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Abstract 

Joint range of motion (ROM) is an important quantitative measure for physical therapy. 

Commonly relying on a goniometer, accurate and reliable ROM measurement requires extensive 

training and practice. This, in turn, imposes a significant barrier for those who have limited in-

person access to healthcare. The current study presents and evaluates an alternative machine 

learning-based ROM evaluation method that could be remotely accessed via a webcam. To 

evaluate its reliability, the ROM measurements for a diverse set of joints (neck, spine, and upper 

and lower extremities) derived using this method were compared to those obtained from a state-

of-the-art marker-based, optical motion capture system. Results showed that the webcam-based 

solution provides high test-retest reliability and inter-rater reliability at a fraction of the cost of 

the marker-based system. More importantly, the machine-learning-based method has been shown 

to be more consistent in tracking joint positions during movements, making it more reliable than 

the optical motion capture system. The proposed webcam-based ROM evaluation method could 

be easily adapted for clinical practice and shows tremendous potential for the tele-

implementation of physical therapy and rehabilitation.  

 

 

Keywords: Range of motion, Physical therapy, Rehabilitation, Machine learning, Computer 

vision, Pose Estimation 
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1. Introduction 

The recent COVID-19 Pandemic has accentuated the need of improving access to 

healthcare services for vulnerable populations. To improve accessibility, various medical fields 

have started transitioning from traditional healthcare to telehealth. Telehealth leverages the 

convenience of personal electronic devices to enable the remote delivery of healthcare services, 

such as through telephone consultation and videoconferencing. As a result of the booming 

personal electronic device market, telehealth’s popularity has been consistently increasing over 

the past decade, especially during the COVID-19 Pandemic.1 Compared to traditional in-person 

care, telehealth has been shown to be equivalent or even more effective in terms of clinical 

effectiveness.2,3 Unfortunately, the main bottleneck for telehealth is devising objective outcome 

measures that are equally accessible. 

In the context of physical therapy and rehabilitation, joint range of motion (ROM) is a 

widely used outcome measure. One of the most common ways to measure joint ROM is through 

a handheld goniometer.4–8 ROM measurement using a goniometer requires certified physicians 

or physical therapists who had ample training and practice in using the device. This imposes 

challenges to members of rural and remote communities, where access to healthcare and trained 

professionals could be limited. Furthermore, although the goniometer has been treated as a gold 

standard for ROM evaluation,9,10 its precision and inter-tester reliability could be low due to 

human errors and procedural inconsistency.11–13 As a result, there is an exigency to devise an 

alternative ROM evaluation protocol that could address the accessibility, accuracy, and 

reliability issues related to the goniometer-based ROM evaluation method.   

Various non-traditional solutions for ROM evaluation have been proposed over the years, 

such as digital photography,9,14 photogrammetry,10 convolutional neural networks (CNN),15 and 
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even optical motion capture (MoCap).16 MoCap systems, such as OptiTrack (NaturalPoint, 

Corvallis, OR, USA) and Vicon (Oxford metrics, UK), have been widely used in biomechanics 

and sports science studies as they demonstrate high accuracy (± 0.10 mm) and reliability at a 

high sampling frequency (up to 1000 FPS).17,18 However, despite the advantages that MoCap 

systems offer, their hefty price tag and complex setup present a noticeable barrier of entry for 

most people. In recent years, the machine learning-based human pose estimation has been seen 

significant development.19–21 These algorithms use various deep neural network architectures to 

identify, recover, and track the 2D or 3D locations of key joints of a human actor across multiple 

frames using a single image stream.22 Capitalizing on the advances in computer vision, Google 

Research presented a framework called MediaPipe that offers developers and practitioners a free 

access to state-of-the-art machine learning solutions to various computer vision problems,23 

including the image-based real-time three-dimensional (3D) pose-estimation.  

The pose-estimation component of the MediaPipe framework, called BlazePose,24 uses a 

CNN architecture that combines a lightweight pose detection network with a pose prediction 

network. The pose detection network first detects any person presented in a single frame while 

the prediction network tracks the person across subsequent frames. This design allows the 

machine learning model to consistently track 33 body landmarks in real-time at over 30 frames 

per second using only a single stream RGB video, such as through a webcam. More importantly, 

the architecture behind BlazePose is relatively lightweight in terms of the computational 

resources that it requires. As a result, BlazePose could even be deployed to a web browser with 

images captured from a webcam, allowing anyone to access its features from a computer with a 

webcam. Due to its low computational load and high accessibility, BlazePose has been used by 

researchers to develop different applications, such as in the context of sports for exercise 
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abnormality detection,25 yoga training,26 postural disorder monitoring for Parkinson’s patients,27 

and spinal dysfunction risk estimation.28 

The current study proposed an alternative ROM evaluation method that leverages the 

power of computer vision algorithms. Using a single webcam and the output from BlazePose, 3D 

positions of various joints were recorded and used to estimate their corresponding ROM angles. 

Results obtained using this lightweight machine learning solution were compared to those 

produced by a state-of-the-art MoCap system (OptiTrack). Additionally, unlike previous 

studies9,10,14–16 that only focus on a single joint, the current study evaluated the reliability of 

ROM measurements using a full-body multi-joint model. Results showed that the proposed 

solution not only offers an alternative to the traditional ROM evaluation methods with a 

noticeably lowered barrier of access, but also provides high intra- and inter-rater reliability 

necessary for practical usage.  
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2. Materials and Methods 

2.1 Participants 

Twenty-five adults (12 males, 13 females) from the University of Wyoming community 

volunteered in this study. This study was approved by the University of Wyoming Institutional 

Review Board (IRB). All participants provided their written informed consent prior to the study. 

 

2.2 Data Acquisition 

Data acquisition was performed using a desktop computer with an Intel Core i9 11th Gen 

CPU, Nvidia RTX 3090 graphics card, and 64 GB of RAM. To derive the range of motion 

(ROM) angles for different joints, joint trajectories of various ROM evaluation movements were 

simultaneously recorded using a webcam-based, real-time pose estimation algorithm and a 

marker-based infrared optical motion capture system. A custom Python program was 

implemented to stream and record trajectory data from both sources on a synchronized time 

scale. 

For the webcam-based solution, the pose estimation component of Google’s MediaPipe 

framework23 (BlazePose24), was used. The video was streamed through a Logitech C922 Pro HD 

Stream Webcam mounted on a computer monitor. The video capture was controlled through the 

OpenCV Library29 for Python. Figure 1 (left) shows the 33 joints obtained from the algorithm 

with selected labels. BlazePose can generate 3D coordinates of the 33 joints in the world 

coordinate system (the depth axis represents the relative distance to the camera), along with an 

estimated “visibility” index for each joint at each frame. The visibility index (ranges between 0 

and 1) tracks the algorithm’s confidence in the derived joint coordinates, which could be affected 

by factors such as occlusion and movement speed. A low visibility index indicates inaccuracy in 
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the derived coordinates. A threshold for visibility was set at 0.5 and any trajectory points with an 

index below the threshold were removed from the analysis. Figure 1 (middle) shows a frame 

from the video capture with the detected joints overlaid on top. For the optical motion capture 

system, OptiTrack Motion Capture System (NaturalPoint, Corvallis, OR, USA) with ten Primex 

22 cameras was used. Data from OptiTrack were streamed to the Python interface through the 

Motive 2.0 Optical Motion Capture Software and OptiTrack’s NatNet SDK. The conventional 

full-body biomechanical model with 39 markers (Figure 1, right) was used to capture joint 

trajectories (see Figure 2 in30 for the placement of the entire marker set). 

 

 

Figure 1: Two-dimensional landmarks for BlazePose (left) and the marker set used for Opti- 

Track’s optical motion capture system (right). BlazePose produces 33 landmarks, whereas 

OptiTrack’s marker set contains 39 markers. Markers relevant to the range of motion calculation 

are marked with their respective names. Figure in the middle is a screenshot of the landmarks 
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detected by MediaPipe’s BlazePose overlay on top of a video image captured during data 

collection with the participant wearing a motion capture suit. 

 

2.3 Procedures 

After providing their informed consent, participants were instructed to put on a motion 

capture suit provided by OptiTrack. Experimenters then fitted the participants with 39 reflective 

markers based on the locations defined by the full-body model from OptiTrack’s Motive 

software. Subsequently, an experimenter demonstrated each ROM evaluation movement using 

pre-recorded videos on a tablet computer and the participants were told to repeat the movement 

as practice. Table 1 shows the list of movements used to evaluate the ROM of their 

corresponding joints, including movements of the spine (back extension and flexion, back lateral 

flexion, and trunk rotation), the neck (neck extension and flexion, neck lateral bending, and neck 

rotation), the upper extremities (shoulder adduction and abduction, shoulder extension and 

flexion, and elbow extension and flexion), and the lower extremities (hip extension and flexion 

(knee extended), hip flexion (knee flexed), and hip adduction and abduction). 

After being familiarized with all movements, participants were guided to stand in front of 

a computer monitor with a webcam. Participants’ standing position coincided with the center of 

the capture volume of the OptiTrack camera system. All movements were performed while 

standing upright. To minimize occlusion for the webcam, participants were asked to change their 

orientation to the camera based on the movements they perform. For instance, for shoulder 

extension and flexion, participants presented the lateral view of their body to the webcam. 

Additionally, for movements of the lower extremities, participants were holding onto a stool 

while performing the movements to ensure stability. Each movement was repeated and recorded 

three times. For each recording, participants were instructed to perform the movement slowly 
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and deliberately. When the experimenter announced “Start!”, the recording would begin, and 

participants would start the movement. The experimenter would announce “Stop!” and then stop 

the recording once the participants completed the movement and returned to the upright 

position. 



 

 

10 

 

Table 1: The list of movements used to evaluate the range of motion (ROM) of various joints and their corresponding joints 

for BlazePose and OptiTrack marker sets. See Appendix for a breakdown of the acronyms.  

Movement 
BlazePose Joint 1 

(Pivot) 

BlazePose Joint 2 

(End) 

OptiTrack Joint 1 

(Pivot) 

OptiTrack Joint 2 

(End) 

Back Flexion and Extension LHIP LSHO LPSI C7 

Truck Rotation LSHO RSHO LSHO RSHO 

Neck Flexion and Extension LSHO, RSHO NOSE LSHO, RSHO LFHD, LBHD 

Neck Lateral Bending LSHO, RSHO NOSE LSHO, RSHO LFHD, LBHD 

Neck Rotation LEAR REAR LFHD, LBHD RFHD, RBHD 

Shoulder Adduction and Abduction LSHO/RSHO LELB/RELB LSHO/RSHO LELB/RELB 

Shoulder Flexion and Extension LSHO/RSHO LELB/RELB LSHO/RSHO LELB/RELB 

Elbow Flexion LELB/RELB LWRI/RWRI LELB/RELB 
LWRA/RWRA, 

LWRB/RWRB 

Hip Flexion and Extension LHIP/RHIP LKNE/RKNE LASI/RASI LKNE/RKNE 

Hip Adduction and Abduction LHIP/RHIP LKNE/RKNE LASI/RASI LKNE/RKNE 
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2.4 Range of Motion Calculation 

A novel ROM calculation method was developed and applied to calculate the joint’s 

ROM angles based on the 3D joint trajectory data from OptiTrack and BlazePose. 

 

2.4.1 Preprocessing 

For trajectory data obtained from BlazePose, points with a low visibility index (< 0.5) 

were removed. Since the output from OptiTrack does not contain a visibility index, this step was 

not necessary to process OptiTrack’s data. Then, a dual-pass Butterworth filter with a sampling 

frequency of 15 Hz (BlazePose) or 120 Hz (OptiTrack) and a cutoff frequency of 5 Hz 

(BlazePose) or 10 Hz (OptiTrack) was applied to the trajectory data. The joint trajectories were 

subsequently normalized using the B-spline method31,32. B-splines parameterize the trajectories 

and allow sub- or up-sampling points from the trajectory at a fixed time interval. A cubic (order 

3) B-spline with a smoothing factor of 0 was applied to each dimension (x, y, and z) of the 

trajectory data and sampled 1000 points, equally spaced across time, from each parameterized 

trajectory. 

 

2.4.2 Relevant Joints 

Computationally determining a joint’s ROM requires the identification of relevant joints 

based on the available pose information. To this end, the ROM movements were divided into 

two categories: rotational and non-rotational movements, as they entail slightly different relevant 

joint selection and ROM calculation procedures. Table 1 shows the corresponding joints for each 

movement. Non-rotational movements include movements such as flexion and extension, 

abduction, and adduction. For these movements, it is necessary to identify the relevant limb 
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segment formed between a “pivot” joint and an “end” joint. The “pivot” joint does not refer to 

the anatomical pivot movement; a pivot joint only refers to the joint around which the movement 

is performed, i.e., the joint of interest. For example, for shoulder adduction and abduction, the 

pivot joint is the shoulder whereas the end joint is the elbow. On the other hand, rotational 

movements include movements such as neck and trunk rotation. Compared to non-rotational 

movements, computing ROM for rotational movements does not require differentiating between 

the pivot and end joints. Instead, tracking the line formed between the two joints perpendicular 

to the rotational axis would provide relevant angle information.  

 

2.4.3 Range of Motion Calculation 

To derive the ROM, the angle formed by the relevant joints between the movement start 

and end should be computed. Because joint positions are not restricted to a two-dimensional 

(2D) plane, the resulting angles measured in a 3D space could be highly inconsistent due to the 

interaction between rotational and translational components of the movement (Figure 2 Original; 

note the movement of the pivot joint (green)). To address this issue, the dimensionality of joint 

positions was reduced by 1) identifying the best-fitting plane for each joint using singular value 

decomposition (SVD; Figure 2 Best-fitting Planes), and 2) projecting the joint trajectories onto 

their respective planes (Figure 2 Projection). 

For non-rotational movements, the centroid of the pivot joint was derived by computing 

the mean of the pivot joint’s trajectory (Figure 2 Pivot Centroid). The line formed by the pivot 

joint’s centroid and the end joint was considered the limb segment. Subsequently, the ROM can 

be computed as the angle between the limb segment at the start and end (Figure 2 Maximum 

Movement Angle, top). For rotational movements, identifying the centroid is not necessary. 
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Instead, the two relevant joints are connected to form a line and the ROM angle is the angle of 

this line between the start and end positions (Figure 2 Maximum Movement Angle, bottom). 

To calculate the angle, the vectors formed between the two joints at the start and end 

were used. At time 𝑡0, let Joint 1 be 𝐽1𝑡0[𝑥1𝑡0 , 𝑦1𝑡0, 𝑧1𝑡0] and Joint 2 be 𝐽2𝑡0[𝑥2𝑡0 , 𝑦2𝑡0 , 𝑧2𝑡0]. The 

vector formed between joint 1 and 2 is 𝐽1𝑡0 − 𝐽2𝑡0 . Accordingly, at the end of the movement at 

time 𝑡, the vector formed between the two joints can be expressed as 𝐽1𝑡 − 𝐽2𝑡. The ROM angle is 

the angle formed between the two vectors, 𝛼, which can be derived using dot product: 

(𝐽1𝑡0 − 𝐽2𝑡0) ∙ (𝐽1𝑡 − 𝐽2𝑡) = ‖(𝐽1𝑡0 − 𝐽2𝑡0)‖‖(𝐽1𝑡 − 𝐽2𝑡)‖ cos 𝛼 

Which yields: 

𝛼 = arccos (
(𝐽1𝑡0 − 𝐽2𝑡0) ∙ (𝐽1𝑡 − 𝐽2𝑡)

‖(𝐽1𝑡0 − 𝐽2𝑡0)‖‖(𝐽1𝑡 − 𝐽2𝑡)‖
) 

 

2.5 Statistical Analysis 

The three measurements from BlazePose and OptiTrack were used to evaluate their 

respective test-retest (intra-rater) reliability. Intra-class correlation coefficient (ICC) was 

computed for each movement with a two-way mixed-effect model for multiple measurements33,34 

using the ICC package in R.35 The ICC values can be interpreted as: 0 - 0.2 (slight), 0.2 - 0.4 

(fair), 0.4 - 0.6 (moderate), 0.6 - 0.8 (substantial), and 0.8 - 1.0 (almost perfect).36 To further 

illustrate each measure’s reliability, the standard error of measurement (𝑆𝐸𝑀 ) and minimal 

detectable change (MDC) were also computed. Different from ICC, SEM represents the 

measurement error in the same unit as the original measurement37 and estimates the amount of 

deviation of repeated measures using the same measurement device from the “ground truth”, 

which can be derived using its corresponding ICC: 
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𝑆𝐸𝑀 = √𝜎𝑇

2 × (1 − 𝐼𝐶𝐶) Equation 1 

 

where 𝜎𝑇
2 represents the total variance. 𝑀𝐷𝐶 represents the smallest change in value that can be 

detected beyond random error. 𝑀𝐷𝐶 is based on 𝑆𝐸𝑀 and is expressed as 

 𝑀𝐷𝐶 = 𝑧95% × √2𝑆𝐸𝑀 Equation 2 

 

where 𝑧95%represents the z-score corresponding to the 95% confidence interval. 

The inter-rater reliability between BlazePose and OptiTrack was also evaluated using 

two-way mixed-effect ICC for each movement. The average of three measurements from 

BlazePose and OptiTrack were used for the ICC computation, along with the resulting 𝑆𝐸𝑀 and 

MDC. Finally, to examine the correlation between measurements from BlazePose and OptiTrack 

on an individual level, a linear regression with all movements, where OptiTrack measurement 

was used as the predictor variable and BlazePose measurement was used as the response 

variable.  
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Figure 2: Joint trajectory processing procedure for the ROM calculation for non-rotational (shoulder flexion and extension; top) 

and rotational (trunk rotation, bottom) joints. Original: The original trajectories for the pivot (shoulder; green) and end 

(elbow; blue) joints (top), and the two shoulder joints (bottom). Best-fitting Planes: The original trajectories with each 

joint’s corresponding best-fitting planes. Projection: The projected trajectories on the best-fitting planes. Pivot Centroid: The 

projected end joint trajectory with the pivot joint’s centroid for non-rotational joints. Maximum Movement Angle: The angle 

between the initial (black) and end positions (red) that defines the range of motion. 
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Table 2: The intraclass correlation coefficient (ICC), standard error of measurement (𝑆𝐸𝑀), and minimal detectable change (MDC) for the 

range of motion angles derived using BlazePose and OptiTrack. ICC interpretations: 0 - 0.2 (slight), 0.2 - 0.4 (fair), 0.4 - 0.6 (moderate), 0.6 - 

0.8 (substantial), and 0.8 - 1.0 (almost perfect). 

Movement 
BlazePose  OptiTrack  BlazePose and OptiTrack 

ICC (95% CI) 𝑆𝐸𝑀 MDC  ICC (95% CI) 𝑆𝐸𝑀 MDC  ICC (95% CI) 𝑆𝐸𝑀 MDC 

Spine 

Back Flexion 0.99 (0.99, 1.00) 2.55 7.08  0.99 (0.99, 1.00) 2.80 7.75  0.99 (0.99, 0.99) 3.31 9.19 

Back Extension 0.82 (0.60, 0.93) 3.17 8.80  0.90 (0.80, 0.96) 3.82 10.59  0.68 (0.28, 0.86) 6.08 16.86 

Trunk Rotation 0.95 (0.92, 0.97) 5.45 15.10   0.95 (0.93, 0.97) 5.24 14.54   0.90 (0.83, 0.94) 8.59 23.82 

Neck 

Neck Flexion 0.80 (0.53, 0.92) 4.09 11.30  0.84 (0.68, 0.93) 6.83 18.92  0.69 (0.27, 0.87) 9.92 27.51 

Neck Extension 0.89 (0.79, 0.95) 4.37 12.10  0.89 (0.79, 0.95) 5.00 13.85  0.77 (0.48, 0.90) 6.18 17.12 

Neck Lateral Bending 0.95 (0.92, 0.97) 2.34 6.49  0.92 (0.87, 0.95) 3.84 10.64  0.73 (0.52, 0.85) 6.98 19.35 

Neck Rotation 0.95 (0.92, 0.97) 3.22 8.92  0.97 (0.95, 0.98) 4.00 11.08  0.79 (0.63, 0.88) 10.27 28.48 

Upper Extremity 

Shoulder Adduction 0.86 (0.76, 0.92) 3.90 10.80  0.89 (0.82, 0.94) 4.24 11.76  0.85 (0.72, 0.91) 4.70 13.03 

Shoulder Abduction 0.95 (0.91, 0.97) 3.77 10.50  0.92 (0.88, 0.96) 4.41 12.22  0.71 (0.48, 0.83) 9.17 25.42 

Shoulder Flexion 0.93 (0.88, 0.96) 3.38 9.36  0.78 (0.64, 0.87) 7.62 21.11  0.10 (-0.59, 0.49) 12.01 33.29 

Shoulder Extension 0.88 (0.80, 0.93) 4.20 11.60  0.75 (0.60, 0.86) 5.97 16.54  0.84 (0.71, 0.91) 4.51 12.51 

Elbow Flexion 0.83 (0.72, 0.9) 4.67 12.90  0.84 (0.74, 0.91) 5.59 15.49  0.55 (0.19, 0.75) 8.34 23.12 

Lower Extremity 

Hip Flexion 0.94 (0.91, 0.97) 3.68 10.20  0.94 (0.90, 0.96) 3.54 9.80  0.76 (0.57, 0.86) 8.25 22.87 

Hip Extension 0.90 (0.85, 0.94) 3.83 10.60  0.94 (0.90, 0.96) 2.75 7.63  0.85 (0.74, 0.92) 4.14 11.47 

Hip Flexion (Knee Flexed) 0.85 (0.75, 0.91) 4.16 11.50  0.89 (0.81, 0.93) 3.42 9.48  0.44 (-0.01, 0.69) 7.97 22.10 

Hip Adduction 0.87 (0.79, 0.93) 3.21 8.89  0.89 (0.83, 0.94) 3.14 8.71  0.84 (0.72, 0.91) 4.32 11.97 

Hip Abduction 0.86 (0.78, 0.92) 3.56 9.87  0.93 (0.88, 0.96) 3.08 8.53  0.62 (0.31, 0.79) 6.81 18.87 
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Figure 3: Regression between the range of motion (ROM) angles of different movements derived from OptiTrack (x-axis) and 

BlazePose (y-axis) for each participant (subplots). Different markers represent different joint movements. The dotted lines in each 

subplot are reference lines and have a slope of 1 and an intercept of 0.  
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3. Results 

Table 2 shows the test-retest reliability using intraclass correlation coefficient (ICC), 

standard error of measurement (𝑆𝐸𝑀), and minimal detectable change (MDC) for BlazePose and 

OptiTrack, as well as their inter-rater reliability using the two-way mixed effect ICC, 𝑆𝐸𝑀, and 

MDC. Overall, results indicate high test-retest and inter-rater reliability for both BlazePose and 

OptiTrack across different movements. 

 

3.1 Intra-Rater Reliability 

For spine movements (back flexion, back extension, and trunk rotation), the 95% 

confidence intervals (CI) for ICC indicate that the test-retest reliability was almost perfect for 

BlazePose (from 0.82 to 0.99) and OptiTrack (between 0.90 to 0.99). For BlazePose, the SEM 

was between 2.55° and 5.45° and the MDC was between 7.08° and 15.10°, whereas for 

OptiTrack, the SEM was between 2.80° and 5.24° and the MDC was between 7.75° and 14.54°. 

For both BlazePose and OptiTrack, trunk rotation has the highest 𝑆𝐸𝑀  and MDC values despite 

high ICCs. Because the calculations of 𝑆𝐸𝑀 and MDC rely on ICC and the total variability, 𝜎𝑇
2 

(Equation 1), the discrepancy between 𝑆𝐸𝑀 /MDC and ICC should be attributed to the high 

between-subject variability in the measurement. Furthermore, the lower bound of the 95% 

confidence interval for back extension (low bound = 0.60) derived using BlazePose data is 

relatively low compared to other joints. Because the ROM for this joint was computed based on 

the estimated hip and shoulder positions (Table 1), the low ICC could be attributed to the 

variability in pose estimation when performing the movement. Specifically, when performing the 

back extension movement, the camera’s line of sight is perpendicular to the participants’ sagittal 

plane, producing a lateral view of the participant. The limited view could affect the stability of 
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the pose estimation algorithm, which may have produced low ICC values.  

For neck movements (neck extension and flexion, neck lateral bending, and neck 

rotation), the ICC’s 95% CI indicates that BlazePose had substantial or almost perfect reliability 

for all movements except for neck flexion, which had moderate to substantial test-retest 

reliability (ICC = 0.80, CI = [0.53, 0.92]). The relatively low ICC for the BlazePose-based neck 

flexion estimate could be attributed to the way through which the ROM is calculated (Table 1). 

Given the available joints identified by BlazePose, the neck ROM was calculated based on the 

midpoint of the two shoulder joints (approximates the sternoclavicular joint) and the nose. 

During neck flexion, the webcam’s view of the face and nose may become occluded as the 

participants tilt their head backward, which may introduce large variabilities in the estimated 

nose position, resulting in lower ICC values. For other measures, neck flexion and extension had 

relatively large 𝑆𝐸𝑀 (4.09° and 4.37°) and MDC (11.30° and 12.10°), whereas these values for 

other movements were below 4° for 𝑆𝐸𝑀 and 10° for MDC. For OptiTrack, all movements had 

almost perfect intra-rater reliability and comparable 𝑆𝐸𝑀 and MDC values as BlazePose.  

For the upper extremity (shoulder adduction and abduction, shoulder extension and 

flexion, and elbow flexion), the test-retest reliability for the ROM measurements from BlazePose 

was generally high, ranging from moderate to almost perfect reliability. The 𝑆𝐸𝑀 and MDC for 

these movements were generally at around 4° and 10°, respectively. Reliability measures derived 

for the OptiTrack measurements were comparable to that from BlazePose. Based on the lower 

bound of the ICC’s 95% confidence interval for BlazePose, two joints stood out – shoulder 

adduction (lower bound = 0.76) and elbow flexion (lower bound = 0.72). During data collection, 

participants had to wear an all-black MoCap suit (Figure 1 middle). Using a single RGB video 

stream, BlazePose largely relies on the contrast in the image to perform pose estimation. During 
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shoulder adduction and elbow flexion, there could be a significant amount of overlap between 

the participants’ arms and torso, or between their forearm and upper arm. Combined with the suit 

that contains minimum contrast, the overlap presents a non-negligible challenge to the BlazePose 

algorithm in terms of segmenting and tracking different body parts. Therefore, it is possible that 

wearing everyday clothes with brighter colors during the collection process could significantly 

improve the reliability of these movements.  

Finally, for the lower extremity (hip flexion and extension (knee extended), hip flexion 

(knee flexed), and hip adduction and abduction), the ICC values for BlazePose were generally 

high. The lower bounds of the 95% confidence intervals for hip flexion (knee flexed) (low bound 

= 0.75) and hip adduction (low bound = 0.79) and abduction (low bound = 0.78) could be 

considered relatively low. This could again be attributed to the issue of occlusion combined with 

a lack of contrast in the clothing as in the case of shoulder adduction and elbow flexion. All the 

other measures were comparable to those of other joints. Measurements derived using OptiTrack 

data produced similar reliability measures as those from BlazePose.  

 In summary, the intra-rater reliability of BlazePose’s ROM calculation is relatively high 

and comparable to that of OptiTrack. Although the intra-class ICC values for some joints are 

relatively low, it could be an artifact of the experimental setup, such as the low contrast MoCap 

suits and inappropriate orientation when performing the movements. These issues could be easily 

addressed in practice to further improve the reliability of the ROM measurement. 

 

3.2 Inter-Rater Reliability 

Despite of their respective high intra-class ICC, the mixed-effect ICC between BlazePose 

and OptiTrack varies notably from joint to joint. On the one hand, some movements have 
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relatively higher ICC values, such as back flexion (ICC = 0.99, CI = [0.99, 0.99]), trunk rotation 

(ICC = 0.90, CI = [0.83, 0.94]), shoulder adduction (ICC = 0.85, CI = [0.72, 0.91]), shoulder 

extension (ICC = 0.84, CI = [0.71, 0.91]), hip extension (ICC = 0.85, CI = [0.74, 0.92]), and hip 

adduction (ICC = 0.84, CI = [0.72, 0.91]). On the other hand, some movements have extremely 

low ICC values, such as shoulder flexion (ICC = 0.10, CI = [-0.59, 0.49]) and hip flexion (knee 

flexed) (ICC = 0.44, CI = [-0.01, 0.69]).  

This discrepancy could be attributed to the different joint/marker positions based on 

which the ROM angles were derived between OptiTrack and BlazePose. For instance, for 

shoulder flexion, although both OptiTrack and BlazePose use shoulder and elbow positions to 

derive the ROM angles, the shoulder locations from the two methods vary (Figure 4 left). For 

OptiTrack, the marker has to be attached to the MoCap suit at around the participants’ acromion. 

When performing the shoulder flexion movement, the compression at the shoulder joint creates 

wrinkles on the MoCap suit and perturbs the location of the OptoTrack marker throughout the 

movement. For BlazePose, because joint locations were derived using images instead of a 

physical marker, the estimated shoulder joint location is around the humeral head and remains 

relatively stable throughout the movement. In contrast, although focusing on the same joint, 

shoulder extension had a much higher inter-rater reliability (ICC = 0.84, CI = [0.71, 0.91]). 

During the shoulder extension movement, the MoCap suit remains relatively stable (Figure 4 

right), which circumvents the potential artifact in the shoulder marker’s position during the 

movement. Therefore, the low inter-rater reliability between OptiTrack and BlazePose could be 

attributed to the intrinsic limitations of OptiTrack.  
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Figure 4. A participant performing the shoulder flexion (left) and extension (right) movements. 

The orange circle highlights the locations of the OptiTrack markers.  

 

3.3 Individual-Level Reliability 

Finally, the individual-level correlations between OptiTrack and BlazePose were 

evaluated using linear regressions (Figure 3). The 𝑟2 values are generally high (min = 0.78, max 

= 0.92, mean = 0.87, SE = 0.008), suggesting good fits of the linear models. The regression 

slopes (mean = 1.01, SE = 0.01) indicate a one-to-one mapping between the two measurements. 

The combination of high 𝑟2 values and regression slopes of 1 demonstrate the high consistency 

of ROM measurement between OptiTrack and BlazePose on an individual level across all joints.  

What is noticeable, however, is the negative regression intercept (mean = -10.34, SE = 

0.77). As Figure 3 shows, the ROM angles derived from BlazePose were smaller than those from 

OptiTrack, as the data points generally fall below the reference line. This pattern could be 

attributed to the artifacts associated with OptiTrack’s marker placements. While the predicted 

joint location from BlazePose is around the anatomical joint, OptiTrack’s markers are placed 
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topically and attached to the MoCap suit (Figure 1 middle). As a result, the marker position is 

not an accurate reflection of the actual joint location. For instance, Figure 5 shows sample poses 

of a participant performing the shoulder abduction movement derived from BlazePose and 

OptiTrack at the same time stamp during data collection. Although the shoulder positions are 

comparable between the two samples, the elbow position is much higher in the OptiTrack sample 

than that in the BlazePose sample. This is because the marker for OptiTrack was attached to the 

participant’s lateral epicondyle, which was spatially higher than the elbow joint for this pose. 

Consequently, the final derived ROM angle from OptiTrack was larger as compared to that from 

BlazePose. This issue also applies to the computation of other movements, such as those of the 

lower extremity (note the difference in the knee positions).  

 

Figure 5. Joint position comparison between BlazePose (left) and OptiTrack (right) during the 

shoulder abduction movement at a synchronized time. The relevant joints (RSHO or Right 

Shoulder, and RELB or Right Elbow) are annotated. See text for details.  
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4. Discussion 

The current study presented a webcam-based machine learning solution using BlazePose 

for range of motion (ROM) measurement and evaluated its intra- and inter-rater reliability as 

compared to a marker-based motion capture system, OptiTrack. Unlike previous studies, the 

present study examined a diverse set of joints using a full-body biomechanical model, including 

those of the spine, the neck, and the upper and lower extremities.  

Results revealed high intra-rater reliability for BlazePose and OptiTrack. For almost all 

movements, both measurement methods had substantial or almost perfect intra-rater reliability, 

with their corresponding measurement errors (𝑆𝐸𝑀) below 5° and the minimal detectable change 

(MDC) at around 10°. This indicates that the webcam-based solution could reliably differentiate 

changes in ROM from measurement errors when the amount of change is greater than 10°. From 

a practitioner’s perspective, this would be sufficient to evaluate the effect of an intervention.38 

Furthermore, careful examination of movements with lower inter-rater reliability showed that 

changing the participants’ orientation to the camera’s line of sight and the color scheme of their 

cloth may further improve BlazePose’s inter-rater reliability.  

Despite their respective high test-retest reliability, the inter-rater reliability between 

BlazePose and OptiTrack is variable across different joints, with some joint movements having 

relatively low inter-rater reliability. Scrutinizing these movements uncovered that the variable 

inter-rater reliability could be attributed to the intrinsic limitations of the OptiTrack MoCap 

system. Because OptiTrack’s markers must be attached to the participants’ cloth, certain 

movements may create deformation in the cloth and, consequently, false marker movements that 

do not reflect the movement of the limbs. In contrast, because the detected joint positions from 

BlazePose are around the participants’ anatomical joints, ROM measurement obtained from 
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BlazePose should contain fewer artifacts. Similarly, the limitation associated with the marker 

placement also affects the correlation between BlazePose and OptiTrack on an individual level. 

Linear regressions showed that the individual-level reliability was high and there was a one-to-

one mapping between the two measurement methods. However, there was also an approximate 

10° in average difference between measurements from OptiTrack and BlazePose. Analysis of 

single poses during the movements showed that this difference could be considered an 

overestimation in OptiTrack’s ROM measurement because of the offset between the marker and 

the anatomical joint.  

From a practitioner’s perspective, the effectiveness of a ROM measurement method 

should be evaluated from a functional standpoint. In this context, the measurement method 

should not solely focus on achieving high anatomical accuracy and precision. Instead, the 

method’s intra-rater reliability and accessibility are also equally important. Specifically, ROM is 

commonly used to evaluate and quantify the improvement in a patient’s mobility at a certain 

joint as a result of an intervention. Therefore, an ideal ROM measurement method should 

reliably evaluate the ROM across multiple sessions. Additionally, accessibility is also a critical 

consideration. The COVID-19 Pandemic raises awareness of the importance of telehealth and its 

effectiveness in lowering the barrier of access for disadvantaged populations. In the context of 

physical therapy, ROM evaluation has always relied on a goniometer,4,5 which has long been 

known for its lack of reliability despite requiring extensive training and practice.11,12,39 Merely 

relying on a goniometer for physical therapy would disproportionately affect patients of different 

racial and socioeconomic backgrounds.  

As an alternative, the webcam-based ROM evaluation tool presented in the current study 

is affordable and accessible with high intra-rater reliability. Since BlazePose is lightweight and 
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compatible with multiple platforms, it is possible to adapt the current data collection and 

processing pipeline to a browser-based web application and mobile applications on iOS and 

Android devices. Future studies should focus on refining the applied aspect of this tool, such as 

identifying the ideal type of cloth and camera angles for different movements to maximize 

tracking reliability. 

 

5. Conclusion 

In conclusion, the current study presents an alternative way of measuring joint range of 

motion (ROM) that merely relies on a webcam setup. Compared to a state-of-the-art motion 

capture system, the webcam-based machine learning approach demonstrated high intra- and 

inter-rater, as well as individual-level reliability in quantifying and assessing joint ROM. 

Adapting and adopting this tool for tele-implementation of physical therapy and rehabilitation 

could significantly reduce the barrier of access to healthcare.  
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Appendix 

Joint Acronym Lookup 

Head 

LFHD/LFHD: Left/Right Front of the Head 

LBHD/LBHD: Left/Right Back of the Head 

LEAR/REAR: Left/Right Ear 

NOSE: Nose 

 

Torso 

LSHO/RSHO: Left/Right Shoulder 

LASI/RASI: Left/Right Anterior Sacroiliac 

LPSI/RPSI: Left/Right Posterior Sacroiliac 

 

Upper Limbs 

LELB/RELB: Left/Right Elbow 

LWRI/RWRI: Left/Right Wrist 

LWRA/RWRA: Left/Right Wrist A (Anterior) 

LWRB/RWRB: Left/Right Wrist B (Posterior) 

 

Lower Limbs 

LHIP/RHIP: Left/Right Hip 

LKNE/RKNE: Left/Right Knee 
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