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Abstract 

Background. Joint range of motion (ROM) is an important quantitative measure for physical therapy. 

Commonly relying on a goniometer, accurate and reliable ROM measurement requires extensive training 

and practice. This, in turn, imposes a significant barrier for those who have limited in-person access to 

healthcare. 

Objective. The current study presents and evaluates an alternative machine learning-based ROM 

evaluation method that could be remotely accessed via a webcam. 

Methods. To evaluate its reliability, the ROM measurements for a diverse set of joints (neck, spine, and 

upper and lower extremities) derived using this method were compared to those obtained from a marker-

based optical motion capture system.  

Results. Data collected from 25 healthy adults demonstrated that the webcam solution exhibited high test-

retest reliability, with substantial to almost perfect intraclass correlation coefficients for most joints. 

Compared with the marker-based system, the webcam-based system demonstrated substantial to almost 

perfect inter-rater reliability for some joints, and lower inter-rater reliability for other joints (e.g., shoulder 

flexion and elbow flexion), which could be attributed to the reduced sensitivity to joint locations at the 

apex of the movement. 

Conclusions. The proposed webcam-based method exhibited high test-retest and inter-rater reliability, 

making it a versatile alternative for existing ROM evaluation methods in clinical practice and the tele-

implementation of physical therapy and rehabilitation. 

 

Keywords: Physical therapy, Rehabilitation, Range of motion, Computer vision, Pose Estimation  
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A webcam-based machine learning approach for three-dimensional range of motion evaluation 

Introduction 

The recent COVID-19 pandemic has accentuated the need of improving access to healthcare 

services for vulnerable populations. To improve accessibility, various medical fields are making greater use 

of telehealth. Telehealth leverages the convenience of personal electronic devices to enable the remote 

delivery of healthcare services, such as through telephone consultation and videoconferencing. As a result 

of the booming personal electronic device market, telehealth’s popularity has been consistently increasing 

over the past decade, especially during the COVID-19 pandemic [1]. Compared to traditional in-person 

care, telehealth clinical effectiveness has been shown to be equivalent or better [2,3]. Unfortunately, the 

main bottleneck for telehealth is devising objective outcome measures that are equally accessible. 

In the context of physical therapy and rehabilitation, joint range of motion (ROM) is a widely used 

outcome measure. One of the most common ways to measure joint ROM is through a handheld goniometer 

[4–8]. ROM measurement using a goniometer requires certified physicians or physical therapists with 

significant training and practice in using the device. This imposes challenges to medically underserved 

communities (rural and remote communities), where access to healthcare and trained professionals is 

limited. Furthermore, although the goniometer has been widely used for ROM evaluation [9,10], its 

precision and inter-tester reliability could be low due to human error and procedural inconsistency [11–

13]. As a result, there is an exigency for an alternative ROM evaluation protocol that could address the 

accessibility, accuracy, and reliability issues related to the goniometer-based ROM evaluation method. 

Various non-traditional solutions for ROM evaluation have been proposed over the years, such as 

digital photography [9,14], photogrammetry [10], and even optical motion capture (MoCap) [15]. MoCap 

systems, such as OptiTrack (NaturalPoint, Corvallis, OR, USA) and Vicon (Oxford metrics, UK), have 

been widely used in biomechanics and sports science studies as they demonstrate high accuracy (± 0.10 

mm) and reliability at a high sampling frequency (up to 1000 FPS) [16,17]. However, despite the 

advantages that MoCap systems offer, they not only are expensive but also require technical proficiency 
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and large physical space, which presents noticeable barriers to entry for broad clinical application. In recent 

years, the field of machine learning-based human pose estimation has seen significant development [18–

20]. These algorithms, such as convolutional neural networks (CNN), [21] use various deep neural network 

architectures to identify, recover, and track the 2D or 3D locations of key joints of a human actor across 

multiple frames using a single image stream [22]. 

Capitalizing on the advances in computer vision, a framework called MediaPipe offers free access 

to machine learning solutions to various computer vision problems [23], including image-based real-time 

three-dimensional (3D) pose estimation. The pose-estimation component, called BlazePose [24], uses a 

CNN architecture that combines a lightweight pose detection network with a pose prediction network. The 

pose detection network first detects any person presented in a single frame while the prediction network 

tracks the person across subsequent frames. This design allows the machine learning model to consistently 

track 33 body landmarks in real-time at over 30 frames per second using only a single stream RGB video, 

such as through a webcam. Compared to other open-sourced 3D pose estimation libraries, such as OpenPose 

[19,25], BlazePose is computationally lightweight and can be deployed across various platforms, such as 

in a web browser as a JavaScript application. As a result of its versatility, BlazePose and other video-based 

pose estimation libraries have been used by researchers to develop different applications, including in the 

context of sports for movement abnormality detection [26], gait assessment [27], hypermobility assessment 

[28], yoga training [29], postural disorder monitoring for Parkinson’s patients, [30] and spinal dysfunction 

risk estimation [31]. However, studies that explicitly examine the effectiveness of applying open-sourced 

3D pose-estimation library for range of motion evaluation remain scarce [32].  

The current study presents an alternative ROM evaluation method that leverages the power of 

computer vision algorithms. Using a single webcam and the output from BlazePose, 3D positions of various 

joints were recorded and used to estimate their corresponding ROM angles. Results obtained using this 

lightweight machine learning solution were compared to those produced by a MoCap system (OptiTrack) 

as the ground truth. Additionally, unlike previous studies [9,10,14,15,21] that only focus on a single joint, 

the current study evaluated the reliability of ROM measurements using a full-body multi-joint model. 
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Results showed that the proposed solution not only offers an alternative to the traditional ROM evaluation 

methods with a noticeably lower barrier of access, but also provides high intra- and inter-rater reliability 

necessary for practical usage.  
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Methods 

Participants 

Twenty-five healthy adults (12 males, 13 females) from the University of Wyoming community 

volunteered to participate between March and November 2022. This study was approved by the University 

of Wyoming Institutional Review Board (IRB). All participants provided their written informed consent 

prior to the study. 

 

Data acquisition 

Data acquisition was performed using a desktop computer with an Intel Core i9 11th Gen CPU, 

Nvidia RTX 3090 graphics card, and 64 GB of RAM. To derive the range of motion (ROM) angles for 

different joints, joint trajectories of various ROM evaluation movements were simultaneously recorded 

using a webcam-based, real-time pose estimation algorithm and a marker-based infrared optical motion 

capture system. A custom Python program was implemented to stream and record trajectory data from both 

sources on a synchronized time scale. 

For the webcam-based solution, the pose estimation component of Google’s MediaPipe framework 

[23] (BlazePose [24]), was used. The video was streamed through a Logitech C922 Pro HD Stream Webcam 

mounted on a computer monitor, approximately 4 m away from the participants at a height of around their 

chest. The placement of the webcam was to ensure the participants’ entire body, including the vertically or 

laterally extended arms, was visible and centered in the video frame. The video capture was controlled 

through the OpenCV Library [33] for Python. Although BlazePose could process data at up to 30 frames 

per second (FPS), due to constraints imposed by simultaneous data streaming from OptiTrack and OpenCV 

and Python’s global interpreter lock (GIL), the effective framerate for BlazePose was at around 15 FPS. 

Fig 1 (left) shows the 33 joints obtained from the algorithm with selected labels. BlazePose can generate 

3D coordinates of the 33 joints in the world coordinate system (the depth axis represents the relative 
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distance to the camera), along with an estimated “visibility” index for each joint at each frame. The visibility 

index (ranges between 0 and 1) tracks the algorithm’s confidence in the derived joint coordinates, which 

could be affected by factors such as occlusion and movement speed. A low visibility index indicates 

inaccuracy in the derived coordinates. A threshold for visibility was set at 0.5 and any trajectory points with 

an index below the threshold were removed from the analysis. Overall, there were only four trials (or 0.13% 

of the total trials) that contained joints relevant to the ROM calculation that had frames with a visibility 

index of 0.5 or below. Fig 1 (middle) shows a frame from the video capture with the detected joints overlaid 

on top. The webcam-based solution only collected movement trajectory data from BlazePose while the 

video feed was not recorded. For the optical motion capture system, OptiTrack Motion Capture System 

(NaturalPoint, Corvallis, OR, USA) with ten Primex 22 cameras was used to record motion at 120 FPS. 

Data from OptiTrack were streamed to the Python interface through the Motive 2.0 Optical Motion Capture 

Software and OptiTrack’s NatNet SDK. The conventional full-body biomechanical model with 39 markers 

(Fig 1, right) was used to capture joint trajectories (see Figure 2 in [34] for the placement of the entire 

marker set). The collected data did not contain any identifiable personal information of the participants.  

 

Fig 1. Landmark positions. Two-dimensional landmarks for BlazePose (left) and the marker set used for 

Opti- Track’s optical motion capture system (right). BlazePose produces 33 landmarks, whereas 

OptiTrack’s marker set contains 39 markers. Markers relevant to the range of motion calculation are 
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marked with their respective names. Figure in the middle is a screenshot of the landmarks detected by 

MediaPipe’s BlazePose overlayed on a video image captured during data collection with the participant 

wearing a motion capture suit. 

 

Procedures 

After providing their informed consent, participants were instructed to put on a motion capture suit 

provided by OptiTrack. Experimenters then fitted the participants with 39 reflective markers based on the 

locations defined by the full-body model from OptiTrack’s Motive software. Subsequently, an experimenter 

demonstrated each ROM evaluation movement using pre-recorded videos on a tablet computer and the 

participants were told to repeat the movement as practice. The ROM movements were based on a Range of 

Joint Motion Evaluation Chart DSHS 13-585A (REV. 03/2014) [35]. Table 1 shows the list of movements 

used to evaluate the ROM of their corresponding joints, including movements of the spine (extension and 

flexion, lateral flexion, and trunk rotation), the neck (extension and flexion, lateral bending, and rotation), 

the upper extremities (shoulder adduction and abduction, shoulder extension and flexion, and elbow 

extension and flexion), and the lower extremities (hip extension and flexion (knee extended), hip flexion 

(knee flexed), and hip adduction and abduction). Movements of distal joins, such as wrist and ankle, were 

excluded from the current study because BlazePose could not reliably generate marker positions of the 

hands and feet, respectively.  

After being familiarized with all movements, participants were guided to stand in front of a 

computer monitor with a webcam. Participants’ standing position coincided with the center of the capture 

volume of the OptiTrack camera system. All movements were performed while standing upright. To 

minimize occlusion for the webcam, participants were asked to change their orientation to the camera based 

on the movements performed. For instance, for shoulder extension and flexion, participants presented the 

lateral view of their body to the webcam. Additionally, for movements of the lower extremities, participants 

were holding onto a stool while performing the movements to ensure stability. Each movement was repeated 

and recorded three times consecutively. For each recording, participants were instructed to perform the 
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movement slowly and deliberately. When the experimenter announced “Start!”, the recording would begin, 

and participants would start the movement. The experimenter would announce “Stop!” and then stop the 

recording once the participants completed the movement and returned to the upright position. 
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Table 1. Tested joint range of motion movements. 

Movement 
Recording 

Orientation 

BlazePose  

Joint 1  

BlazePose  

Joint 2  

OptiTrack  

Joint 1  

OptiTrack  

Joint 2  

Back Flexion and Extension Lateral Sagittal LHIP LSHO LPSI C7 

Back Lateral Flexion Anterior Coronal LHIP LSHO LPSI C7 

Truck Rotation Anterior Coronal LSHO RSHO LSHO RSHO 

Neck Flexion and Extension Lateral Sagittal  LSHO, RSHO NOSE LSHO, RSHO LFHD, LBHD 

Neck Lateral Bending Lateral Sagittal LSHO, RSHO NOSE LSHO, RSHO LFHD, LBHD 

Neck Rotation Anterior Coronal LEAR REAR LFHD, LBHD RFHD, RBHD 

Shoulder Adduction and Abduction Anterior Coronal LSHO/RSHO LELB/RELB LSHO/RSHO LELB/RELB 

Shoulder Flexion and Extension Anterior Coronal LSHO/RSHO LELB/RELB LSHO/RSHO LELB/RELB 

Elbow Flexion Lateral Sagittal LELB/RELB LWRI/RWRI LELB/RELB 
LWRA/RWRA, 

LWRB/RWRB 

Hip Flexion and Extension Lateral Sagittal LHIP/RHIP LKNE/RKNE LASI/RASI LKNE/RKNE 

Hip Adduction and Abduction Anterior Coronal LHIP/RHIP LKNE/RKNE LASI/RASI LKNE/RKNE 

A list of movements used to evaluate the range of motion (ROM) of various joints, the participants’ orientation to the webcam during recording, 

and each movement’s corresponding markers for BlazePose and OptiTrack marker sets, and. See Appendix for a breakdown of the acronyms. 

 

7
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Range of motion calculation 

The 3D joint trajectory data from OptiTrack and BlazePose were used to derive the joint’s ROM 

angles. In practice, the calculation and extraction of the ROM angle should be implemented in real time 

and the angular measure should be available upon the completion of a movement. However, due to the 

experimental nature of the current study, the analysis was performed post-hoc to examine any potential 

issues that may arise during the data analysis process. Movement trajectory preprocessing was 

accomplished using TAT-HUM [36], a Python-based movement trajectory analysis toolkit. For trajectory 

data obtained from BlazePose, points with a low visibility index (< 0.5) were removed. Because deriving 

ROM angle only requires identifying a singular point along the movement trajectory and BlazePose had a 

low sampling frequency (15 Hz), data smoothing was deemed unnecessary and was not performed to avoid 

introducing errors in the filtering process [37,38]. 

To derive the ROM angle from a specific movement, two joints are needed to specify the relevant 

segment. Table 1 shows the corresponding joints for each movement. For some movements, each joint 

could be specified via a single marker. For instance, back flexion and extension only require the markers 

placed at the participants’ hip (LHIP) and shoulder (LSHO) for BlazePose or at their posterior sacroiliac 

(LPSI) and C7 for OptiTrack. For other movements, the relevant points may need to be derived as the 

average location between two markers. For instance, for neck flexion and extension, the nose (NOSE) 

position was used as one end of the segment whereas the midpoint between the left and right shoulders 

(LSHO and RSHO) was derived and used as the other end of the segment.  

Given the relevant segment, the ROM angle was derived using vector algebra. Let the two points 

representing the segment be 𝑃1 and 𝑃2, the normalized vector, 𝑣, for this segment is: 

𝑣 =
𝑃1 − 𝑃2
‖𝑃1 − 𝑃2‖

 

The normalized vectors were calculated for each frame. Then, the movement angle at time 𝑡, 𝛼𝑡, is derived 

as the angle between the vector at 𝑡,  𝑣𝑡 and that at the starting position, 𝑣0, using dot product: 

𝛼𝑡 = arccos(𝑣𝑡 ∙ 𝑣0) 
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 Subsequently, the final ROM angle can be extracted from the resulting time series of movement 

angle, defined as the maximum angle during a movement. Although algorithms could easily identify the 

local maxima of a time series, extraneous factors may introduce noise to the data, rendering this process 

tricky. For instance, in the resulting time series of movement angle, anomalies may appear due to tracking 

inconsistency (Fig 2). In practice, these anomalies could easily be identified and accounted for via visual 

inspection in real-time, without affecting the final ROM angle. For the current study, this process was 

automated using additive seasonality decomposition, which decomposes a signal into seasonal, trend, and 

residual components, using Python’s statsmodels package [39]. In the present context, the trend component 

corresponds to the change in movement angle. The anomalies could be subsequently identified using the 

residual values (3 standard deviations from the mean). After removing the anomalies, the ROM angle was 

identified as the local maximum of all angles. If more than one maximum was identified, visual inspections 

were performed to identify the appropriate ROM angle.  

 

Fig 2. Anomaly identification. An illustration of the seasonality decomposition to identify anomalies in 

the movement angle data. Top panel: The original data contain three noticeable outliers that may affect 

the subsequent local maxima detection. Middle panel: The derived trend from the seasonality 

decomposition. Note that the decomposition could potentially introduce artifacts that alter the values of 

the angle, which was why it was not directly used to identify the maximum angle. Bottom panel: The 

residuals from the seasonality decomposition where the locations of the three outliers are apparent.  

 



13 

A Webcam-Based Range of Motion Evaluation Tool 

 

13 

Statistical analysis 

The three measurements from BlazePose and OptiTrack were used to evaluate their respective test-

retest (intra-rater) reliability. Intra-class correlation coefficient (ICC) was computed for each movement 

with a two-way mixed-effect model for multiple measurements [40,41] using the ICC package in R [42]. 

The ICC values can be interpreted as: 0 - 0.2 (slight), 0.2 - 0.4 (fair), 0.4 - 0.6 (moderate), 0.6 - 0.8 

(substantial), and 0.8 - 1.0 (almost perfect) [43].  To further illustrate each measure’s reliability, the 

standard error of measurement (SEM) and minimal detectable change (MDC) were also computed. Different 

from ICC, SEM represents the measurement error in the same unit as the original measurement [44] and 

estimates the amount of deviation of repeated measures using the same measurement device from the 

“ground truth”, which can be derived using its corresponding ICC: 

 
𝑆𝐸𝑀 = √𝜎𝑇

2 × (1 − 𝐼𝐶𝐶) Equation 1 

 

where 𝜎𝑇
2 represents the total variance. 𝑀𝐷𝐶 represents the smallest change in value that can be detected 

beyond random error. 𝑀𝐷𝐶 is based on SEM and is expressed as 

 𝑀𝐷𝐶 = 𝑧95% × √2𝑆𝐸𝑀 Equation 2 

 

where 𝑧95%represents the z-score corresponding to the 95% confidence interval. 

Additionally, using results from OptiTrack as the ground truth, the inter-rater reliability between 

the two measures was also evaluated using two-way mixed-effect ICC for each movement. The individual 

measurements from BlazePose and OptiTrack were used for the ICC computation, along with the resulting 

SEM and MDC. To examine the correlation between measurements from BlazePose and OptiTrack, a linear 

regression was performed for each joint across all participants, where the OptiTrack measurement was used 

as the predictor variable and BlazePose measurement was used as the response variable. 
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Table 2. Intra- and inter-rater reliability measures. 

Movement 
BlazePose  OptiTrack  BlazePose and OptiTrack 

ICC (95% CI) SEM (°) MDC (°)  ICC (95% CI) SEM (°) MDC (°)  ICC (95% CI) SEM (°) MDC (°) 

Spine 

Back Flexion 0.98 (0.95, 0.99) 2.27 6.28  0.76 (0.53, 0.89) 10.53 29.18  0.82 (0.72, 0.89) 8.11 22.49 

Back Extension 0.92 (0.82, 0.96) 2.10 5.83  0.17 (-0.65, 0.62) 14.79 41.00  0.80 (0.67, 0.88) 8.07 22.36 

Back Lateral Flexion 0.93 (0.88, 0.96) 1.34 3.71  0.94 (0.91, 0.97) 1.50 4.15  0.92 (0.89, 0.94) 2.00 5.53 

Trunk Rotation 0.94 (0.91, 0.97) 6.25 17.30  0.97 (0.95, 0.98) 3.56 9.87  0.92 (0.89, 0.94) 6.96 19.31 

Neck 

Neck Flexion 0.93 (0.87, 0.97) 2.32 6.43  0.87 (0.74, 0.94) 4.65 12.90  0.92 (0.88, 0.95) 3.45 9.56 

Neck Extension 0.90 (0.81, 0.96) 3.24 8.99  0.91 (0.82, 0.96) 3.73 10.33  0.89 (0.83, 0.93) 4.22 11.69 

Neck Lateral Bending 0.96 (0.94, 0.98) 1.44 4.00  0.94 (0.91, 0.97) 2.22 6.16  0.81 (0.73, 0.86) 4.77 13.21 

Neck Rotation 0.95 (0.91, 0.97) 3.46 9.58  0.85 (0.77, 0.91) 3.99 11.05  0.62 (0.47, 0.73) 11.57 32.08 

Upper Extremity 

Shoulder Adduction 0.92 (0.87, 0.95) 3.04 8.41  0.95 (0.92, 0.97) 2.53 7.02  0.89 (0.84, 0.92) 3.98 11.03 

Shoulder Abduction 0.97 (0.95, 0.98) 2.41 6.68  0.81 (0.7, 0.89) 7.98 22.11  0.68 (0.56, 0.77) 12.43 34.44 

Shoulder Flexion 0.94 (0.90, 0.96) 1.66 4.61  0.82 (0.72, 0.9) 6.32 17.52  0.18 (-0.14, 0.40) 9.73 26.97 

Shoulder Extension 0.93 (0.89, 0.96) 3.17 8.78  0.93 (0.89, 0.96) 2.60 7.20  0.92 (0.88, 0.94) 3.27 9.07 

Elbow Flexion 0.79 (0.67, 0.87) 3.76 10.4  0.83 (0.73, 0.9) 6.68 18.5  0.53 (0.35, 0.66) 11.69 32.40 

Lower Extremity 

Hip Flexion 0.94 (0.91, 0.97) 2.60 7.22  0.94 (0.90, 0.96) 2.65 7.34  0.83 (0.76, 0.88) 5.18 14.35 

Hip Extension 0.95 (0.91, 0.97) 2.87 7.95  0.94 (0.90, 0.96) 2.18 6.03  0.84 (0.78, 0.88) 4.27 11.83 

Hip Flexion (Knee Flexed) 0.85 (0.76, 0.91) 3.06 8.49  0.86 (0.77, 0.92) 3.68 10.21  0.64 (0.50, 0.74) 5.67 15.71 

Hip Adduction 0.93 (0.88, 0.96) 2.65 7.35  0.88 (0.8, 0.93) 3.22 8.94  0.89 (0.84, 0.92) 3.38 9.37 

Hip Abduction 0.93 (0.89, 0.96) 3.22 8.94  0.95 (0.92, 0.97) 2.95 8.19  0.95 (0.94, 0.97) 2.68 7.43 

The intraclass correlation coefficient (ICC), standard error of measurement (SEM), and minimal detectable change (MDC) for the range of motion 

angles derived using BlazePose and OptiTrack. ICC interpretations: 0 - 0.2 (slight), 0.2 - 0.4 (fair), 0.4 - 0.6 (moderate), 0.6 - 0.8 (substantial), and 

0.8 - 1.0 (almost perfect). 
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a 

 
Fig 3. Joint-based regression. Regressions between the range of motion (ROM) angles derived from OptiTrack (x-axis) and BlazePose (y-axis) 

across all participants for each joint. Different markers represent different joint movements. The dotted lines in each subplot are reference lines 

and have a slope of 1 and an intercept of 0.  
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Results 

Table 2 shows the test-retest reliability using intraclass correlation coefficient (ICC), standard error 

of measurement (SEM), and minimal detectable change (MDC) for BlazePose and OptiTrack, as well as 

their inter-rater reliability using the two-way mixed effect ICC, 𝑆𝐸𝑀, and MDC. Overall, results indicate 

high test-retest and inter-rater reliability for both BlazePose and OptiTrack across different movements. 

 

Intra-rater reliability 

For spine movements (back flexion, back extension, back lateral flexion, and trunk rotation), the 

95% confidence intervals (CI) for ICC indicate that the test-retest reliability was almost perfect for 

BlazePose (low bound from 0.82 to 0.95) with the corresponding SEM between 1.34° and 6.25° and the 

MDC was between 3.71° and 17.30°. Noticeably, even though trunk rotation had a relatively high ICC 

value (mean = 0.94), its corresponding SEM and MDC values are relatively high compared to other joints 

(6.25° and 17.30°, respectively). Because the calculations of SEM and MDC rely on ICC and the total 

variability, 𝜎𝑇
2 (Equation 1), the discrepancy between SEM/MDC and ICC should be attributed to the high 

between-subject variability in the measurement. OptiTrack produced similar results for back lateral flexion 

and trunk rotation where the ICC values were high whereas SEM and MDC values were low. However, for 

back flexion and extension, the ICC values were quite low (mean = 0.76 and 0.17, respectively) and SEM 

(10.53° and 14.79°) and MDC (29.18° and 41.00°) values were high. This could be attributed to marker 

instability during the movement. For OptiTrack, back flexion and extension were calculated using markers 

placed at participants’ posterior sacroiliac and C7. When performing the back flexion movement, the 

participants needed to bend forward with their arms pointing upward. This created tension in the tucked 

MoCap suit, resulting in marker movement at the posterior sacroiliac. When performing the back extension 

movement, the participants needed to lean backward. Given the standing position, this would result in 

partial marker occlusion that had led to inconsistent ROM angle estimation.  
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For neck movements (extension, flexion, lateral bending, and rotation), the ICC’s 95% CI indicates 

that BlazePose had almost perfect reliability for all movements, where the low bound of the 95% CI ranged 

from 0.81 to 0.94 and the SEM and MDC was at a single-digit level. For OptiTrack, all movements had had 

substantial or almost perfect reliability. The low bound of the ICC’s 95% CI ranged between 0.74 (neck 

flexion) and 0.91 (neck lateral bending). However, compared to BlazePose, OptiTrack’s measurement 

consistency remains relatively low, especially in terms of MDC, which even doubled the amount of 

BlazePose for neck flexion (12.90° for OptiTrack and 6.43° for BlazePose).  

For the upper extremity (shoulder adduction and abduction, shoulder extension and flexion, and 

elbow flexion), the test-retest reliability for the ROM measurements from BlazePose was generally high, 

ranging from substantial to almost perfect reliability. The SEM and MDC for these movements were 

generally at around 3° and 8°, respectively. Reliability measures derived for the OptiTrack measurements 

were comparable to that from BlazePose. Based on the lower bound of the ICC’s 95% confidence interval 

for BlazePose, one joint stood out – elbow flexion (lower bound = 0.67). During data collection, participants 

had to wear an all-black MoCap suit (Fig 1 middle). Using a single RGB video stream, BlazePose largely 

relies on the contrast in the image to perform pose estimation. During elbow flexion, there could be a 

significant amount of overlap between the forearm and upper arm. Combined with the suit that provides 

minimum contrast, the overlap presents a non-negligible challenge to the BlazePose algorithm in terms of 

segmenting and tracking different body parts. Therefore, it is possible that wearing common, everyday 

clothes (light-colored, form-fitting) that maximize contrast under natural lighting during the collection 

process could significantly improve the reliability of these movements. Nonetheless, comparing between 

BlazePose and OptiTrack, the latter again shows lower consistency with relatively high SEM and MDC 

values. 

Finally, for the lower extremity (hip flexion and extension (knee extended), hip flexion (knee 

flexed), and hip adduction and abduction), the ICC values for BlazePose were generally high except for hip 

flexion (knee flexed) (95% CI low bound = 0.76). This could again be attributed to the issue of occlusion 

combined with a lack of contrast in the clothing as in the case of elbow flexion. All the other measures were 
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comparable to those of other joints. Measurements derived using OptiTrack data produced comparable 

reliability measures as those from BlazePose.  

 In summary, the intra-rater reliability of BlazePose’s ROM calculation is relatively high and 

comparable to that of OptiTrack. Although the intra-class ICC values for some joints are relatively low, it 

could be an artifact of the experimental setup, such as the low contrast MoCap suits. These issues could be 

easily addressed in practice to further improve the reliability of the ROM measurement. More critically, the 

analysis also revealed that although OptiTrack could provide accurate and precise marker positions, the 

markers’ placement could be perturbed during the movement as the markers were attached to an elastic 

MoCap suit. Although alternative marker placement is possible to minimize the perturbation to the markers’ 

placement such as directly attaching the markers to the participant’s skin), these methods could be invasive 

and impractical for ROM evaluation.  

 

Inter-rater reliability 

Despite their respective high intra-class ICC, the mixed-effect ICC between BlazePose and 

OptiTrack varies notably from joint to joint. On the one hand, some movements have relatively higher ICC 

values, such as back lateral flexion (ICC = 0.92, CI = [0.89, 0.94]), trunk rotation (ICC = 0.92, CI = [0.89, 

0.94]), neck flexion (ICC = 0.92, CI = [0.88, 0.95]), shoulder adduction (ICC = 0.89, CI = [0.84, 0.92]), 

shoulder extension (ICC = 0.92, CI = [0.88, 0.94]), and hip abduction (ICC = 0.89, CI = [0.84, 0.92]) and 

adduction (ICC = 0.95, CI = [0.94, 0.97]). On the other hand, some movements have extremely low ICC 

values, such as shoulder flexion (ICC = 0.18, CI = [-0.14, 0.40]), elbow flexion (ICC = 0.53, CI = [0.35, 

0.66]), and hip flexion (knee flexed) (ICC = 0.64, CI = [0.50, 0.74]).  

Fig 3 presents the regression between the ROM angles from OptiTrack and BlazePose for each 

joint. The regression goodness of fit reflects the ICC results, where joints with high intra-class ICC also 

have relatively high 𝑟2, such as black flexion (𝑟2 = 0.77), trunk rotation (𝑟2 = 0.75), neck flexion (𝑟2 = 

0.79), shoulder abduction (𝑟2 = 0.75), and hip abduction (𝑟2 = 0.84), and vice versa for those with low 
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intra-class ICC, such as shoulder flexion (𝑟2 = 0.03), elbow flexion (𝑟2 = 0.29), and hip flexion (knee 

flexed) (𝑟2 = 0.23). The regression results revealed the reason behind the low inter-class correlation for 

some joints. Specifically, for shoulder flexion, elbow flexion, and hip flexion (knee flexed), the relationship 

between OptiTrack and BlazePose remains relatively flat, where BlazePose’s estimated ROM angle 

remained unchanged as the OptiTrack estimate varied for different participants. Fig 4 compares two 

movement angle samples of elbow flexion, where the derived ROM angle difference between the 

OptiTrack’s two samples was 33° whereas that between the BlazePose’s samples was only 14°. Noticeably, 

the figure shows that BlazePose’s movement angle remained relatively flat at the apex of the trajectory, 

whereas the OptiTrack’s trajectory is more parabolic. This observation suggests that BlazePose may not be 

as sensitive to the joint locations as the elbow reaches its maximum flexion position.  

 

Fig 4. Sample movement angles of elbow flexion. Sample movement angles as a function of time for 

elbow flexion from OptiTrack (top row) and BlazePose (bottom row).   
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Discussion 

The current study presented a webcam-based machine learning solution using BlazePose for range 

of motion (ROM) measurement and evaluated its intra- and inter-rater reliability as compared to a marker-

based motion capture system, OptiTrack. Unlike previous studies, this study examined a diverse set of joints 

using a full-body biomechanical model, including those of the spine, the neck, and the upper and lower 

extremities.  

Results revealed high intra-rater reliability for BlazePose and OptiTrack. For almost all 

movements, both measurement methods had substantial or almost perfect intra-rater reliability, with their 

corresponding measurement errors (SEM) below 5° and the minimal detectable change (MDC) at around 

10°. This indicates that the webcam-based solution could reliably differentiate changes in ROM from 

measurement errors when the amount of change is greater than 10°. From a practitioner’s perspective, this 

could be sufficient to evaluate the effect of an intervention, such as in the case of cervical joint [45]. Future 

studies could focus on systematically delineating BlazePose’s sensitivity to changes in ROM angles for 

each joint. Furthermore, the examination of movements with lower inter-rater reliability suggests that 

changing the participants’ orientation to the camera’s line of sight and the color scheme of their cloth could 

further improve BlazePose’s inter-rater reliability. Future studies could focus on developing the best 

practice when collecting ROM data using BlazePose.  

Despite their respective high test-retest reliability, the inter-rater reliability between BlazePose and 

OptiTrack is variable across different joints, with some joint movements having relatively low inter-rater 

reliability. Upon close examination of these movements, it became evident that the variability in inter-rater 

reliability could be attributed to BlazePose's reduced sensitivity to joint locations as the movement angle 

reaches its apex (Fig 4). This diminished sensitivity is likely due to the lack of contrast in the participants' 

clothing and other environmental factors, which hampers the algorithm's ability to accurately identify joint 

locations. Fig 5 shows an experimenter performing the elbow flexion movement captured at the starting 

and maximally flexed positions. At the starting position, BlazePose effectively identifies the appropriate 
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locations of the elbow and wrist joints. However, as the elbow joint reaches maximal flexion, the estimated 

locations of these joints deviate from their actual positions. Notably, BlazePose's forearm angle appears 

noticeably smaller than the actual angle in the figure. Such inaccuracies in joint location identification could 

result from various factors, including the lack of contrast in the MoCap suit and the crowded testing 

environment. To address these issues, future studies should systematically investigate the effectiveness of 

BlazePose in recovering joint locations and establish detailed guidelines for an optimal setup to enhance 

ROM evaluation. By doing so, the reliability and accuracy of BlazePose as a tool for joint movement 

assessment can be improved.  

 
Fig 5. Elbow flexion demo. An experimenter performing the elbow flexion movement at the starting 

(left) and maximally flexed (right) positions with an overlay of BlazePose’s estimated joint locations.  

From a practitioner’s perspective, the effectiveness of a ROM measurement method should be 

evaluated from a functional standpoint. In this context, the measurement method should not solely focus on 

achieving high anatomical accuracy and precision. Instead, the method’s intra-rater reliability and 

accessibility are also equally important. Specifically, ROM is commonly used to evaluate and quantify the 
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improvement in a patient’s mobility at a certain joint because of an intervention. Therefore, an ideal ROM 

measurement method should reliably evaluate the ROM across multiple sessions. Additionally, 

accessibility is also a critical consideration. The COVID-19 pandemic raises awareness of the importance 

of telehealth and its effectiveness in lowering the barrier to access for disadvantaged populations. In the 

context of physical therapy, ROM evaluation has always relied on a goniometer [4,5], which has long been 

known for its lack of reliability despite requiring extensive training and practice [11,12,46]. Merely relying 

on a goniometer for physical therapy would disproportionately affect patients of different racial and 

socioeconomic backgrounds.  

As an alternative, the webcam-based ROM evaluation tool presented in the current study could 

potentially be more accessible compared to a goniometer. Since BlazePose is lightweight and compatible 

with multiple platforms, it is possible to adapt the current data collection and processing pipeline to a 

browser-based web application and mobile applications on iOS and Android devices. With this 

implementation, users would simply need to appropriately orient themselves in front a webcam on a home 

computer to have their ROM measured, which would reduce the needs for in-person ROM evaluation using 

a goniometer. Importantly, to produce accurate and reliable measurements, this alternative solution may be 

more effective in estimating ROM angles for certain joints than others and it also requires appropriate 

camera placement. To the best of our knowledge, this study is the first one that applies an open-access pose-

estimation algorithm to measure the ROM of a diverse set of joints. Future studies could capitalize on the 

results of this study and focus on a subset of joints to investigate the measurement’s reliability and accuracy, 

as well as the ideal setup for a home environment.  

Limitations 

 As a proof of concept, the present study demonstrated the potential of adopting a digital solution 

for ROM evaluation via a single webcam. However, there are a few limitations to the current study that 

future works could improve upon.  

 First and foremost, while the goniometer is a widely used method for ROM evaluation, it was not 
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included in the reliability comparison of the current study. This decision was prompted by practical 

challenges, as the researchers did not have access to certified and experienced clinicians who could 

accurately and reliably perform goniometer-based ROM evaluations. The absence of a reliable researcher 

may have compromised the accuracy of the resulting measurements, which prevented the current study 

from incorporating the goniometer measure. For future studies, it is essential to collaborate with 

professional practitioners to conduct a comprehensive comparison of reliability analysis between the 

BlazePose and goniometer measurements. This approach will yield more robust and practical results for 

ROM evaluations. 

Second, given the exploratory nature of the present study, the ROM evaluation tool developed for 

this research demands technical proficiency, particularly in Python. As mentioned earlier, the MediaPipe 

framework and BlazePose offer a range of application programming interfaces (APIs), including JavaScript 

for web browsers, and iOS and Android for mobile applications. Leveraging these APIs presents an 

opportunity to create standalone ROM evaluation applications with intuitive graphical user interfaces 

(GUIs). Such user-friendly applications would not necessitate technical expertise, making them more 

accessible and usable for a wider audience. 

 Thirdly, the current study extensively covered a broad range of joint movements; however, 

movements involving distal joints, such as ankle inversion and eversion, ankle flexion and extension, wrist 

radial and ulnar, wrist extension and flexion, as well as forearm pronation and supination (as included in 

[35]), were excluded. This decision was attributed to BlazePose's lack of consistent hand and foot tracking. 

In the given setup, the hands and feet occupy a relatively smaller portion of the single image (as shown in 

Fig 5) making it more challenging to accurately track pose landmarks and leading to inconsistent angle 

measurements. While the MediaPipe framework offers alternative solutions for robust and accurate hand 

pose estimation (as demonstrated in [47]), the same level of accuracy for foot tracking is still lacking. For 

future studies, incorporating hand pose estimation could enable ROM evaluation of hand joints and help 

explore whether closer views of the feet would improve tracking consistency. By addressing these 

limitations, researchers can achieve a more comprehensive assessment of joint movements and enhance the 
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applicability of BlazePose in diverse scenarios.  

 Finally, it's important to note that the current study exclusively recruited healthy adults who could 

perform various ROM movements in a standing posture. However, in practical applications, this tool will 

be used by patients who may have physical frailty or neurodivergent conditions, making it challenging for 

them to achieve the standing position used in this study. To address this issue, future collaborations with 

professional practitioners are essential. Such collaborations would allow the development of a protocol that 

provides recommendations on the optimal recording position for the clinical population in which ROM 

evaluation is to be performed. By considering the needs of these individuals, the tool's usability and 

applicability can be extended to a broader range of patients. 

 

Conclusion 

In conclusion, the current study presents an alternative way of measuring joint range of motion 

(ROM) that merely relies on a webcam setup. Compared to an optical motion capture system, the webcam-

based machine learning approach demonstrated high intra- and inter-rater, as well as individual-level 

reliability in quantifying and assessing the ROM of some joints. Further developing this tool to improve its 

reliability for other joints and eventually adopting it for tele-implementation of physical therapy and 

rehabilitation could significantly reduce the barrier to access to healthcare.  
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Appendix 

Joint Acronym Lookup 

Acronym Joint Name 

Head   

LFHD/LFHD Left/Right Front of the Head 

LBHD/LBHD Left/Right Back of the Head 

LEAR/REAR Left/Right Ear 

NOSE Nose 

Torso  

LSHO/RSHO Left/Right Shoulder 

LASI/RASI Left/Right Anterior Sacroiliac 

LPSI/RPSI Left/Right Posterior Sacroiliac 

Upper Limbs  

LELB/RELB Left/Right Elbow 

LWRI/RWRI Left/Right Wrist 

LWRA/RWRA Left/Right Wrist A (Anterior) 

LWRB/RWRB Left/Right Wrist B (Posterior) 

Lower Limbs  

LHIP/RHIP Left/Right Hip 

LKNE/RKNE Left/Right Knee 
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