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Use injuries represent a serious and intractable problem in athletics that has traditionally relied on historic 28 

datasets and human experience for prevention. Existing methodologies have been frustratingly slow at 29 

developing higher precision prevention practices. Technological advancements have permitted the 30 

emergence of artificial intelligence and machine learning (ML) as promising toolsets to enhance both injury 31 

mitigation and rehabilitation protocols. This article provides a comprehensive overview of ML techniques 32 

as they have been applied to sports injury prediction and prevention to date. Literature from the last five 33 

years has been compiled and the findings presented. Given the current lack of open source, uniform data 34 

sets, as well as a reliance on dated regression models, no strong conclusions about the real-world efficacy 35 

of ML as it applies to sports injury prediction can be made. However, it is suggested that addressing these 36 

two issues will allow powerful, novel ML architectures to be deployed, thus rapidly advancing the state of 37 

this field and providing validated clinical tools.    38 

 39 

Key Points 40 

• Significant progress has been made in predictive analysis of sports injury, but the quality of 41 

literature is varied and much of it focuses on traditional, less capable regression models.  42 

• In order to produce clinically usable models, well structured, uniform data sets should be created 43 

and validated.  44 
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1. Introduction  80 

 81 

Machine Learning (ML) is a complex discipline broadly defined as the creation of a computer system able 82 

to experientially learn and adapt without explicit instructions to generate predictive analytics [1, 2]. As 83 

computational resources have continued to increase, ML application and implementation in varied fields 84 

has grown, sports medicine included. The assessment, mitigation, and prevention of injury is of primary 85 

importance as injuries are ubiquitous and may result in severe physical, emotional, and financial 86 

consequences, especially at the professional level. In order to elucidate the complex factors contributing to 87 

athlete injuries and to enable greater predictive precision, a variety of ML models have been proposed in 88 

the literature [3-6]. 89 

  90 

As computational technologies advance, larger and more complex ML algorithms, including application of 91 

previously theoretical techniques, are possible. It is therefore useful to periodically compile and review 92 

literature that has been, or may be, applied to injury prediction and prevention as newer systems are capable 93 

of implementing new algorithms more efficiently. Additionally, though recent literature reviews exploring 94 

niche aspects of this field, limitations exist: most articles are written from the perspective of data mining 95 

and without interest in recency [5], are sports-specific [7-9] are limited in scope [3, 4, 10], or are focused 96 

on team sports only [6]. We seek to provide a comprehensive overview of the state of ML in sports injury 97 

across many sports using a broad selection of algorithms.  98 

 99 

To provide a basis for exploration of novel ML models and methodologies, algorithms have been 100 

categorized based on function, limitations, and current or potential implementation to sports medicine. Each 101 

of the selected algorithms includes a brief background and an overview of relevant literature from the last 102 

5 years. While these background sections provide context for individual algorithms, it is useful to provide 103 

a brief explanation of general ML concepts.  104 

 105 
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1.1. What is an algorithm? 106 

 107 

In the context of this review, “algorithm” will be defined as the entire set of mathematical equations and 108 

rules for a given ML approach.  Each algorithm uses a unique set of rules and equations to mathematically 109 

calculate an outcome [2]. The systematic application of the defined rules and equations to a dataset is 110 

referred to as “training a model”. 111 

 112 

1.2. Training a model. 113 

 114 

ML algorithms must be selected and trained prior to use. Within this topic exist several terms briefly defined 115 

below:  116 

 117 

1. Data set – The complete set of data used to train and validate an algorithm. This data may be in a 118 

variety of forms, but often must be formatted appropriately for a given algorithm.  119 

2. Batches – A set of data selected to be passed through an algorithm, often necessary due to memory 120 

constraints and often desirable due to optimization and training requirements.   121 

3. Feature and feature extraction – Features are individual, measurable properties of data.  Feature 122 

extraction is the process by which predictive and unique features are chosen from a data set. The 123 

collection of extracted features used to train a model is called the feature set.  124 

4. Labels – Human inputs used to provide context to a ML algorithm prior to training e.g., a picture 125 

of a dog may be manually labeled “dog”.  126 

5. Supervised learning – The process of guiding training of an algorithm by providing “labeled” data.  127 

6. Unsupervised learning – The process of allowing an algorithm to group and cluster data without 128 

labels.  129 
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7. Gradients and gradient optimization – Gradients are the derivative vectors of the multivariate 130 

functions used in ML and may be used as metrics to guide and assess training. Algorithms exist to 131 

optimize gradient descent, known as gradient optimization.  132 

8. Overfitting – The tendency of ML models to “memorize” training data. In other words, a model 133 

learns only the patterns of training data whether a mathematical relationship between parameters 134 

exists or not. This reduces the generalizability of a model. It is often a concern when using data sets 135 

that contain large numbers of features.  136 

9. Hyperparameters/parameters - Parameters are internal values of a model that are derived from the 137 

data set. Hyperparameters are permanent parameters set prior to model training that often have a 138 

large impact on other model parameters. 139 

10. Error measurements – These are quantifiable measurements of error calculated using equations 140 

such as root mean squared error. [2, 11]  141 

 142 

Prior to selection of an appropriate algorithm, a data set must be constructed. Data format directly impact 143 

the algorithm being used and the intended application. Data sets are generally split into training data and 144 

testing data. Training data may be labeled or unlabeled, depending on whether supervised or unsupervised 145 

learning is desired. Some data is reserved as validation or test data in order to confirm the algorithm has 146 

been successfully trained [2]. Larger datasets are nearly universally desirable to enhance model usefulness. 147 

However, when only smaller data sets are available, statistical methods are available to increase the number 148 

of data points available to improve predictive power. This method is more useful for testing ML approaches 149 

than for training new models and is less preferable to using real world data.   150 

 151 

Once data has been selected and subdivided, features must be extracted. These features may be manually 152 

identified, a time-consuming process, or automatically identified as a function of a given algorithm. This 153 

often represents a critical stage in model development [5, 12]. 154 

 155 
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Finally, after the above steps have been completed, a model may be trained. Training is guided by rules or 156 

equations that seek to balance speed, performance, and generalizability. Training data is often passed 157 

through an algorithm in batches that allow massive data sets to be partitioned in smaller chunks and 158 

processed without overwhelming computer hardware. It can also aid in training optimization [2].  159 

 160 

1.3. Proper validation and evaluation.  161 

 162 

Following model training, validation and evaluation can occur. Proper validation and evaluation rely on 163 

several components: distinct training and testing data sets, an appropriate error metric, simulated data in 164 

the case of smaller data sets, and an understanding of common pitfalls in ML [11, 13]. The current standard 165 

for validation is K-fold cross validation. With K equal to 10, for example, the data is randomly split into 10 166 

equal sections with 9 used for training and 1 reserved for validation. These sections are then shuffled to 167 

ensure generalizability [14]. Other techniques commonly used for validation are outside the scope of this 168 

discussion, but it is important to note that most approaches are based on shuffling or randomization of 169 

training data.  170 

 171 

2. Methods  172 

 173 

A comprehensive literature review was conducted using Ovid Discovery Search and Google Scholar, which 174 

provided compiled results from many databases. PubMed/Medline, Institute of Electrical and 175 

Electronics Engineers (IEEE)/Institute of Engineering and Technology (IET), and ScienceDirect were 176 

accessed individually as well. A focus was placed on papers published from 2017-2022, although older 177 

papers were referenced for background. Algorithms were selected based on a preliminary literature review 178 

and included K-Nearest Neighbor (KNN), K-means, decision tree, random forest, gradient boosting and 179 

Adaboost, and neural networks. Search terms were “algorithm name” + “sport” + “injury” for each 180 
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algorithm e.g., “neural network” + “sport” + “injury”. An attempt was made to include variations in 181 

algorithm name and abbreviation. Papers concerning prediction and analysis of sports injuries were 182 

included. Any papers that could not be accessed or where not available in English were excluded. Forty 183 

original research papers and eight review articles were selected based on the criteria described. A brief 184 

background on each algorithm was incorporated to provide context. Of note, we have excluded papers 185 

primarily relying on linear or logistic regression as we feel these algorithms do not represent the cutting 186 

edge of predictive analysis and have been addressed elsewhere in the literature. 187 

 188 

3. Results 189 

 190 

Results of the comprehensive literature review are summarized below. Each section includes a brief 191 

background on the relevant algorithm to provide context. Results of articles surveyed are then summarized 192 

in each Applications section. Papers were sorted into these sections based on algorithm tested. When more 193 

than one algorithm was explored, papers were included in the section with the most effective algorithm and 194 

in sections with algorithms that were nearly as successful where appropriate.  Due to variable study design, 195 

and often disparate aims, no attempt has been made to directly compare or otherwise aggregate results 196 

quantitatively. Instead, we present overall trends in the discussion. Likewise, trends of shortcomings or 197 

pitfalls have been addressed in the discussion section. Note that due to the diversity of neural network 198 

implementations, papers pertaining to neural networks have been further subdivided following a brief 199 

introduction to general algorithm architecture.  200 

 201 

3.1. KNN  202 

 203 

3.1.1. Background 204 

 205 
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K-Nearest Neighbor is a supervised ML algorithm that uses similarity to group data points together to solve 206 

regression and classification problems. It is widely used in other fields of medicine. For example, in 207 

oncology, research using KNN has been able to classify different subtypes of acute myeloid leukemia cells 208 

which aid in identifying blood cell ratios [15]. K-Nearest Neighbor has also been used to evaluate and 209 

classify degenerative knee joint vibroarthrographic  signals [16]. The algorithm assumes that similar data 210 

points will be found in close proximity to one another with respect to a given distance function. So, in a 211 

basic classification problem, KNN will assign a class to any given data point based on the class of its 212 

neighbors. In practice, KNN applies a weighted smoothing function to estimate data density. Weighting is 213 

based on K number of neighbors, in essence setting the bin size, resulting in small bins in high density areas 214 

and large bins in low density areas. Kernel functions may be applied to further smooth the density estimates. 215 

The advantages of KNN include its relative simplicity and ease of implementation, as well as its ability to 216 

make accurate predictions using a small data set [17]. However, when applied to very large data sets, the 217 

KNN algorithm becomes proportionally more complex and inefficient. While this problem is not 218 

insurmountable, it does necessitate mathematical condensing as well as dimensionality reduction [2, 18].  219 

 220 

3.1.2. Application 221 

 222 

In sports medicine, special sensors like accelerometers, gyroscopes, infrared sensors, and magnetometers 223 

can be attached to athletes to collect data. Using data collected from different body parts of athletes, KNN 224 

analyzes and determines certain behaviors for athletes in unique sporting events. With this recognition 225 

model, patterns predisposing to injury can be determined, allowing for potential injury prevention [19]. In 226 

addition to their general use as comparison algorithms, a 2018 paper applied KNN as part of a larger model, 227 

including both K-means and SVM, for injury prediction [20].  228 

 229 

3.2. K-Means  230 

 231 
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3.2.1 Background 232 

 233 

Due to its simplicity, K means is one of the most widely used clustering algorithms. K-means is an iterative 234 

algorithm designed to partition a data set into subgroups called clusters. These clusters are organized such 235 

that the sum of the squared distance between the data points and the clusters’ centroids, the arithmetic mean 236 

of all the data points that belong to that cluster, is minimized. The less variation within a cluster, the more 237 

homogeneous the data points are within that cluster [21].  238 

 239 

In practice, K-means relies on initial random selection of some number K centroids chosen from a dataset 240 

containing n cluster objects [22]. Once selected, Euclidean distance is calculated between all individual 241 

data points and each centroid. Points are then assigned to a cluster based on this distance (see Fig. 1). Using 242 

the calculated mean of each cluster, centroids are adjusted. This process occurs iteratively until clustering 243 

improvement plateaus, identified by the stabilization of centroids [23].  244 

 245 

 246 

Fig. 1 Visualization of a 2-dimensional clustering. (a) shows un-clustered data. (b) shows data separated 247 

into 3 clusters represented by different colors and separated by dotted lines  248 
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 249 

3.2.2. Application  250 

 251 

In 2020, a study by Dingenen et al. used K-means to establish that runners with the same injuries could be 252 

clustered into two different subgroups with a mean silhouette coefficient of 0.53 [24]. These subgroups 253 

were used to illustrate variable kinematic causes of running related injury. K-means was also used by Ibáñez 254 

et al in 2022 as a data separation technique for grouping women’s basketball players into first and second 255 

divisions. This study effectively used K-means to analyze thresholds of deceleration, acceleration, speed, 256 

and impact on the players and determined a difference between the first and second division[25]. These so-257 

called divisions were proposed to aid in personalization of training to prevent injuries and improve 258 

performance.  As seen in these recent articles, and likely due to its simplicity and familiarity, K-means 259 

remains effective when applied to traditional clustering problems and may be suited to exploring injury risk 260 

factors or player characteristics.  261 

 262 

3.3. Support Vector Machines (Devin) 263 

 264 

3.3.1. Background  265 

 266 

Support vector machines (SVM) are supervised learning algorithms that separate data points into distinct 267 

groups using hyperplanes. Hyperplanes' orientation and position are influenced by data points known as 268 

support vectors. Support vector machines map points in order to maximize the gap between the two 269 

categories (see Fig. 2A) known as the maximal margin [26, 27]. Once trained on a data set, SVM may be 270 

used to classify new data points and to discover informative patterns within data [28]. 271 

 272 
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 273 

Fig. 2 Diagram of a theoretical support vector machine in 2 (a) and 3 (b) dimensions. Hyperplanes separate 274 

data. Note support vectors labeled V1, V2, and V3   275 

 276 

3.3.2. Application 277 

 278 

For sports specific applications, SVMs have been trained using modifiable metrics such as training load, 279 

performance techniques, psychological and neuromuscular assessments, and non-modifiable metrics such 280 

as anthropometric measurements, previous injury history, and genetic markers to accurately predict future 281 

injuries [29, 30]. Identification of injury risk factors such as these allows coaches and medical personnel to 282 

modify training loads, regiments, and techniques to potentially prevent future injuries [6]. For example, a 283 

2018 paper by Ruddy et al. used a number of ML algorithms, including SVM, to assess risk factors 284 

identified in hamstring strain injuries [31]. In another 2018 paper by Carey et al., also exploring hamstring 285 

injury prediction and risk factors, SVM benefited substantially from data pre-processing, although it was 286 

ultimately outperformed by simple logistic regression [32]. Using non-physiological data, a 2017 paper 287 
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predicting in-game injuries in Major League Soccer found that SVM were the most accurate of several 288 

tested algorithms, including logistic regression, multilayer perceptron, and random forest [33]. However, 289 

in recent literature, including two 2021 papers comparing efficacy of ML algorithms, SVMs have proven 290 

less effective than other algorithms [34, 35]. Despite this, SVM may still be valuable given their suitability 291 

for predicting high-dimensionality data sets, especially when combined with other techniques as in a 2022 292 

paper by Wang et al. predicting triple jump injury [36].   293 

 294 

3.4. Decision Tree  295 

 296 

3.4.1 Background 297 

 298 

A decision tree is a type of supervised ML that uses an iterative process of segregating datasets on specific 299 

features to predict an output category based on a set of input features. Beginning with the input node (the 300 

root node), data points are split into separate bins based upon their values for a specific feature. Each of 301 

these bins are then tested recursively to determine if the data points can be further split into separate smaller 302 

bins to achieve better accuracy until all nodes have reached a specified size or purity. Bins that can be 303 

further split are called decision nodes, while those that cannot denote an ultimate decision are known as 304 

leaf nodes [37]. 305 

 306 
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 307 

 308 

Fig. 3 Schematic diagram of a simple decision tree showing several decision nodes branching from a root 309 

node and terminating in leaf nodes 310 

 311 

3.4.2. Application 312 

 313 

Modern evolutions of the classic decision tree algorithm have been broadly applied in recent years. In 2018, 314 

Connaboy et al. used decision trees built with Chi-squared Automatic Interaction Detection (CHAID) to 315 

analyze factors contributing to lower extremity injury in military personnel. Using their model, the authors 316 

identified several factors leading to increased injury risk over a 365-day period [38]. Using a classification 317 

and regression decision tree (CART), Mendonca et al. investigated associations between various risk factors 318 

and patellar tendinopathy in volleyball and basketball players [39]. A 2021 paper by Kolodziej et al. applied 319 

a CART decision tree to predict youth soccer injuries, achieving a sensitivity of 0.73 and a specificity of 320 

0.91 [40]. Another 2021 paper by Ruiz-Perez et al. attempted to reproduce a 2020 model by Rommers et 321 

al., which used field data collected via GPS. While they favorably compared C4.5 decision trees with 322 

several modeling approaches including KNN, SVM, and ADTree, they did not use the same algorithm as 323 
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Rommers et al. and did not achieve comparable performance (AUC 0.767 vs 0.850) [41, 42]. Contrary to 324 

these relatively promising results, Rossi et al. found that decision trees, although outperforming comparison 325 

algorithms, were not able to achieve a precision greater than 50% when forecasting soccer injuries [43]. 326 

Decision trees undoubtedly have a place in sports injury prediction, though their performance varies with 327 

data and model structure. Additionally, they can lack generalizability and overfit during training, thus 328 

limiting their accuracy [44]. 329 

 330 

3.5. Random Forest 331 

 332 

3.5.1. Background 333 

 334 

Because decision trees can lack generalizability and tend to overfit during training [44], random forests, 335 

which are a collection of random decision trees, offer a potential advantages. Random forest models rely 336 

on the creation of an ensemble of decision trees that vote on the final output (see Fig. 4). 337 

 338 

 339 

Fig. 4 A random forest model with N decision trees aggregating results to produce a final output 340 

 341 
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Implementation of a random forest model begins with modification of the original data using random 342 

sampling with replacement i.e., bootstrapping. This ensures that the same data is not used for every tree, 343 

increasing the model’s sensitivity. Next, decision trees are independently trained using a random subset of 344 

features, reducing the correlation between trees.  Finally, predictions are made by passing data through each 345 

tree and aggregating the results. [45]. Unfortunately, random forest models lack the transparency of decision 346 

trees, necessitating secondary methods of calculating feature importance. Random forests may also struggle 347 

when interpreting high-dimensionality data as uninformative features may be used when node-splitting  348 

[46]. 349 

 350 

3.5.2. Application 351 

 352 

Random forest models have been applied to injury prediction with mixed success. In a study of sports-353 

related dental injuries in children, random forest algorithms had slightly higher prediction accuracy when 354 

compared to the traditional regression methods [47]. A 2020 paper sought to address inconsistency in 355 

predictive performance by identifying key risk factors prior to training of the model. They were able to 356 

achieve an AUC of 0.79 [48]. A 2022 paper built a random forest model and achieved similar performance 357 

with an AUC of 0.72 [49]. In an investigation of paralympic swimmers classifying participants with and 358 

without brain injury to determine eligibility, random forests successfully classified 96% of the 51 359 

participants [50]. Contrary to these studies, a 2021 paper found that random forest predicted ankle injuries 360 

in young athletes with similar performance to a logistic regression (ROC 0.63 versus 0.65, respectively) 361 

[51]. With proper application and unbiased feature selection, random forest models may be tuned to 362 

outperform existing classification methods, though they are sensitive to variations in data sets.   363 

 364 

3.6. Gradient boosting and AdaBoost  365 

 366 

3.6.1. Background 367 
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 368 

Gradient boosting is a generalization of the earlier AdaBoost algorithm, first described in a 1996 paper by 369 

Freund and Schapire [52]. AdaBoost is an ensemble technique that seeks to combine multiple weak learners, 370 

traditionally single decision trees known as stumps, into a more complex algorithm. This is desirable as it 371 

solves many of the problems present with decision trees [52]. Gradient boosting applies boosting as a 372 

gradient descent, improving the network with each subsequent iteration, and allowing for the use of a 373 

generic loss function. It solves several weaknesses of AdaBoost, including intolerance of outliers and 374 

inability to perform multiclass classification [53]. Both AdaBoost and gradient boosting are powerful 375 

algorithms that have been continuously refined since their conception allowing them to be applied broadly 376 

to regression and classification problems.  377 

 378 

3.6.2. Application 379 

 380 

Gradient boosting regularly outperforms baseline regression and various ML algorithms including decision 381 

tree and SVM for certain classification problems [54-59]. Nicholson et al. found Gradient boosting to be 382 

the most effective of several algorithms in assessing elbow valgus torque and shoulder distraction force in 383 

168 high school and college pitchers [57]. Remarkably, a 2019 study predicting skier injuries found that 384 

gradient boosting produced a 0.25 increase in accuracy over logistic regression with an AUC of 0.76 vs 385 

0.52 [54]. Hecksteden et al., in a 2022 prospective observation cohort study, also found that gradient 386 

boosting performed better than comparison algorithms when forecasting non-contact time-loss injuries in 387 

88 soccer players [58].  388 

 389 

Expanding beyond standard gradient boosting, a 2022 study used XGBoost (extreme gradient boost) to 390 

predict post-concussion injuries in 74 college football players with an accuracy of 91.9% [60]. Rommers et 391 

al. in a 2020 paper also used XGBoost, this time predicting injuries in 734 youth soccer players with a 392 

precision and recall of 84% and 83%, respectively. The authors also were able to classify injuries as either 393 
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overuse or acute with a precision and recall of 82% [42]. Additionally, a recent retrospective review used 394 

an XGBoost model to explore the relationship between biomechanics and self-reported athlete injury [61]. 395 

Notably, only one recent paper was found to use AdaBoost, a 2022 study predicting injury in CrossFit 396 

practitioners. AdaBoost was found to perform better overall than comparison algorithms with an AUC of 397 

77.93% [56].  398 

 399 

A 2018 paper by Valenciano et al. found a modified boosting algorithm called SMOTEBoost (Synthetic 400 

Minority Oversampling Technique) was able to predict musculoskeletal injuries in 132 football and 401 

handball players with an AUC of 0.747, a true positive rate of 65.9%, and a true negative rate of 79.1% 402 

[55]. Another similar algorithm called SmooteBoostM1 was used to predict hamstring injuries in 403 

professional soccer players, producing a model with an AUC of 0.837 [62]. Overall, gradient boosting, 404 

including the earlier AdaBoost and other modified boosting algorithms, represents a pronounced upgrade 405 

over classic logistic regression as well as ML algorithms such as decision tree, KNN, SVM, and multilayer 406 

perceptron when applied to the limited-class classification problem presented by predicting sports injury. 407 

 408 

3.7. Neural Networks 409 

 410 

Neural networks provide some distinct advantages over other predictive techniques. They are structured as 411 

an interconnected network of nodes called neurons (see Fig. 4). These neurons represent self-contained sets 412 

of algorithms that output values based on their input. Neural networks allow models to learn vast amounts 413 

of data and detect patterns that would be otherwise impossible to extract. Two main types of neural networks 414 

exist, feed-forward and recurrent. In feed-forward networks, the output of the previous node is fed into the 415 

next node. In recurrent networks results are fed back to previous nodes [12, 63].  416 

 417 
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 418 

 419 

Fig. 5 General structure of a forward feeding, deep, fully connected neural network including an input layer, 420 

two hidden layers, and an output layer. Note that all nodes represent a discrete function and are connected 421 

to all nodes of both the previous and the next layer 422 

 423 

Neural networks have a huge variety of available node algorithms and structures. An overview of these 424 

techniques is outside of the scope of this paper, but several processes are explored in more depth including 425 

application of convolutional neural networks (CNN), long-short term memory (LSTM), deep Gaussian 426 

covariance network (DGCN), and radial basis functions (RBF).  427 

 428 

3.8. Convolutional Neural Networks 429 

 430 

3.8.1. Background 431 

 432 

Convolution is a mathematical process that applies a kernel matrix to transform an image pixel-by-pixel 433 

(see Eq. 1). This technique is useful for filtering images as well as image classification. In addition to image 434 

classification, convolution can be applied to any 2-dimensional array of numerical data. In the context of 435 
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ML, a convolutional neural network relies on alternating convolution and pooling layers to generate a 436 

feature map and eventually generate an output [64]. 437 

 438 

 439 

Eq. 1 Generalized equation for the convolution of a given 2-dimensional array of size (n,m)  440 

 441 

Convolutional neural networks have been classically used in image analysis where the 2-dimensional 442 

structure and high feature density of pictures lend themselves to convolution. However, CNNs may be 443 

applied to any appropriately structured data to allow for a wider range of applications outside of traditional 444 

image analysis.  445 

 446 

3.8.2. Application  447 

 448 

Kautz et al., in their 2017 paper, use CNN to analyze wearable sensor data and allow for automated player 449 

monitoring in beach volleyball players. Compared to algorithms including SVM, KNN, Gaussian, and 450 

Decision Tree, the CNN provided significantly increased classification accuracy [65]. Pappalardo et al. 451 

developed a CNN to analyze multivariate time series extracted from Electronic Performance and Tracking 452 

Systems worn by professional soccer players. Their approach allowed for automated feature extraction, an 453 

advantage over more traditional time series analysis. Additionally, they were able to develop an injury 454 

forecaster that was explainable, which is a necessity for a deployable, real-world model [66]. Similarly, 455 

Chen et al. describe a process of converting time series data acquired from player-worn sensors to 2-456 

dimensional images for analysis using a CNN. Notably, they validate using only acceleration data from a 457 
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single sensor and were able to achieve acceptable levels of accuracy in classification [19]. Song et al. in 458 

their 2020 paper developed an optimized-CNN to predict and assess injuries in volleyball players. Using 459 

multidimensional sports data, they found that their algorithm was more accurate than comparison 460 

algorithms. Additionally, they described a framework for cloud-based deployment and integration with 461 

Internet of Things [67]. Ma et al. in a 2019 paper also proposed a CNN for analysis of sports data using a 462 

real time cloud-based system and Internet of Things [68]. Ghazi et al. in a 2021 paper describe the use of 463 

CNN to estimate peak maximal principal strain in traumatic head injuries. Using data from the National 464 

Football League, they were able to achieve >90% accuracy in prediction of concussion vs non-concussion 465 

[69].  466 

 467 

3.9. Long-Short Term Memory Based Neural Networks (LSTM) 468 

 469 

3.9.1. Background 470 

 471 

A common feature of feed-forward and recurrent neural networks is the use of gradients in training. 472 

Gradients affect the "on/off" signals of the individual nodes of a neural network. Depending on the data set 473 

and hyper-parameters of the model, gradients can produce NA values. Several solutions to this problem, 474 

known as exploding and disappearing gradients, have been developed, including the use of LSTM nodes 475 

which introduce a constant error carousel (CEC) [70]. The CEC allows for gradients to remain unchanged 476 

from one node to the next. The more recent addition of a "forget gate" allows the LSTM node to reset, 477 

further reducing gradient runaway [71]. Neural networks integrating these types of nodes allow powerful 478 

time series analysis.  479 

 480 
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 481 

Fig. 6 Diagram of a single LSTM node including input, output, and forget gate [72]  482 

 483 

 484 

3.9.2. Applications 485 

 486 

While LSTM nodes are primarily used for time series analysis, they may be combined with other algorithms 487 

to provide an advantage in prediction and classification problems because of their unique nature. In 2021, 488 

Meng et al. combined CNN with LSTM to allow for reliable analysis of 2-dimensional data by the LSTM 489 

nodes. Using images of professional athletes, they were able to achieve 97.0% classification accuracy for 490 

risk stratification broken into No Risk, Low Risk, Medium Risk, and High Risk of injury. The model 491 

achieved a sensitivity of 95.70% and a specificity of 97.54% [34].  A combined architecture model such as 492 

this may ultimately yield more accurate algorithms.  493 

 494 
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3.10. Deep Gaussian Covariance Neural Networks 495 

 496 

3.10.1. Background 497 

 498 

A Gaussian process is a non-parametric, stochastic process defined such that a finite collection of random 499 

variables has a multivariate normal distribution. Critically, Gaussian processes can be described by their 500 

second order statistics. Defining a covariance function will completely describe the behavior of the original 501 

process. By adding a final layer of nodes containing covariance functions to a neural network, the Gaussian 502 

process hyperparameters can be treated as outputs of the neural net. This has the advantage of allowing the 503 

neural net to solve an easier problem, the tuning of Gaussian hyperparameters, rather than the actual 504 

regression which is left to the final layer of covariance functions [73]. 505 

 506 

3.10.2. Application 507 

 508 

A 2022 paper by Rahlf et al. outlined a prospective study protocol using a deep Gaussian covariance 509 

network to analyze the relationship between internal and external factors contributing to runner injury. 510 

Recruitment for this study was ongoing at the time of publication [74]. This promises to provide real world 511 

data on predictive performance of a neural network.  512 

 513 

3.11.4. Radial Basis Function Neural Networks 514 

 515 

3.11.1. Background 516 

 517 

Radial basis functions allow interpolation of multi-dimensional data by calculating the Euclidean distance 518 

between data points and a known center point. These functions may be used as activation functions in a 519 



   
 

24 
 

neural network. Networks using radial basis functions may be applied to a variety of tasks including 520 

regression and classification [75, 76]. 521 

 522 

3.11.2. Application 523 

 524 

In a 2021 paper, Xiang applied an RBF-based neural network to injury predictions. They stratified injury 525 

risk and validated using questionnaires sent to expert coaches [77]. Another 2021 paper proposes a similar 526 

RBF-based neural network to predict sports injuries. Injury risk is stratified into low risk, at risk, and high 527 

risk of injury [78]. Notably, the author looked to determine which factors may contribute most to injury 528 

risk. Despite their novel premise, both papers lack robust validation or large data sets and are largely 529 

methodological. 530 

 531 

3.12. Fuzzy and Grey Neural Network 532 

 533 

3.12.1. Background  534 

 535 

Fuzzy set theory applies degrees of membership to elements contained within so-called fuzzy set. This 536 

contrasts with the “crisp”, or dichotomous, membership assumed in traditional mathematics [79]. Grey 537 

theory proposes that systems without information are black while systems with complete information are 538 

white. Most real systems, then, are grey, implying incomplete information. Various grey models have been 539 

proposed to address this [80]. Fundamentally, both grey and fuzzy theory deal with uncertainty in statistics. 540 

Although they are different mathematically, they deal with similar datasets and have been included in the 541 

same section for brevity.  542 

 543 

3.12.2. Application 544 

 545 
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A 2021 paper by Wang et al. describes use of a Fuzzy neural network to evaluate degree of injury in sports. 546 

They found that the Fuzzy neural network outperformed Bayesian and Lagrange models. However, this 547 

was a theoretical proposal using simulated data [81]. Another 2021 paper by Zhang et al. proposed a grey 548 

neural network which inputs the results of n-grey models into a neural network for final prediction. This 549 

too was a theoretical algorithm tested and validated with simulation data [82]. Despite their lack of real-550 

world application, both papers present intriguing possibilities for integrating Fuzzy and Grey theory as a 551 

method of dealing with the inherent variability in sports injury data. 552 

 553 

4. Discussion  554 

 555 

4.1. Limitations 556 

 557 

Many of the articles examining neural networks were theoretical in that they proposed a novel algorithm 558 

but validated on a small, artificial data set. These papers are useful to determine new avenues of research 559 

and were included. However, without transparent, real-world data or clear explanations of the proposed 560 

data collection and preparation, they do not provide concrete information on algorithm efficacy. 561 

Additionally, while most articles detail the equations used, many do not explicitly present the model 562 

structure, nor do they provide code.  563 

 564 

Problems with data transparency are not limited to neural network focused papers. Many of the other papers 565 

discussed in this review rely on small or artificial data sets. Additionally, there is a lack of consistent 566 

validation techniques and a large potential for mishandling of data. It is also worth mentioning that there 567 

exists a persistent problem with multicollinearity in physiological data sets.  568 

 569 

Inter-article variability in algorithm efficacy may also prevent strong conclusions from being drawn. 570 

Models must be carefully built and algorithms specially selected. Additionally, variations in data quality 571 
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and structure can impact model performance. Thus, it is difficult to compare any two papers unless they 572 

use functionally identical model architectures, parameters and data. Most papers do not fit this criterion. It 573 

should be noted that this does not make such papers useless, only difficult to compare directly. Instead, 574 

algorithms must be judged based on technical characteristics and capabilities and selected based on 575 

individual circumstances.  576 

 577 

Because of increased interest in applying ML models to critical decisions in health care and society 578 

generally, an ethical imperative has emerged for transparent algorithm.  Transparency provides a necessary 579 

check and balance to mitigate the risks associated with artificial intelligence-informed decisions. Having 580 

addressed these general limitations, each algorithm will be discussed individually.  581 

 582 

4.2. Algorithms  583 

 584 

K-Nearest Neighbor has some practical limitations to the sample sizes it can efficiently analyze. However, 585 

its simplicity and versatility are clear. Integration of special sensors allowing for more precise data 586 

collection has improved KNN injury recognition models and increase their ability to identify factors that 587 

contribute to injury. Enhanced identification of predictive injury features at the resolution of an individual 588 

athlete allows coaches and medical personnel to alter training methods to avoid the identified injury risk. 589 

However, KNN has been relegated to the role of comparison algorithm in many of the papers discussed in 590 

this article. This should not dissuade future researchers from considering it for use, though.  591 

 592 

Another simple algorithm, K-means lends itself well to feature extraction. Based on recent work in the 593 

literature, K-means can be used to classify biokinetic data. Alternatively, K-means can effectively be used 594 

to predict future high performing players. However, a more interesting application may be found in the 595 

preprocessing of data. K-means clustering may be applied to data sets early in the exploration phase, rather 596 

than as a final predictive algorithm. In any case, K-means should be considered when possible.  597 
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 598 

Support vector machines can be used to both predict the occurrence of an injury as well as elucidate the 599 

risk factors that contribute to injury. However, in recent literature, SVM based models have met with mixed 600 

success. Even so, SVM should be considered when predicting sports injury events, especially when dealing 601 

with high dimensionality data. Notably, the best performing SVM models are built as ensemble models, 602 

combining the advantages of several algorithms.  603 

 604 

Decision trees may also be suitable in medical decision making as they provide reasonable classification 605 

accuracy combined with simple representation of gathered knowledge. More importantly, they provide a 606 

remarkably transparent decision-making process, allowing deep exploration of features. And, due to this 607 

transparency, the decision-making process can be easily validated by an expert which greatly enhances its 608 

utility in situations containing high uncertainty. Random forest models increase predictive accuracy 609 

compared to decision trees at the expense of reduced transparency. Additionally, they may struggle when 610 

data contains high dimensionality, though condensing may provide adequate abatement.  Even with the 611 

stated limitations, both decision tree and random forest have performed reasonably well in specific 612 

situations and their application should be considered.  613 

 614 

Gradient boosting and Adaboost represent significant improvements in predictive capabilities over classic 615 

regression as well as the decision trees on which they are based. They are easier to implement and more 616 

transparent than neural networks while possessing a capacity for large feature sets. Additionally, they are 617 

particularly useful when applied in the context of injury prediction where classification can be limited to a 618 

binary choice. In cases where transparency is less critical than predictive accuracy, gradient boosting 619 

provides a balance between complexity and performance.  620 

 621 

While gradient boosting provides various advantages over simpler models, neural networks tend to be the 622 

most accurate and powerful ML algorithms currently available. This performance comes at the price of 623 
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increased complexity, training time, data requirements, and computational resources. Despite these 624 

drawbacks, papers rank CNN, RNN, and other NN architectures favorably against comparison algorithms. 625 

However, there is a lack of robust real-world validation largely due to lack of readily available large data 626 

sets. Researchers are also using player mounted sensors to collect raw time series data. While this is a valid 627 

approach to data collection, it fails to make use of the powerful image recognition and pose-estimation 628 

potential of CNN and limits player enthusiasm for data collection in real-world scenarios. There is a clear 629 

route to explore more novel approaches to data collection and structuring, as well as to develop robust 630 

studies using real-world data. Any given model architecture or combination of architectures could be 631 

applied to any given properly tuned data set. This knowledge alone is of little practical value; however, it 632 

demonstrates the need for larger sets of real-world data to further triage algorithm utility between situations. 633 

Even with the stated limitations, if the data and computational resources are available, neural networks 634 

should be heavily considered.  635 

 636 

To illustrate one final observation, it is worth examining a recent systematic review by Bullock et al. The 637 

review in question presented 30 studies applying ML to sports injury prediction. Notable in their selection 638 

criteria was the inclusion of logistic and Poisson regression, both valid but dated approaches to predictive 639 

analysis, as well as the exclusion of novel methodologies for modeling. In fact, 22 of the 30 papers included 640 

logistic regression, and 2 of the remaining 8 used Poisson regression [3]. We believe this succinctly 641 

illustrates a major bottleneck in the application of ML to sports medicine. A significant number of quality 642 

studies are failing to make full use of modern, powerful ML algorithms. Instead, they rely on well-studied 643 

but potentially inadequate regression techniques in addition to falling prey to some other pitfalls discussed 644 

earlier. Recent research that does attempt to move past these relatively simple models often fails to produce 645 

reliable, generalizable results. Additionally, these papers are often of limited value to those looking for 646 

practical applications of ML. Despite these drawbacks, we feel that it is unreasonable to dismiss the 647 

usefulness or real-world applicability of ML based on decidedly outdated methodologies.  648 

 649 
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5. Conclusion  650 

 651 

There appear to be several issues relating to the application of ML as a form of predictive analytics in sports 652 

medicine.  For example, there is a lack of uniform data sets related to sports injury, resulting in an inability 653 

to easily test and validate novel approaches to modeling. Data is being collected inefficiently, particularly 654 

with respect to the use of cumbersome player-worn sensors. Studies are difficult to compare due to the 655 

individualized nature of ML model architectures and a lack of transparent reporting regarding algorithm 656 

construction. In some cases, outdated or inappropriate models are being applied for the sake of ease of 657 

implementation. For example, logistic regression is often considered a ML algorithm due to its ability to 658 

produce a categorical output, but it is not adaptive like other ML techniques and is consistently 659 

outperformed by modern ML algorithms. Surprisingly, even logistic regression models, which are outdated 660 

and not considered ML, continue to be used as a prediction tool, often with poor performance. Many injury 661 

prediction studies rely entirely on these older techniques, resulting in the appearance that ML is of little 662 

clinical use. Importantly, this emphasizes the early stage of the research into ML applications in sports 663 

injury and the potential for positive future exploration into its use.   664 

 665 

Potential solutions to the aforementioned issues include the creation of open-source, uniform data sets that 666 

can be tailored to the strengths of targeted algorithms. The vast amounts of data available to sports teams 667 

and sports casting agencies, notably, high quality video footage, could be used to generate large databases 668 

for the training of CNN to a variety of ends. This solution would eliminate two of the above problems 669 

simultaneously. It would provide researchers with a large, reliable, uniform data set with which to train and 670 

validate. It would also eliminate the need to collect data using unreliable athlete-worn sensors. An additional 671 

benefit of pose estimation-based prediction is the generalizability that will likely result, allowing pre-trained 672 

networks to be tuned to multiple sports with relative ease.  673 

 674 
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Another potential solution is a reduced reliance on older regression analysis models. While logistic 675 

regression models can be powerful tools, they often break down when applied to the complex, multivariate 676 

problems presented by sports injury prediction. We have shown this to be the case in the literature generally, 677 

as logistic regression is a common baseline comparison model, as emphasized in our discussion of the 678 

recent review article by Bullock et al. Though these older models still hold a great deal of utility, they 679 

shouldn’t be conflated with ML models. Further, modern ML models likely hold greater potential to provide 680 

solutions to especially complex problems in injury prediction.  681 

 682 

Despite the outlined challenges, significant potential exists within this space. By thoughtfully selecting 683 

algorithms and by building adequate data sets, researchers will be able to explore more novel approaches 684 

and continue to push the boundaries of ML capability in improving sports medicine outcomes. 685 

 686 
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