the paradigm of the preferred movement path
that suggests that runners maintain a consistent movement pattern when changing between sim-
ilar footwear conditions.2,19,22 In fact, runners were recognised with an accuracy of 96.3% when
running in their own shoes, supporting the idea of a consistent movement pattern (Figure 3). In-
terestingly, this accuracy dropped to 68.7% when runners switched to the barefoot condition, sug-
gesting that the subject’s barefoot movement patterns were not as easily identified based on the
shod movement patterns. This suggests that shod running is more fundamentally different from
barefoot running for some individuals. A finding supported by previous studies.19 The degree to
which a movement pattern can be maintained (or cannot be maintained) is runner specific (Fig-
ure 2). Some subjects appeared to have an easier time maintaining a similar movement pattern
across the footwear conditions than others. This is evident by the high classification accuracies
of these runners (e.g., subjects 5, 12, 13, 25) compared to runners with low classification accura-
cies (e.g., subjects 10, 26). The ability of a runner to maintain a movement signature in different
running conditions may influence the runner’s ability to perform well (i.e., reduced energy con-
sumption) with a given footwear and / or reduce risk of injury associated with changes in footwear.
In any case, a reliable characterisation of an individual’s movement signature (i.e., unique move-
ment characteristics) must encompass a broad range of footwear / running conditions to account
for the changes in movement patterns induced by distinctly different running conditions.

Footwear classification (across subjects)
When movement patterns were classified according to their respective footwear condition, the
support vector machine model’s median accuracy was 76.3%. This outcome suggests that certain
footwear-induced changes in movement patterns are consistent across subjects. However, the
model’s accuracy varied greatly across subjects (Figure 2), suggesting that some individuals did not
exhibit consistent footwear-induced changes in movement patterns. In other words, when individ-
uals react in a consistent manner to a footwear intervention and movement patterns across indi-
viduals are similar, the support vector machine model can predict the correct footwear condition
with a high degree of accuracy. When individuals react differently to footwear interventions and
the movement patterns of individuals are not similar, however, the model’s accuracy drops drasti-
cally. Hypothesis (III), therefore, was partly supported by the findings of this work. Consequently,
for some subjects, responses to a given footwear condition are comparable. These subjects may
have similar functional needs towards footwear designs.2,22,23 Given the finding of unique subject x
footwear responses (in section Subject x footwear classification), future research needs to address
whether there are subjects whose responses to "all" footwear conditions are comparable.

Limitations and implications for footwear research
One major limiting factor is the fact that the GRFs are integral variables that summarise accelera-
tions of the centre ofmass of all body segments and does not distinguish properly between specific
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influences. Future research involving a combination of bilateral kinematic, kinetic, and electromyo-
graphic data is needed to relate the presented results to a functional perspective. We consider the
use of GRF data as an example to demonstrate how machine learning models (i.e., Support Vec-
tor Machines), together with Explainable Artificial Intelligence methods (i.e., Layer-wise Relevance
Propagation), can enrich the evaluation of footwear effects.

The identification of unique movement patterns for each combination of runner and footwear
provides evidence for subject-specific responses to footwear (in section Subject x footwear classi-
fication). Current research strategies often focus on estimates of central tendencies from groups,
such as mean values, which inevitably blur subject-specific responses to footwear. Just because
subject-specific responses to footwear occur in opposing directions (i.e., increase in one runner,
decrease or no change in another), measures of central tendencies may capture neither response
adequately.20 Furthermore, it may be one of the reasons why endeavours frequently report contra-
dictory results regarding footwear design features and their effects on biomechanics and / or injury
risk.4 Time-discrete ground reaction force variables (e.g., impact peaks, loading rates), which are
frequently used to report injury risks,36–38 appear to be particularly vulnerable to subject-specific
responses to footwear (Figure 5A). It is essential, then, to consider subject-specific responses to
gain an improved functional understanding on footwear effects during running and the potential
relationship to running injury risks, as has been suggested previously.14

The finding that the movement patterns of most subjects have unique features (in section Sub-
ject classification (across footwear conditions)) regardless of footwear (including barefoot running)
supports research strategies that assess the effects of footwear at the individual level, i.e., single-
subject approaches.21 It seems promising to integrate machine learning methods into these ap-
proaches, as the features that are unique to an individual (regardless of footwear) appear to vary
widely between individuals (Figure 5B). Subject-specific machine learning models could therefore
be used to predict in which footwear design the movement patterns are most similar to a de-
sired reference movement pattern (e.g., preferred movement path,3,19,39 or habitual movement
path40,41). Machine learning models have the advantage that they can be trained on any number
of multi-dimensional and time-continuous (biomechanical) variables and that no thresholds for
low /high deviations need to be set for their predictions.

Another approach to better take into account the fact that individuals respond differently to
footwear is to look for individuals who respond similarly to footwear (i.e., functional group ap-
proaches). On the one hand, machine learning approaches can be used to identify groups of in-
dividuals with similar responses to footwear,23 and the effect of footwear can be evaluated by
considering these groups (as is often done when distinguishing between forefoot and rearfoot
runners in studies42,43). On the other hand, machine learning approaches can be used to learn
different strategies for classifying footwear effects from individual subjects without explicit prior
knowledge.44 That is, machine learning models can consider various responses to footwear at the
same time in their predictions. This allows to map the effect of footwear on running patterns in
a more versatile and differentiated way than group-based statistical comparisons based on single
time-discrete variables. However, the data from a crucial minimum number of subjects seem to
be required to train machine learning models that can represent a wide range of individuals (Fig-
ure 4). When the number of subjects is relatively small, as often the case in biomechanical studies
to date, there is a risk that the running patterns of individual subjects cannot be mapped well (e.g.,
subject 13 in our study). A representative database containing a large number of subjects could,
however, not only allow to consider subgroups, but even allow the consideration on an individ-
ual level using the most similar subject in the database in the sense of a “digital twin”. This could
have a great potential especially for the prediction of long-term effects of footwear for individ-
ual subjects. Given that predictions of machine learning models for footwear classification are
characterised by a plethora of versatile features (Figure 5C), our findings imply that considering
multi-dimensional and time-continuous biomechanical data (e.g., full-body kinematics and kinet-
ics) appear to be promising for (subject-specific) evaluations of footwear effects.
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Conclusion
The present findings suggest that unique movement signatures (across footwear) and unique re-
sponses to each footwear design can be modelled for each individual subject. Our results support
the idea that considering subject-specific responses is advantageous for a better understanding of
the functional effects of footwear during running. The incorporation of differentmulti-dimensional
and time-continuous biomechanical data (e.g., whole body kinematics and kinetics) seems to be
similar auspicious for a more differentiated (subject-specific) evaluation of the effects of footwear.
Machine learning methods seems to be a promising and valuable extension to previous (subject-
specific) approaches for footwear evaluation and recommendation.
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