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Abstract
Meta-analysis has become commonplace within sport and exercise science for synthesising and

summarising empirical studies. However, most research in the field focuses upon mean effects; particularly
the effects of interventions to improve outcomes such as fitness or performance. It is thought that individual
responses to interventions vary considerably. Hence, interest has increased in exploring precision or
personalised exercise approaches. Not only is the mean often affected by interventions, but variances
may also be impacted. Exploration of variances in studies such as randomised controlled trials (RCTs)
can yield insight into interindividual heterogeneity in response to interventions and help determine
generalisability of effects. Yet, larger samples sizes than those used for typical mean effects are required
when probing variances. Thus, in a field with small samples such as sport and exercise science, exploration
of variance through a meta-analytic framework is appealing. Despite the value of embracing and exploring
variation alongside mean effects in sport and exercise science it is rarely applied to research synthesis
through meta-analysis.We introduce and evaluate different effect size calculations along with models for
meta-analysis of variation using relatable examples from resistance training RCTs.

1 Introduction
Although the quantitative synthesis of results across studies has existed since the 17th century (Plackett,
1958), the modern-day term “meta-analysis” was coined by Gene Glass (1976). Since that time, the use of
meta-analysis as a tool for the synthesis of research in sport and exercise science has increased considerably
(Hagger, 2022), with resistance training (RT) accounting for a considerable proportion of this growth (figure
1). Accordingly, throughout the paper we use RT studies as a hopefully familiar example for sport and
exercise science researchers. However, to begin we provide a conceptual overview of meta-analyses and effect
sizes as typically used within sport and exercise science.

There are two popular models1 used for meta-analysis: the fixed-effect model and the random-effects model
(Borenstein et al., 2010). The fixed effect model assumes that there is one true effect size2 that each study
included in the meta-analysis has estimated and that any differences in the estimates between individual
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1To clarify language here for those unfamiliar, the term and concept model is used commonly in statistics. A statistical
model essentially is specification of what we think the data generating process might be for a given situation. In the context of
meta-analyses the data are usually the individual effects that we have extracted from studies i.e., the results of each study. The
model, in mathematical formulae, is intended to approximate the processes that we assume led to the generation of the data.

2Effect size is an agnostic term used for a family of statistics which communicate the strength of a given ‘effect’ resulting
from research. This includes descriptive statistics ranging from mean raw values to correlation coeffients and everything in
between (Caldwell & Vigotsky, 2020) including, as we shall see, statistics describing variation.
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Figure 1: Trends in meta-analyses published in sport and exercise science since 1976.

studies are due to only sampling error. This essentially means that there is a single common effect which is
fixed across studies and each study takes samples of individuals from the population to estimate this effect.
We can express this model in the following formula:

θ̂i = θ + mi (1)

where θ̂i is the ith effect size (i = 1, 2, · · · , Ni; where Ni is the number of studies and thus effect sizes), θ is
the intercept or overall mean (i.e., the fixed-effect), and mi is the sampling error for each effect size normally
distributed with σ2

mi
. Studies with smaller standard errors of their effect estimates have smaller sampling

errors and so these higher precision estimates are given greater weight in the model. The weighting given to
each study is calculated as:

wi = 1
s2

i

(2)

Where si is the standard deviation for the effect estimate and thus s2
i is the variance. It is referred to as

inverse-variance weighting. Then, the overall weighted mean effect estimate from the model is then calculated
as:

θ̂ =
∑I

i=1 θ̂iwi∑I
i=1 wi

(3)

Contrastingly, the random effects model does not make the assumption that there is only one fixed-effect.
Instead it allows for the true effects that each study estimates to differ. Each study may share a common
underlying effect size but, due to differences between studies in factors such as population characteristics,
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the manner in which outcomes are operationalised, or subtle differences in intervention and context to name
a few, it is possible that the actual effect being estimated by each study differs. The assumption of the
random-effects model then is that the studies included estimate effects that come from a larger population
of effects determined by the inclusion criteria for studies included. So, the model assumes that the studies
included reflect a random sample of all possible permutations of study and the effects they estimate from this
population distribution of studies and effects. Hence, in the fixed-effect model there is one effect and it is
assumed to be fixed across studies, whereas in the random-effects model there are many and we examine an
assumed random sample of them. We can express this model in the following formula:

θ̂i = θi + τi + mi (4)

where θ̂i is the ith effect size (i = 1, 2, · · · , Ni; where Ni is the number of studies and thus effect sizes), θi is
the intercept or overall mean of the effects across each study, τi is the deviation from θi for the ith study
(i.e., the random-effects), and mi is the sampling error for each effect size normally distributed with σ2

mi
.

Essentially this model assumes that each individual study estimates an effect and there will be some sampling
error in estimating it. But, the effects each study estimates comes from an overall distribution of true effects
with a mean value (i.e., θi). The weighting in any model employing random effects such as this requires a
different approach as the variance of the distribution of the effect sizes the model assumes, known as τ2, must
also be estimated3. This essentially describes the heterogeneity between the effects included. Once this has
been estimated we can calculate a weight that is adjusted for the random effects for each effect as:

w∗
i = 1

s2
i + τ2 (5)

Then the average of the distribution of effects can be calculated as per equation (3) substituting wi for w∗
i .

Although historically fixed effects models were commonplace in the field of sport and exercise science (Hagger,
2006) nowadays the random effects model is more often employed (Hagger, 2022). This is likely due to the
fact that direct (i.e., exact) replication of studies is rare4 and instead studies often explore similar effects
across varying moderating factors such as those noted above.

As with many other fields (Mills et al., 2021; Nakagawa et al., 2015; Usui et al., 2021) likely the most common
aim in meta-analysis in sport and exercise science, and indeed primary empirical research too, is to estimate
the effect of an independent variable upon some dependent outcome variable. The dependent variable is
often the mean of a measurement and the independent variable is often a categorical grouping; for example,
the comparison of an intervention group(s) and a control group, the comparison of intervention groups
between one another, or comparison between non-manipulated categories such as biological sex. Indeed,
a recent umbrella review (Bernárdez-Vázquez et al., 2022) of meta-analyses in RT identified 14 studies
examining the manipulation of RT intervention variables (i.e., the comparison of one intervention to another
whereby a variable in the intervention was manipulated) on hypertrophy outcomes, all of which focused on
the comparison of mean changes between different intervention groups.

Often, due to the varying operationalisations used for broad outcome concepts5, an effect size is used which
is “standardised” across studies to allow for their synthesis. Most commonly, a magnitude based6 effect
size statistic (Caldwell & Vigotsky, 2020), the standardised mean difference (SMD), is used to compare
means between groups or conditions. This statistic is usually a version of Cohen’s d (Cohen, 1988), or its

3This estimation can be done using a variety of methods and is an area of ongoing investigation as to how different methods
perform. This is beyond the scope of this paper to discuss. We note however that the models we present all utilise Restricted
Maximum Likelihood estimation.

4Hence current efforts to conduct direct replications (see https://ssreplicationcentre.com/).
5For example, strength might be examined in different studies using different operationalisations including one repetition

maximum testing or maximum voluntary contractions. Or the same operationalisations may be employed but different exercises
such as the squat or bench press.

6Though notably not all meta-analyses use magnitude based effect sizes. Indeed some explicitly use what Caldwell and
Vigotsky (2020) term signal-to-noise effect sizes (e.g., Heidel et al. (2022)).
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bias-corrected7 metric referred to as Hedges’ g [Hedges & Olkin (2014); Borenstein et al. (2021); Nakagawa
& Cuthill (2007)]8. The SMD, and its sampling variance, s2

SMD are given by:

SMD = xE − xC

spooled
J (6)

J = 1 − 3
4(nC + nE) − 2) − 1 (7)

spooled =

√
(nC − 1)s2

C + (nE − 1)s2
E

nC + nE − 2 (8)

s2
SMD = nC + nE

nCnE
+ SMD2

2(nE + nC) (9)

where xC and xE are the sample means of the control group (C) and experimental (E) or intervention group
respectively, sC and sE are the standard deviations of the two groups, nC and nE are the sample sizes of the
two groups, and J is a bias correction for small sample sizes.

The natural logarithm of the ratio of two means (lnRR) is also another effect size statistic that can be used
(Curtis & Wang, 1998; Hedges et al., 1999; Lajeunesse, 2011, 2015). The lnRR, and its sampling variance,
s2

lnRR are given by:

lnRR = lnxE

xC
(10)

s2
lnRR = s2

C

nCx2
C

+ s4
C

2nCx2
Cx4

C

+ s2
E

nEx2
E

+ s4
E

2nEx2
Ex4

E

(11)

Due to its calculation the SMD is affected not only by the difference in means of the two groups, but also
by the standard deviations of both groups due to the standardisation of the effect size by spooled in the
denominator. In contrast, the lnRR is uninfluenced by the standard deviations in either groups (see equation
(10)), which only affects the sampling variance (see equation (11)). Despite this, the use of effect sizes like
the lnRR has been limited in previous meta-analyses in sport and exercise science (Deb et al., 2018; Nuzzo et
al., 2023a) and to our knowledge only a couple of meta-analyses of RT interventions has used this kind of
effect size (Swinton et al., 2022; Wolf et al., 2023).

Although researchers in sport and exercise science, among other fields, have focused on estimating the average
effects of interventions using randomised trial designs for both primary research and synthesis through meta-
analysis, responses to certain interventions may vary on a subgroup or even individual basis. The increased
interest in precision or personalised approaches to exercise prescription has resulted in a number of opinion
and methodological review articles discussing statistical approaches to understanding interindividual response
heterogeneity to exercise interventions (Atkinson et al., 2019; Atkinson & Batterham, 2015; Hecksteden et al.,
2015; Hopkins, 2015; Hrubeniuk et al., 2022; Kelley, 2022; Pickering & Kiely, 2019; Ross et al., 2019; Swinton
et al., 2018). However, despite the availability of approaches to compare variances between groups, in sport
and exercise science this is rarely explored in primary research (Bonafiglia et al., 2022). Moreover, although
there has been increased interest in recent years, few meta-analyses in sport and exercise include both

7For those unfamiliar with the terminology, an estimator for a statistic is unbiased if it produces parameter estimates that are
on average correct. Thus a bias corrected statistic is one which would be biased without the correction applied, but otherwise
has been shown to be unbiased.

8We will refer to both merely as the SMD throughout the manuscript for simplicity and note that throughout when reporting
a ‘SMD’ we are reporting the bias-corrected version. We also note that another magnitude based effect size, Glass’ ∆, is
commonly recommended as it is the simplest form of SMD though makes assumptions about the impact of the intervention
having no effect on the denominator (i.e., variance; Caldwell & Vigotsky (2020)).
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comparisons of means and variances or explicitly aim to investigate the latter (Bonafiglia et al., 2022; Esteves
et al., 2021; Fisher et al., 2022; Kelley et al., 2020, 2022; Steele et al., 2021). Examination of interindividual
heterogeneity in response to interventions presents considerable value to researchers and practitioners in sport
and exercise science; interventions with low interindividual variation are likely to be widely generalisable,
whilst an intervention with high interindividual variation is likely to have effects that are either subgroup or
individual specific. The former kind of intervention might be widely applicable across individuals, whilst the
latter kind of intervention requires specific research, typically with large samples (Hecksteden et al., 2015), to
tease out subgroup- or participant-by-intervention interactions to facilitate successful practical application.

Comparison of heterogeneity in responses, such as post-scores or change scores to interventions, are not the
only possible use of statistical methods for comparing variances. For example, in other fields such as ecology
there have been calls to shift focus of analysis onto the exploration of dispersion of traits between groups in
non-experimental or intervention designs (Nakagawa & Schielzeth, 2012). Some recent examples from sport
and exercise science, and RT in particular, include primary research exploring between-participant acute
response variation for the purposes of identifying methods9 to reduce RT stimulus heterogeneity, (Exner et
al., 2022) as well as a meta-analysis exploring between-participant heterogeneity of accuracy in predicting
proximity to task failure during RT (Halperin et al., 2022) and in the number of repetitions that can be
performed at different percentages of one repetition maximum (Nuzzo et al., 2023b).

Given the value of embracing and exploring variation alongside mean effects in sport and exercise science, yet
the lack of application in research synthesis by way of primary research or meta-analysis, we present and
discuss effect size approaches and models for meta-analysis of variation. Indeed, meta-analysis presents a
very valuable method for exploring variation in a field such as sport and exercise science due to the typically
small samples in primary studies. Such small samples have even lower statistical power to detect differences
in variation as compared to means (Yang et al., 2022).

Although ultimately we will recommend the thoughtful consideration of assumptions for certain approaches
regarding what effect size statistics and models to employ in examining variation through use of meta-analysis,
we provide examples throughout using all approaches described in order to aid the reader in understanding
their strengths and weaknesses. We hope this will make clear why we offer such recommendations in our
discussion and conclusion. As we have up to this point, we will also make an effort to both present the
mathematical formulations of the models described, as well as to provide an explanation of them in plain
English.

2 Effect size statistics for meta-analytic comparisons of variation
Until recent years there has been a dearth of effect size statistics available for the examination of variation
in a meta-analytic framework. However, several have been proposed that we now describe: the standard
deviation for individual responses (SDir; Hopkins (2015); Atkinson & Batterham (2015); Atkinson et al.
(2019)), the log ratio of standard deviations (lnV R; termed the “variability ratio”; Hedges & Nowell (1995)),
and the log ratio of coefficient of variation (lnCV R; termed the “coefficient of variation ratio”; Nakagawa
et al. (2015); Senior et al. (2020)). We present the independent groups versions due to use of randomised
controlled trials in our examples below, but note that dependent versions (i.e., for comparing related samples)
also exist for lnV R and lnCV R (Senior et al., 2020).

2.1 Standard deviation for individual responses (SDir)
In the context of precision or personalised approaches to exercise prescription the SDir has been proposed as
an approach to determine the extent to which individual responses manifest by comparison of variation between
two groups; control and intervention (Atkinson et al., 2019; Atkinson & Batterham, 2015; Hopkins, 2015).
The standard deviation of change scores (post-intervention scores minus pre-intervention scores) within the
intervention group reflects the gross combination of a number of sources of variation including: participant-by-
intervention interactions (i.e., actual individual responsiveness or ‘trainability’), within-participant variability

9Exploration of methodological approaches and their impact on heterogeneity have also been explored in preclinical research
(Usui et al., 2021).
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in intervention response (i.e., variability in response to the same intervention administered to the same
participant), and random error (i.e., from pre and post measurements; Hecksteden et al. (2015)). The
standard deviation of change scores from the control group (assuming it is a non-intervention control group
and not something like a ‘usual-care’ group) by contrast is assumed to only reflect random error10 (Hecksteden
et al., 2015). As such, the difference in these standard deviations can be used to determine the extent
to which additional variation has been introduced by the intervention and that might reflect individual
responses. Whilst the SDir has been proposed and used primarily in the context of individual response
variation to interventions, it should be noted that this kind of absolute comparison of variance between
groups or conditions is not limited to such applications.

The SDir, and its sampling variance, s2
SDir

are given by:

SDir =
√

s2
E − s2

C (12)

s2
SDir

= 2
(

s4
E

nE − 1 + s4
C

nC − 1

)
(13)

Thus, the SDir reflects a comparison of the absolute variance in change scores between control and intervention
groups. However, a potential concern with the SDir is its potential to violate assumptions of normality,
which is not the case for other effect size statistics such as lnV R and lnCV R.

2.2 Log ratio of standard deviations (lnV R)
A similar effect size statistic for the comparison of absolute variance between groups, and one that has
had wide applications in more than just intervention response variability within fields such as ecology and
evolution, is the lnV R (Hedges & Nowell, 1995; Nakagawa et al., 2015; Senior et al., 2020). An unbiased
estimator of the natural logarithm of a population standard deviation (lnσ), and its sampling variance, s2

lnσ

is given by:

lnσ̂ = lns + 1
2(n − 1) (14)

s2
lnσ̂ = 1

2(n − 1) (15)

where lnσ̂ is an estimate of lnσ, and it is assumed with sufficiently large sample size and value of σ that
lnσ is normally distributed with variance s2

lnσ. Given equations (14) and (15), the logarithm of the ratio of
standard deviations of two groups, such as a control and intervention, the lnV R, and its sampling variance,
s2

lnV R is given by:

lnV R = ln
(

sE

sC

)
+ 1

2(nE − 1) − 1
2(nC − 1) (16)

s2
lnV R = 1

2

(
nC

(nC − 1)2 + nE

(nE − 1)2

)
(17)

However, due to both SDir and lnV R being comparisons of absolute variance, they may find limited
applicability where the mean of one group is larger than the comparison group (e.g., when xE is larger than
xC). In this case, it is likely that the standard deviation will be larger in the group with the larger mean (e.g.,

10Though notably, in the case of health behaviour studies it may be the case that if someone volunteers for a study it could
conceivably motivate them to alter various habits even when they are assigned to a control group thus influencing change scores.
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sE is larger than sC). This mean-variance relationship is common for many variables and datasets11 and to
highlight this we provide examples below. They also assume constant measurement error over the range of
values for the mean, which can impact their utility for examining response variation (Tenan et al., 2020).

2.3 Log ratio of coefficient of variation (lnCV R)
The coefficient of variation is the ratio of the standard deviation to the mean; therefore, comparison of the
coefficient of variation between groups will identify whether standard deviations differ more, or less, than
would be predicted by their difference in means where a mean-variance relationship is present. In essence,
the coefficient of variation is a means of standardising the standard deviation against the mean such that
the relative variation in an effect is expressed. The natural logarithm of the ratio between the coefficients of
variation from two groups, the lnCV R is thus a more generally applicable effect size statistic for examining
variability between groups. Considering equations (10) and (16), the lnCV R is given by:

lnCV R = ln
(

CVE

CVC

)
+ 1

2(nE − 1) − 1
2(nC − 1) (18)

where CVE and CVC are sE/xE and sC/xC respectively. Senior et al. (2020) derived the sampling variance,
s2

lnCV R, as:

s2
lnCV R = s2

C

nCx2
C

+ s4
C

2n2
Cx4

C

+ nC

(nC − 1)2

+ s2
E

nEx2
E

+ s4
E

2n2
Ex4

E

+ nE

(nE − 1)2

(19)

3 Examples using resistance training studies
As noted, to facilitate understanding for those new to examination of variation, we provide primary examples
of the approaches presented using data from RT studies included in a recent meta-analysis published
in the Journal of Sport Sciences (Polito et al., 2021). Here we have used their list of included studies
and re-extracted data from 111 of these12. All analysis examples were performed in R (version 4.2.1,
“Funny-Looking Kid”, The R Foundation for Statistical Computing, 2022) using the metafor package
(Viechtbauer, 2010). The extracted dataset, analysis scripts, models, data summaries, and supplementary
materials are available on the Open Science Framework (https://osf.io/2h9ma/) or the GitHub repository
(https://github.com/jamessteeleii/Meta-Analysis-of-Variation-in-Resistance-Training.git).

Polito et al. (2021) conducted a systematic review and meta-analysis of randomised trials that included a
RT intervention group(s) and a non-training control comparison group. Their analysis focused upon the
SMD between the RT intervention group(s) and the control group from the studies included, with both
overall effect estimate and moderator analyses (i.e., meta-regressions13) performed. Given that Polito et al.
(2021) included only studies with a non-training control group, their study selection offers a unique context
to examine variation of interindividual responses specifically by comparing the variances in change scores
between the RT intervention groups(s) and control group. Table 1 shows the total sample size, along with the

11For one clear example, see figure 1A in Vigostky et al. (2020) who show that the mean and standard deviation for baseline
strength values typically scale with one another across most studies.

12The authors of the meta-analysis did not make their extracted data openly available, nor did they respond to our request
for the extracted data. Further, their original analysis included 119 studies however we were unable to extract data for our
analyses from 8 of these for a variety of reasons (e.g., only percentage change data was reported, no standard deviations for
control groups reported).

13Regression analyses are likely familiar to most readers where in the simplest form they try to predict the value of some
dependent variable from some independent variable(s). This can be extended to meta-analytic synthesis where the independent
variables reflect characteristics associated with the effects included. For example, they may reflect characteristics of the sample in
the study for which the effect was extracted such as age or sex, or they might reflect characteristics of the intervention received
such as the dose or frequency of exposure.
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Table 1: Sample sizes for resistance training and non training control groups for dataset.

Arm Sample Size
RT

All 2683
Minumum RT 5
Median RT 12
Maximum RT 59

CON
All CON 2349
Minumum CON 4
Median CON 10
Maximum CON 44

Note:
RT = resistance training
CON = non-training control

median and range by group, across the included studies. Indeed, this highlights the typically small samples
used in sport and exercise science, and thus low power to detect difference in both means and variances in in
individual studies (Yang et al., 2022), emphasising the value of meta-analysis to explore variation. Table 2
shows the study and participant characteristics.

3.1 Detecting the presence of interindividual response variation to resistance
training intervention with absolute variance statistics

First we conducted a traditional SMD and lnRR based effect size14 meta-analysis to explore the effects of RT
interventions compared to controls for strength and hypertrophy (i.e., muscle mass/size) outcomes15. Polito
et al. (2021) originally used a normal random-effects meta-analysis as described in the introduction. However,
the data we extracted were hierarchical in nature. Thus, as opposed to there being only the assumption
that studies are a random effect, due to there being multiple outcomes measured within each arm in the
studies (i.e., intervention group(s) and control group, within each study), and that in some studies there were
multiple interventions examined, there is the additional assumption that must be included that both the
intervention groups and effects also come from overarching distributions. Thus a multilevel mixed-effects
meta-analysis model (Van den Noortgate et al., 2013) with cluster-robust variance estimation (Hedges et al.,
2010) was used with random intercepts for study, arm16, and effect. This model then includes additional τ2

terms for each of the levels and assigns weights appropriately given this and the clustering of effects within
arms within studies. We can therefore describe the overall model as:

14It is worth noting that in the sport and exercise sciences, similarly to other fields that examine the effects of experimental
intervention, the most common study design for testing or estimating intervention effects is the randomised pretest-postest-control
design (i.e., an intervention and control, or other intervention, group randomly allocated and measured pre- and post-exposure).
We presented the SMD and lnRR effect sizes in equations (6) and (10) merely for simplicity in the introduction, but note that
extension of these for such 2x2 (i.e., condition x time) study designs have been presented in detail elsewhere (see: Gurevitch et
al., (2000); Morris et al., (2007); Morris (2008); Lajeunesse (2011, 2015)) and these are the effect sizes used in the meta-analyses
referred to here.

15We also explored for signs of small study bias, including publication bias favouring the finding of intervention effects, for the
SMDs given that the relative lack of awareness for variance based effect sizes in the field implies that they might have more
influence over such biases. There did not appear to be any obvious small study bias in the dataset (see https://osf.io/stqr3).

16We use the term arm to refer to an intervention group-control group contrast to accommodate studies including multiple
intervention groups. This is so as to not confuse the reader with the use of group to designate either the RT intervention group(s)
or control group separately. Thus, in the instances of models using effect sizes relating to comparisons between an intervention
group and control group (i.e., SMD, lnRR, SDir , lnV R, and lnCV R) we calculate comparisons between each intervention group
(i.e., arm) and the control group. Thus, where a study had for example two RT interventions and a control, two separate arms
would be coded (RT intervention 1 compared to control, and RT intervention 2 compared to control). Data was coded such that
study and arm had explicit nesting.
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Table 2: Summary of study and participant characteristics.

Characteristic Summary
TESTEX 7 (6, 8)
Age 33 (23, 66)
Proportion Male 100 (0, 100)
Weight 74 (68, 78)
BMI 26.62 (24.27, 27.34)
Training Status

Trained 9 (4.6%)
Untrained 187 (95%)

Sample Type
Clinical 5 (2.6%)
Healthy 191 (97%)

RT Intervention Only?
N 9 (4.6%)
Y 187 (95%)

Duration (weeks) 12 (8, 16)
Weekly Frequency 3.00 (2.00, 3.00)
Number of Exercises 6 (2, 8)
Sets per Exercise 3.00 (2.50, 3.00)
Number of Repetitions 10.0 (8.0, 11.2)
Load (%1RM) 74 (65, 80)
Task Failure?

N 29 (23%)
Y 95 (77%)

Note:
RT = resistance training;
Continuous variables are median (IQR);
Categorical variables are count (%);
Not all studies reported full descriptive data (see dataset; https://osf.io/kg2z4)
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θ̂ijk = (θ + τ(1)i + τ(2)j + τ(3)k) + mijk (20)

where θ̂ijk is the kth effect size, here the SMD or lnRR, from the jth arm (j = 1, 2, · · · , Nj ; where Nj is the
number of arms) in the ith study (i = 1, 2, · · · , Ni; where Ni is the number of studies), θ is the intercept or
overall mean of the effects, τi is the deviation from θ for the ith study, τj is the deviation for the jth arm, τk

is the deviation for the kth effect, and mijk is the sampling error for each effect size normally distributed
with σ2

θijk
. This model is referred to as ‘mixed’ effects because of the presence of both fixed (θ), and random

(τ(1)i, τ(2)j , τ(3)k) effects17. The main term in the model we are interested in is θ which is our estimate for the
overall weighted average effect (i.e., θ̂).

We then fit the same model for the SDir and lnV R effect sizes for change scores (i.e., post-intervention
minus pre-intervention scores) in order to explore how absolute variance in responses differed between RT
interventions and controls. A positive SMD or lnRR would indicate that RT interventions produced greater
improvements in outcomes compared to controls, whilst a positive SDir and lnV R would indicate that the
introduction of the RT intervention increased variation in responses (i.e., change scores) compared to controls
(i.e., suggests the presence of interindividual response variation).

The pattern of results from our models examining SMDs (figure 2) were similar to those reported by Polito et
al. (2021), albeit with slightly lower estimates for both outcome types; possibly due to our use of a multilevel
mixed-effects meta-analysis model that allowed for each individual effect size to be more appropriately
weighted (the relative amount of heterogeneity between effects for each level is presented as the I2 statistic).
As might be expected, in comparison to non-training controls the RT interventions produced increases in both
strength (SMD = 0.87 [95%CI: 0.77 to 0.97]; I2

study = 57.32%, I2
arm = 3%, I2

effect = 11.95%) and hypertrophy
outcomes (SMD = 0.34 [95%CI: 0.29 to 0.39]; I2

study = 54.62%, I2
arm = 0.62%, I2

effect = 2.79%). Confidence
intervals on the overall effects were precise for both outcomes though prediction intervals, indicating the
range over which we might expect future estimates of effects to fall based on this evidence, for SMD estimates
(see figure 2) were fairly wide and relative heterogeneity was fairly high mostly as a result of between-study
variance (i.e., effects were more similar within studies and arms than between them).

For the lnRR results we exponentiated them and converted to percentages to be more interpretable. These
were similar, with greater proportional increases in strength compared with hypertrophy (figure 3). Increases
were seen for both strength (expRR = 21.97 [95%CI: 19.43 to 24.57]; I2

study = 33.46%, I2
arm = 0%, I2

effect

= 0%) and hypertrophy (expRR = 5.39 [95%CI: 4.44 to 6.35]; I2
study = 12.97%, I2

arm = 0%, I2
effect =

0%). Confidence intervals were again precise for both outcomes, and whilst relative heterogeneity was lower
compared to SMD models prediction intervals were still quite wide.

In addition to the SMD and lnRR results, both the SDir (figure 4) and lnV R (figure 5) were also positive for
both strength (SDir = 0.91 [95%CI: 0.36 to 1.47]; I2

study = 53.85%, I2
arm = 0.04%, I2

effect = 0%; lnV R = 0.9
[95%CI: 0.77 to 1.02]; I2

study = 56.36%, I2
arm = 0.77%, I2

effect = 27.36%) and hypertrophy outcomes (SDir

= 0.42 [95%CI: 0.33 to 0.5]; I2
study = 0.01%, I2

arm = 40.15%, I2
effect = 39.73%; lnV R = 0.5 [95%CI: 0.4 to

0.6]; I2
study = 41.21%, I2

arm = 3.31%, I2
effect = 33.59%) indicating that exposure to the RT interventions

may have introduced additional variance over and above random error, potentially suggesting the presence of
interindividual response variation. Although, heterogeneity across the models and levels (study, arm, effect)
were again relatively large and quite varied.

This additional variance might support previous perspectives (Carpinelli, 2017) that the considerable variation
in responses to RT interventions typically observed are due to ‘true’ interindividual response variation over
and above the random error that occurs from pre- and post-intervention measurements (i.e., the variation is
detectable independent of the random error). However, as noted, both the SDir and lnV R assume constant
variance over values of the mean (i.e., that the variance is similar whether mean values are low or high).
As we have seen from the SMD and lnRR models, RT interventions increase mean scores. Thus, if there
is a mean-variance relationship in the data, an increase in the mean alone may be fully responsible for any

17Technically then the random effects model presented earlier is also a mixed effects model. It is traditionally referred to as
the random-effects model though.
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Overall Estimate = 0.87 [95% Confidence Interval: 0.77 to 0.97]
[95% Prediction Interval: −0.07 to 1.81]

I2 [Study = 57.3%; Arm = 3%; Effect = 12%]

−1 0 1 2 3 4 5 6
Standardised Mean Difference (Positive Values Favour Resistance Training)

Strength Outcomes
A

Overall Estimate = 0.34 [95% Confidence Interval: 0.29 to 0.39]
[95% Prediction Interval: −0.1 to 0.77]

I2 [Study = 54.6%; Arm = 0.6%; Effect = 2.8%]

−1 0 1 2 3 4 5 6
Standardised Mean Difference (Positive Values Favour Resistance Training)

Hypertrophy Outcomes
B

Figure 2: Caterpillar plots of SMD effect sizes for strength (A) and hypertrophy (B) outcomes.
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Overall Estimate = 22.14 [95% Confidence Interval: 19.72 to 24.61]
[95% Prediction Interval: 3.83 to 43.28]

I2 [Study = 33.5%; Arm = 0%; Effect = 0%]

0 50 100 150
Exponentiated Response Ratio (%; Positive Values Favour Resistance Training)

Strength Outcomes
A

Overall Estimate = 5.13 [95% Confidence Interval: 4.08 to 6.18]
[95% Prediction Interval: 0.51 to 10.51]

I2 [Study = 13%; Arm = 0%; Effect = 0%]

−20 0 20 40 60
Exponentiated Response Ratio (%; Positive Values Favour Resistance Training)

Hypertrophy Outcomes
B

Figure 3: Caterpillar plots of exponentiated RR effect sizes for strength (A) and hypertrophy (B) outcomes.
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apparent increase in variation. As such, we cannot rely solely on absolute comparisons of variance such
as the SDir and lnV R to determine whether interindividual response variation is actually present. The
lnCV R can be used to overcome this issue, and below we re-analyse this dataset using this effect size statistic.
First though, we present data demonstrating the ubiquity of the mean-variance relationship in typical RT
study outcome measures to emphasise the need to consider this assumption, and introduce a modelling
approach that can also be used to overcome some possible limitations with the lnCV R and provide flexibility
to accomodate wider applications.

Overall Estimate = 0.91 [95% Confidence Interval: 0.36 to 1.47]
[95% Prediction Interval: −0.54 to 2.37]

I2 [Study = 53.9%; Arm = 0%; Effect = 0%]

−1e+06 −5e+05 0e+00 5e+05 1e+06
Standard Deviation for Individual Responses (Positive Values Favour Resistance Training)

Strength Outcomes
A

Overall Estimate = 0.42 [95% Confidence Interval: 0.33 to 0.5]
[95% Prediction Interval: −0.04 to 0.87]

I2 [Study = 0%; Arm = 40.1%; Effect = 39.7%]

−4e+06 0e+00 4e+06
Standard Deviation for Individual Responses (Positive Values Favour Resistance Training)

Hypertrophy Outcomes
B

Figure 4: Caterpillar plots of SDir effect sizes for strength (A) and hypertrophy (B) outcomes.

3.2 Mean-variance relationships in muscular strength and hypertrophy
With meta-analytic models of variation we are not limited to solely exploring variation in responses to
interventions (e.g., Halperin et al. (2022); Nuzzo et al. (2023b)). We can explore the relationships between
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Overall Estimate = 0.9 [95% Confidence Interval: 0.77 to 1.02]
[95% Prediction Interval: −0.52 to 2.31]

I2 [Study = 56.4%; Arm = 0.8%; Effect = 27.4%]

−3 −2 −1 0 1 2 3 4 5 6
Log Variability Ratio (Positive Values Favour Resistance Training)

Strength Outcomes
A

Overall Estimate = 0.5 [95% Confidence Interval: 0.4 to 0.6]
[95% Prediction Interval: −0.68 to 1.67]

I2 [Study = 41.2%; Arm = 3.3%; Effect = 33.6%]

−3 −2 −1 0 1 2 3 4 5 6
Log Variability Ratio (Positive Values Favour Resistance Training)

Hypertrophy Outcomes
B

Figure 5: Caterpillar plots of lnV R effect sizes for strength (A) and hypertrophy (B) outcomes.
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variance in a number of outcomes and the impact of certain predictors on this in the form of meta-regression.
For example, as noted, one possible predictor of variance is the mean itself. As such, we can model variance
of each effect as the response itself with the mean of the effect as the predictor. The standard deviation is,
however, bounded at zero and so in many cases it may not conform to assumptions of normality which are
required for regression models (i.e., that the residuals, the difference between the estimated and actual data,
are normally distributed). Therefore, we instead can use lnσ̂, which is unbounded. In the following example
we explore the mean-variance relationship in the pre-intervention scores for outcomes in the data set from
Polito et al. (2021).
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Figure 6: Scatter plots of raw mean and standard deviation of pre-intervention scores for (A) strength outcomes and
(B) hypertrophy outcomes, and of the log mean and log standard deviation of pre-intervention scores for (C) strength
outcomes and (D) hypertrophy outcomes.

As can be seen in figure 6(A) and (C), there is considerable heteroskedasticity in the relationship between
the raw mean (x) and standard deviation (s). The variance in standard deviations increases with higher
mean values. This is similar to what is known as Taylor’s law in ecology, or the power law; in essence, an
empirically derived relationship stating that the variance is a power function of the mean in many biological
and physical systems (Taylor, 1961).

s2 = axb (21)

where a and b are some constants. When this relationship holds, under most circumstances the standard
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deviation is not proportional to the mean. However, when the mean and standard deviation are transformed
to the log scale this relationship becomes linear based upon the product and power logarithmic rules:

2lns = lna + blnx (22)

Figure 6(B) and (D) shows that the relationship between the mean and variance on the log scale better
meets the assumption of normality. Given these the observations we have for lnσ̂ and lnx come from multiple
outcomes within multiple arms within studies we can also estimate this relationship using a multilevel
mixed-effects meta-regression model similar to that applied above. In this case though we are including an
additional predictor variable, the lnx. For example, the following model specifies lnx as a fixed effect with
random intercepts for study, arm, and effect:

lnσ̂ijk = (β0 + τ(1)i + τ(2)j + τ(3)k) + β1lnxijk + ϵijk + mijk (23)

where lnσ̂ijk is the kth effect size, as in equation (14), from the jth arm (j = 1, 2, · · · , Nj ; where Nj is the
number of arms18) in the ith study (i = 1, 2, · · · , Ni; where Ni is the number of studies), lnxijk is the mean
estimate for each effect size, β0 is the intercept or overall mean of the effects, β1 is the slope or regression
coefficient for lnx, τi is the deviation from β0 for the ith study, τj is the deviation for the jth arm, τk is the
deviation for the kth effect, ϵijk is the residual for each effect size which is normally distributed with σ2

ϵ , and
mijk is the sampling error for each effect size normally distributed with σ2

lnσ̂ijk
.

These kinds of models are highly flexible. Additional predictor terms could be added; for example, we could
model a categorical variable for the outcome type and include β2Outcome in the model with Outcome as a
dummy coded variable for the outcome type (i.e., hypertrophy = 0, and strength = 1), where β2 is the slope
or regression coefficient for Outcome (most intuitively thought of as the difference between the two outcome
types)19.

Figure 7 shows this model fit visually where the size of the points reflects their weight in the model. Both
strength and hypertrophy outcomes show strong linearity between the mean and standard deviation on the
log scale, though there is a small difference in intercepts between the two outcome types suggesting a slight
but systematically greater degree of variance in strength measures compared to hypertrophy for a given mean
score.

The presence of Taylor’s law type relationships should be examined in datasets prior to deciding on which
variance effect size statistic should be employed. Returning to the context of interindividual response variation
to interventions, the presence of a mean-variance relationship in the data would imply that we cannot rely on
absolute comparisons of variance (i.e., SDir or lnV R) to determine whether interindividual response variation
is actually present. So we should also explore this assumption for the change-scores in the RT and control
groups and determining the appropriate effect sizes to explore.

18In contrast to the models presented examining effect sizes relating to comparisons between and intervention group and
control group, in the models examining lnσijk and lnxijk as a predictor the term arm refers to both the intervention groups(s)
and control group. Thus, where a study had for example two RT interventions and a control, three separate arms would be
coded (RT intervention 1, RT intervention 2, and control). Data were again coded such that study and arm had explicit nesting.

19We do not have to limit ourselves to only fixed effect predictor terms as we have here. Indeed, for mixed effect models
generally some argue that models should use a maximal random effects structure including both random intercepts and slopes
(i.e., that the effect of the predictor term can vary within different levels of the model and is also assumed to come from an
overarching distribution of slopes), and their correlations, to enhance generalisability of inferences (Barr et al., 2013). We could
model a categorical variable for the outcome type and using random effects include (β2 + φi)Outcome or (β2 + φi + φj)Outcome
in the model with Outcome as a dummy coded variable for the outcome type (i.e., hypertrophy = 0, and strength = 1), where
β2 is the overall average slope or regression coefficient for Outcome, and φi is the deviation (random slope) from β2 for the
ith study and φj is the deviation for the jth arm. Indeed, we fit additional models using lnσ̂ with lnx and Outcome as a
predictor with (1) random intercepts for study and arm only, (2) the inclusion of correlated random slopes for lnx by study,
and (3) the inclusion of correlated random slopes for lnx by study and arm. The comparison of these models is included in the
supplementary materials (https://osf.io/4xrcg). Note, the addition of both random slopes for study, and for arm, improved
model fit significantly, though we limit presentation in the main text to the simpler model.
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Figure 7: Meta-analytic scatter plot of the log mean and log standard deviation of pre-intervention scores.

3.3 Reanalysis of interindividual response variation using lnCV R

As can be seen in figures 8(A) and (C) there is also a mean-variance relationship in the change score data
about zero whereby an increase in the mean alone (i.e., greater mean change score in the intervention
compared to the control) may be fully responsible for any apparent increase in variation. Further, when
transforming change scores to absolute changes (i.e., converting all to positive numeric scores) we see that in
figures 8(B) and (D) that the log transformation exhibits similar linearity as seen with the pre-intervention
scores above. As such, in this case, we cannot rely solely on absolute comparisons of variance such as the
SDir and lnV R to determine whether interindividual response variation is actually present.

The lnCV R can be used to overcome this issue though. Fitting the same multilevel mixed-effects meta-analysis
model with cluster-robust variance estimation and random intercepts for study, arm, and effect as before (see
equation (20)) using the lnCV R as the effect size statistic leads to different conclusions compared to absolute
variance comparisons using SDir or lnV R. The introduction of an RT intervention actually reduces the
relative variation seen in change scores for strength (lnCV R = -0.61 [95%CI: -0.76 to -0.47]; I2

study = 23.18%,
I2

arm = 0%, I2
effect = 0%) and hypertrophy (lnCV R = -0.45 [95%CI: -0.61 to -0.29]; I2

study = 10.03%, I2
arm

= 0%, I2
effect = 0%) and further there is lower relative heterogeneity between studies in the effect estimates

(figure 9).

There is, however, a potential limitation for the lnCV R also that may need to be considered. Firstly, it
is limited to the use of ratio scale data (which is not the case for the lnσ̂ or lnV R); hence the need to
transform the change scores to be positively signed in this specific case. Secondly, whilst the lnCV R is
useful in situations where there is a mean-variance relationship, the use of the CV in the effect size statistic
assumes proportionality between standard deviation and mean. Where we see the kind of heteroskedasticity
in the relationship between mean and standard deviation as we do for the change scores here (figure 8) an
alternative yet comparable approach might be desirable. Lastly, this statistic is limited to examination of
pairwise comparisons of variance. In this example this approach poses no issue as we are comparing RT
intervention group(s) to a control group. But, as seen with the pre-score example above, alternative modelling
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Figure 8: Scatter plots of raw mean and standard deviation of change scores for (A) strength outcomes and (B)
hypertrophy outcomes, and of the log mean and log standard deviation of change scores for (C) strength outcomes
and (D) hypertrophy outcomes.
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Overall Estimate = −0.61 [95% Confidence Interval: −0.76 to −0.47]
[95% Prediction Interval: −1.61 to 0.38]

*I*<sup>2</sup> [Study = 23.2%; Arm = 0%; Effect = 0%]

−100 −50 0 50 100
Log Coefficient of Variability Ratio (Positive Values Favour Resistance Training)

Strength Outcomes
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Overall Estimate = −0.45 [95% Confidence Interval: −0.61 to −0.29]
[95% Prediction Interval: −1.24 to 0.34]

*I*<sup>2</sup> [Study = 10%; Arm = 0%; Effect = 0%]

−200 −100 0 100 200
Log Coefficient of Variability Ratio (Positive Values Favour Resistance Training)

Hypertrophy Outcomes
B

Figure 9: Caterpillar plots of lnCV R effect sizes for strength (A) and hypertrophy (B) outcomes.
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approaches provide greater flexibility and can still offer estimation of a comparable effect of interest to the
lnCV R one just applied.

3.4 Meta-regression of lnσ̂ with lnx and Group

Instead, we can use a version of the meta-regression model described above (see equation (23) and the
paragraph which followed it) to compare the variability in change scores between intervention and control
groups using lnσ̂ and lnx. In this case, the categorical variable for the outcome type used previously is instead
swapped for the group type and the new model term included becomes β2Group with Group as a dummy
coded variable for the group (i.e., non-training control = 0, and RT intervention = 1), where β2 is the slope
or regression coefficient for Group. This model with just Group as a predictor is comparable to the lnCV R
model in the previous section where the β2Group is the slope or regression coefficient for Group and reflects
the difference i.e., variance in the RT groups vs the control groups. This reflects the pairwise nature of the
lnCV R. Given the heteroskedasticity in the change scores means and standard deviations (see figure 8), we
fit this model and other extensions20 to the dataset (see figure 10 for the best fitting model plots).
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Figure 10: Meta-analytic scatter plot of the log mean and log standard deviation of change scores.

Despite the models comparability in terms of what they are trying to estimate (i.e., the difference in variance
in change scores between the RT and CON groups) we arrive at substantively different conclusions compared
to the lnCV R model and dependent upon the exact specification (see footnote 20) of the meta-regression
model. Table 3 shows the different estimates from each model for this difference. Where the lnCV R suggested
that the introduction of an RT intervention actually reduced variance in change scores (i.e., the estimate
was negative) we see the opposite conclusion (i.e., the estimate is positive) for all multilevel meta-regression
models of strength, and for hypertrophy this appears to be dependent on whether the coefficients (i.e., slopes)
for the relationship between lnσ̂ and lnx are allowed to vary between studies and arms.

It is worth explaining why this might be the case to aid readers in considering the assumptions that different
models make. The lnV R and lnCV R models can be thought of as similar in that they both make fixed
assumptions about the relationship between mean and variance; In the lnV R it is assumed to be zero, and

20Note, as with the models examining Outcome upon baseline scores, we similarly explored lnσ̂ with lnx and Group as a
predictor with (1) random intercepts for study and arm only, (2) the inclusion of random slopes for lnx by study, and (3) the
inclusion of random slopes for lnx by study and arm. The comparison of these models is included in the supplementary materials
(strength - https://osf.io/n4wgk; hypertrophy - https://osf.io/hf8dx). In this case, for strength the addition of random slopes for
study, but not for arm, improved model fit significantly, and for hypertrophy intercept only model fit best.

20

https://osf.io/n4wgk
https://osf.io/hf8dx


Table 3: Comparison of estimates from model using lnCV R and multilevel meta-regression models of lnσ̂
and lnx with group (RT vs CON) as a predictor

Outcome Model Estimate Lower 95% CI Upper 95% CI
Strength

lnCVR -0.61 -0.76 -0.47
MLMR: Random Intercept 0.29 0.09 0.49
MLMR: + Random Slope (Study) 0.24 0.04 0.43
MLMR: + Random Slope (Study & Arm) 0.24 0.04 0.43

Hypertrophy
lnCVR -0.45 -0.61 -0.29
MLMR: Random Intercept 0.18 0.01 0.34
MLMR: + Random Slope (Study) -0.34 -0.64 -0.03
MLMR: + Random Slope (Study & Arm) -0.34 -0.65 -0.04

Note:
CI = confidence interval
MLMR = multilevel meta-regression

in the lnCV R it is assumed to be proportional i.e., one. In both however this is a strong assumption. The
multilevel meta-regressions on the other hand actually estimate this relationship (i.e., the value of β1, the
slope or regression coefficient for lnx) and in the random slope models this is also estimated allowing it to vary
between studies and arms (i.e., in some studies there may be a more or less strong relationship compared to
others). Evidently, the assumptions that are made about the data-generating processes can impact upon the
modelling strategy chosen21. Mean-variance relationships are important to consider when exploring variance
effects, but it is also important to consider whether or not this relationship is assumed to be some fixed
proportional value (i.e., as the lnCV R does) or whether or not this should be estimated from the data and
whether it might also vary across studies and arms (i.e., as the multilevel meta-regression model allows). It is
not necessarily clear which model should be preferred here, but thought should be given to the assumptions
each makes and the fit of each model to the data.

3.5 Moderators of variance effects
Hopefully it is clear from the meta-regression models here, where we have included both fixed and random
predictors as both categorical (i.e., Outcome, or Group) and continuous (i.e., lnx) variables, that there
is considerable flexibility in the inclusion of predictors when exploring variance through a meta-analytic
framework. Of course, the pairwise models described can also be extended to meta-regressions to explore
not only how study, arm, or effect level characteristics moderate effect size estimates when considering
effect sizes such as SMDs or lnRR, but also when considering the variance-based effect size statistics and
models employed in this article (i.e., SDir, lnV R, lnCV R, and lnσ̂)22. But these are limited to the pairwise
comparisons of a categorical variable as the effect size. The meta-regression models presented here for lnσ̂
allow for comparisons to be extended beyond two categories including any number of arbitrary predictors,
fixed and random and assumptions about their correlations.

21It should also be noted that these models all assume that the x is estimated without error which is clearly not the case.
Given that for most effects that might be included in such models we can determine the sampling variance for x one approach to
address this might be to employ models that incorporate the variance on this predictor (i.e., measurement error or errors in
variables models). This is beyond the scope of this paper to discuss.

22See supplementary materials (https://osf.io/e6vpr) for examples from model estimates for both SMD and lnCV R, (used for
simplicity of presenting moderator analysis results) across a range of categorical and continuous predictors for both strength and
hypertrophy outcomes. There were no obvious moderators of lnCV R in particular.
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4 Discussion
Given the apparent lack of awareness of the utility of meta-analytic frameworks for exploring variance, and
the potential value such analyses can offer for the sport and exercise sciences, we have presented some existing
effect size statistics and models pertinent to this topic that hopefully will encourage and support researchers
in the field to embrace more than just the mean when engaging in quantitative evidence synthesis. Indeed, for
a field such as sport and exercise science where sample sizes are typically small, meta-analysis becomes even
more valuable as such small samples in primary studies have even lower statistical power to detect differences
in variation as compared to means23 (Yang et al., 2022).

It is of particular interest to note the different conclusions drawn here dependent on the approach taken
to determine from non-training control and RT intervention data whether or not there is detectable inter-
individual response variation present. We deliberately presented these varying approaches to highlight their
assumptions and to aid in readers understanding of their applications. Given the different conclusions
drawn from the examples provided, we recommend that researchers consider whether assumptions of simpler
approaches are met, or indeed seem reasonable, before their application in specific situations. Where for
example there is not an obvious mean-variance relationship it may be appropriate to utilise the SDir or
lnV R. However, when this is present in the data then the lnCV R or meta-regression of lnσ̂ upon lnx may be
more appropriate, though assumptions regarding whether this relationship is proportional and fixed should
also be considered. The structure of the data also impacts the specific modelling approach to be employed
and whether or not assumptions that the mean-variance relationship varies within study or arm levels can be
incorporated. Further, depending on the exact research questions it is worth considering balancing model
complexity with its ability to provide an answer. If a simple pairwise comparison across a categorical variable
is of interest then this can be explored with comparable models using the lnCV R or meta-regression of
lnσ̂ upon lnx. But where more complicated predictors, including categories extending beyond just two, are
of interest then the flexibility of the latter is desirable to explore. Lastly, given the possible sensitivity of
substantive conclusions to the exact model specifications used it is worth considering the use of so called
multiverse approaches to exploring questions such as those pertaining to variation with meta-analysis. With
multiverse approaches, instead of having to choose one modelling approach, researchers use the many possible
approaches (such as presented here) and explore how sensitive their substantive conclusions might be to
nuances of model specifications and assumptions (Olsson-Collentine et al., 2023; Steegen et al., 2016).

Whether or not there is clear evidence for average intervention effects, research aimed at exploring variation
is important. Even in the absence of an average intervention effect it may be that a large enough variance
could imply that the intervention is at least beneficial to some (Usui et al., 2021). Such results might lead
researchers to consider that further research exploring subgroup- or participant-by-intervention interactions is
required to maximise successful practical application of such an intervention to avoid negative effects for some,
and ensure positive effects for others. Interventions, which induce both meaningful average treatment effects
and also show little evidence suggestive of interindividual variation, are likely to be widely generalisable and
so from a practical perspective might offer considerable value in that we can have high expectations that
everyone receiving them will likely improve (Usui et al., 2021); that is to say we can assume a constant effect
and that the average intervention effect is indicative of the individual intervention effect (Cortés Martínez,
2021). Interventions such as these are valuable for the simplification of guidelines and recommendations. This
also potentially represents another interesting area of future study regarding variation opposite to the usual
search for individual variation; specifically, how to produce interventions that actually reduce variance in an
outcome. In other contexts such as sporting performance, interventions to not only positively affect mean
performance but also those that reduce variation in performance would be highly desirable.

The examples presented herein used data from RT studies included in a recent meta-analysis published in the
Journal of Sport Sciences (Polito et al., 2021), which hopefully makes them more relatable for researchers in
sport and exercise sciences. Given the varied results, this dataset does not necessarily provide clear answers
as to the question of whether true interindividual response variation is present and so this remains an open
area of research. However, the examples provided highlight the importance of considering carefully the

23Indeed, it can be seen from figures 4, 5, and 9 that many of the individual study effect estimates have very large sampling
errors.
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assumptions inherent in the modelling approaches chosen to explore such a substantive topic. We hope they
also prompt researchers to further explore variation.

5 Conclusion
Embracing variability and focusing on more than merely the mean differences between groups or conditions,
such as intervention and control comparisons, has the potential to inform experimental design and lead to
changes in both the approach and direction of follow-up studies. Whether there is evidence of meaningful
average intervention effects or not, where considerable variance effects are present it suggests that a meaningful
line of research would be to aim at identifying subgroup- or participant-by-intervention interactions using
appropriate study designs (Hecksteden et al., 2015). Where variance effects are limited this instead suggests
that translational work towards generalisable implementation might be the most meaningful line of future
research. Finally, there may be cases where it is in fact desirable to identify interventions that actually reduce
variance; for example, improvements in methodological approaches to enhance research (Usui et al., 2021),
or interventions to reduce variation in sport performances. Thus, researchers in sport and exercise science
should consider exploring variance more systematically, and indeed utilise the meta-analytic framework to
support this. This could include the re-analysis of past meta-analyses as we have done here, and indeed
researchers conducting future meta-analyses in the field of sport and exercise science should consider the
value of concomitantly exploring means and variances utilising the established approaches (Atkinson et al.,
2019; Atkinson & Batterham, 2015; Hopkins, 2015; Mills et al., 2021; Nakagawa et al., 2015; Usui et al.,
2021) presented here and echoing the efforts of other recent work (Bonafiglia et al., 2022; Esteves et al., 2021;
Fisher et al., 2022; Kelley et al., 2020, 2022; Steele et al., 2021). Researchers should be aware though that
the meta-analytic modelling of variance, or indeed any effect size statistics, requires careful consideration of
the research question and assumptions that different models make. Substantive conclusions may be sensitive
to subtle differences in the approaches we have presented.
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