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ABSTRACT 
Biomechanical analysis is valuable for injury risk and performance assessment in sports, but 
the application is limited due to restrictions in costs, set-up time and accuracy of available 
motion capture methods. Therefore, the present proof-of-concept study evaluated the 
feasibility and validity of a more suitable method, based on a single camera combined with a 
deep-learning algorithm, by comparing obtained biomechanical parameters with those 
obtained by the state-of-the-art optoelectronic measurement system (OMS) and the marker-
less Kinect during upper-body strength exercises. Results from five athletes revealed strong to 
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excellent correlations for most parameters and root-mean-square deviations of 4-8 degrees 
for angles and 0.9-1.4Nm for moments, but insufficient ICCs compared to the OMS, and partly 
better performance than the Kinect. In conclusion, the present study showed that the single 
camera deep learning-based method is feasible for biomechanical analysis of strength 
exercises and provides limited evidence that some parameters can be estimated with 
reasonable accuracy.   However, the accuracy of peak angle and moment estimations should 
be improved before this method can be applied for injury prevention, i.e. by training the deep-
learning model on a larger variety of subject anthropometries. Furthermore, future research 
should investigate the validity for larger sample sizes and multiple exercises. 
 

INTRODUCTION 
Biomechanical analysis is an essential part of understanding and optimizing human 

motion and is often employed in the fields of sports and rehabilitation. In sports, 
biomechanical analysis can be used for performance improvement and to study and identify 
sport-related risk factors for musculoskeletal injuries [1]. The current state-of-the-art method 
to apply biomechanics in sports is the use of an optoelectronic measurement system (OMS) in 
combination with a biomechanical model imposing constraint equations to the marker 
trajectories [2]. An OMS consists of multiple cameras that detect light from either active or 
passive markers placed on an athlete’s skin, usually at or related to predetermined bony 
landmarks, to determine the three-dimensional (3D) location of those markers by time-of-flight 
triangulation [2]. However, the OMS has several limitations. Firstly, the markers on the skin can 
move with respect to the underlying bony landmarks, causing soft-tissue artifacts [3]. Secondly, 
measurements are labor intensive and time consuming [4]. Thirdly, measurements are 
restricted to a controlled laboratory setting [5]. These circumstances are not ideal to capture 
an athlete’s natural sports movement and only allow for analysis of a limited number of 
athletes.  

A potential solution to make biomechanical analysis applicable in the sports practice 
and on a larger scale is by using markerless pose estimation, as markerless measurements are 
advantageous in terms of costs, set-up time and not restricted to a laboratory setting. One 
example of a markerless pose estimation method is the Microsoft Kinect, which uses an 
infrared depth-sensing camera and a random forest algorithm to estimate 3D joint positions of 
subjects [2]. Although much more feasible than the OMS, observed low accuracies of the 
Kinect’s estimations in situations of body segment occlusions or axial rotations and the low 
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robustness of the Kinect against environmental light conditions, limit the application of this 
system for biomechanical analysis in a sports environment [6-8].   

Interestingly, the field of pose estimation is developing rapidly and more sophisticated 
algorithms than used by the Microsoft Kinect may be employed to improve motion capture 
accuracies. Specifically, convolutional neural networks (CNNs) may be well-suited for this task 
because their multi-layer structure allows for incorporation of a lot of data to optimize 
estimations while remaining efficient [9, 10]. For instance, temporal information of previous 
joint position solutions, and information of other joint positions can all be used in the 
estimation, whereas the random forest approach makes estimates separately for each joint 
and based on single images [10]. CNNs could therefore potentially be more accurate and more 
robust in situations like temporary segment occlusion. Remarkably, some of these networks 
can even estimate 3D joint positions from 2D videos, which means that only a single standard 
camera is required. Standard cameras are widely available and could make measurements in a 
sports environment even more feasible. Therewith, a combination of a standard camera with a 
CNN could potentially be well-suited to capture motions and apply biomechanical analysis in a 
sports environment.  

However, as stated by [11], the transfer of deep-learning based pose estimation 
methods towards application in biomechanics has been slow, potentially due to the 
requirement of advanced coding skills and in-depth computer science knowledge. As such, the 
accuracy of biomechanical parameters obtained by this type of methods are largely unknown. 
However, well-documented open-source Github repositories including pretrained CNN models 
are available [9] and can be applied by biomechanical researchers and clinicians without 
extensive computer science skills. Therefore, the objective of the present study is to assess the 
feasibility of single camera deep learning-based biomechanical analysis and provide some first 
clues regarding the validity by comparing biomechanical parameters with the the Kinect and an 
optoelectronic measurement system (state-of-the-art). This study aimed to assess 
biomechanical parameters within a sports environment. Strength training exercises were 
chosen for evaluation of the camera-based method. Strength training is one of the fastest-
growing sport domains [12], but deals with a high amount of musculoskeletal injuries [13], 
from which the causes remain largely unknown. This lack of knowledge warrants the search for 
valid, reliable and feasible methods that can assess biomechanical load in a strength training 
environment, i.e. in the gym or at home. It was hypothesized that the single camera deep 
learning-based method is a feasible and valid way to estimate biomechanical parameters 
during strength exercises. 
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METHOD 

Participants 

Five healthy male participants (mean age 16.8 SD 1.3 years, body mass 80.4 SD 4.2 kg, 
body height 1.84 SD 0.07 m) with experience in strength training were included in this study. 
The study was approved by the local ethics committee of the Faculty of Behavioural and 
Movement Sciences, Vrije Universiteit Amsterdam (VCWE-2019-033). All participants provided 
written informed consent. 
 

Procedure 

During preparation, participants were equipped with a set of 12 reflective markers on 
the thorax and dominant arm (Table 1). Subsequently, participants performed a 10-minute 
warm-up protocol. During the actual measurements, participants performed two upper 
extremity dumbbell exercises: the lateral fly and the biceps curl (Fig. 1). These exercises were 
chosen in order to evaluate the ability of the motion capture systems to capture upper 
extremity movements in varying planes. The lateral fly movement occurs predominantly in the 
frontal plane, whereas the biceps curl movement occurs mainly in the sagittal plane. In 
addition, axial rotation of the upper arm can be expected during the lateral fly, and segment 
occlusion of the upper arm can be expected during the biceps curl, allowing for evaluation of 
the motion capture systems during these challenging conditions. In total, each exercise was 
performed for 3 sets of 5 repetitions, at a self-selected pace. In-between each set participants 
rested for 30 seconds. The mass of each dumbbell was 5 kg for the biceps curl and 3 kg for the 
lateral fly.  

 
Table 1. Anatomical locations of segment markers/coordinates used per system 

Segment Marker locations per system 

OMS Kinect Camera 
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Torso Incisura Jugularis Mid spine Mid spine 

Processus Xiphoideus Mid thorax Mid thorax 

Cervical Vertebrae 7     

Thoracic Vertebrae 10     

Upper arm (dominant 
side) 

Acromion Shoulder joint 
center 

Shoulder joint 
center 

Epicondylus Medialis     

Epicondylus Lateralis     

Upper arm (tracking marker)     

Lower arm (dominant 
side) 

Head of the Ulna Elbow joint center Elbow joint center 

Styloid Processes of Radius     

Lower arm (tracking marker)     

Hand (dominant side) Interphalangealis proximal III Wrist joint center Wrist joint center 
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Figure 1. Pictures of the start (left) and mid (right) pose of one repetition of the biceps curl (BC) 
(top) and lateral fly (LF) (bottom) exercise 

Hardware and software 

The performed strength exercises were simultaneously measured by three motion 
capture systems: an opto-electrical measurement system (OMS; markerbased), a Kinect depth 
sensing camera (markerless) and a standard camera built-in in the Kinect (markerless). The 
OMS (Vicon Motion Systems, Oxford, United Kingdom) consisted of eight infrared cameras that 
registered the 3D coordinates of the reflective markers with a sample frequency of 400hz. 
Coordinates were expressed in the laboratory’s coordinate system and recordings were 
processed with the Vicon Nexus software (Vicon Motion Systems, Oxford, United Kingdom). 
The Kinect (v2, Microsoft Corporation, Redmond, WA, USA) was placed 1.5 meters in front of 
the subject at a height of 1.5 meters and a downwards angle of 15 degrees. The combination 
of an infrared sensor and standard camera within the Kinect generated 3D depth videos. From 
these depth videos, a built-in random forest algorithm in the Kinect software development kit 
was employed to extract 19 joint coordinates [14], from which five were used in the present 
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study (Table 1). These coordinates were expressed in the Kinect’s coordinate system. 
Additionally, the standard camera in the Kinect captured normal 2D videos. From these videos, 
a pretrained 3D pose estimation model, specified in Pavllo, Feichtenhofer [9], was used to 
generate 3D coordinates. In their approach, first a pretrained convolutional neural network 
(CNN) is used to detect a person in an image, and detect their 2D joint center locations, which 
are subsequently lifted to 3D using a newly developed temporal dilated convolutional model. 
The second step additionally allows for modeling of temporal relations between individual 
poses. This pretrained model was available from an open-source GitHub project [15], which 
also included a clear step-by-step documentation on how to use the model on 2D videos [16] . 
Therewith, this method can also be employed by researchers or clinicians without extensive 
deep-learning knowledge. The model has a fully convolutional architecture that takes a 
sequence of 2D poses obtained from videos as input and estimates the 3D positions of joint 
centers with respect to the root joint (pelvis). A semi-supervised method was used by Pavllo, 
Feichtenhofer [9]  to train the model, meaning that the model learned to make the 3D pose 
prediction based on both ground truth labeled data, and based on unlabeled data via a back-
projection method. The pretrained model was used in the present study to generate the 3D 
coordinates of 17 joint centers, from which five were used (Table 1). The sample frequencies of 
both the camera and the Kinect were 30Hz. 

 
Data cleaning and preparation 

Coordinate data from all systems were imported in MATLAB (2020a, The MathWorks, 
Inc., Natick, Massachusetts, United States). The coordinates from the marker-based system 
were expressed in a different coordinate system than the coordinates from the markerless 
system. Therefore, all coordinates were first converted to the right-handed coordinate system 
recommended by the International Society of Biomechanics (ISB) [17]. In addition, the data 
from the marker-based system were corrected for switched or missing markers, under the 
assumption of rigid bodies. Some trials had to be excluded due to problems with one of the 
three systems involved, for instance due to too many missing markers (marker-based system; a 
minimum of three markers per segment is required) or completely insufficient joint tracking 
(markerless systems). 
 
Biomechanical model definitions 

Whereas the marker-based system generated coordinates of bony landmarks, the 
markerless systems generated coordinates of estimated joint centers. These different 



 

   

                    7 

 

kinematic outputs required two distinct local coordinate systems, one for the marker-based 
system and one for the two markerless systems. For the marker-based system, bony 
landmarks were used to define segment coordinate systems of the thorax, humerus and 
forearm according to ISB recommendations [17]. For the markerless systems, an alternative 
method was required since only joint centers were available instead of anatomical landmarks. 
Therefore, the same segment definitions as specified in Plantard, Muller [18] were employed. 
Similar to the study of Plantard, Muller [18], hand positions were not captured accurately in the 
present study. For that reason, the elbow was considered a hinge joint, allowing only for 
measurement of elbow flexion. This meant that pronation/supination could not be assessed. 
 
Inverse kinematics and dynamics 

Inverse kinematics and dynamics were used to obtain joint angles and joint moments. 
This step was the same for both the marker-based and the markerless systems. 
Thoracohumeral (‘shoulder’) angles were calculated by the Euler method, with an Y-X-Y 
decomposition order, as recommended by the ISB [17]. Elbow flexion/extension angles were 
calculated between the long axes of the humerus and forearm. The joint angles for the 
following movements were selected for analysis: shoulder elevation, shoulder plane of 
elevation, shoulder internal and external rotation, and elbow flexion/extension. In addition, 
joint moments were calculated by the moment-at-once inverse dynamics method [19]. The 
moments were first calculated around the global axes, and subsequently reoriented to 
represent anatomical meaningful moments. For the elbow, the flexion/extension moment was 
calculated around the z-axis of the humerus coordinate system. For the shoulder, the 
moments were expressed in the plane of elevation, as the arm elevation moment and the 
moment around the long axis of the humerus. The external force caused by the dumbbell was 
applied to the center of mass of the hand segment. However, since the hand position and 
length could not be measured accurately, the location of the hand’s center of mass was 
estimated at 6cm from the wrist center in extension of the forearm. This estimation was based 
on the average hand palm length (hand length minus finger length) of 12 cm, obtained from 
male Dutch students in the DINED database [20]. Body segment inertial parameters were 
estimated with regression equations of De Leva [21]. Calculated joint angles and moments 
were low-pass filtered using a 4th-order Butterworth filter with a cutoff frequency of 3Hz. 
 
Data analysis and statistics 
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The times series of the joint angles and moments obtained from the markerless 
systems were up sampled and synchronized to the time series of the OMS. Synchronization 
was done separately for each movement repetition, at the peak shoulder elevation angle for 
the lateral fly exercise and at the peak elbow flexion angle for the biceps curl exercise. One 
second before and after the instant of the peak angles were selected for analysis. For all 
synchronized time series of joint angles and moments, root-mean-square-deviations (RMSD) 
and Pearson’s correlation coefficient (𝑟) were calculated between the camera and the OMS, 
and between the Kinect and the OMS. The mean and standard deviation (or median and 
interquartile range (IQR) for non-normal distributions revealed by the Shapiro-Wilk test) of the 
RMSD and 𝑟 over subjects were calculated per joint angle and per moment. The absolute 
values of 𝑟 were categorized as weak, moderate, strong and excellent for 𝑟 ≤0.35, 0.35<𝑟 ≤0.67, 
0.67<𝑟 ≤0.90 and 0.90<𝑟, respectively [22].  In addition, the intra-class correlation coefficient 
(ICC) was calculated for the joint angles and moment values at the instant of the peak shoulder 
elevation angle for the lateral fly, and at the instant of the peak elbow flexion angle for the 
biceps curl. For the ICC values, >0.7 was considered acceptable [23]. An agreement definition, 
as opposed to a consistency definition, was used for the ICC, because potential systematic 
between-system differences were of relevance. 

 
 

Results 
Due to missing markers of the OMS, 12% of the lateral fly trials and 23% of the biceps 

curl trials had to be excluded. Based on the standard camera and deep-learning method, 
almost all trials could be included despite three trials (2%) in which joint estimations were 
completely insufficient because there was a second person visible in the background. For the 
Kinect, 10% of the trials had to be excluded due to completely insufficient joint tracking. In 
total, 64 lateral fly repetitions and 58 biceps curl repetitions were included for analysis. 
Resulting shoulder and elbow joint angles and moments by the different systems are shown in 
Figures 2,3,4 and 5. RMSDs and Pearson’s correlations (𝑟) of the whole movement cycles are 
represented as mean ±1SD over all trials and participants in table 2. ICCs of the peak values 
are represented in table 2 as well. 
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Figure 2. Results for a. shoulder elevation angle, b. shoulder elevation plane angle and c. 
shoulder internal/external rotation angle during the lateral fly exercise. Results obtained from 
OMS (blue solid), Kinect (red dashed) and camera (green dotted) are presented as mean ± 1SD 
(shaded) over all trials and all participants. 

 

Figure 3. Results for elbow flexion/extension angle during the biceps curl exercise. Results 
obtained from OMS (blue solid), Kinect (red dashed) and camera (green dotted) are 
represented as mean ±1SD (shaded) over all trials and all participants. 
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Figure 4. Results for a. shoulder elevation moment and b. shoulder internal/external rotation 
moment during the lateral fly exercise. Results obtained from OMS (blue solid), Kinect (red 
dashed) and camera (green dotted) are represented as mean ± 1SD (shaded) over all trials and 
all participants. 
 

 

Figure 5. Results for elbow flexion/extension moment during the biceps curl exercise. Results 
obtained from OMS (blue solid), Kinect (red dashed) and camera (green dotted) are 
represented as mean ±1SD (shaded) over all trials and all participants. 
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Table 1. Root-Mean-Square-Deviations (RMSD), Pearson’s correlation (r) and ICCs between the 
Kinect and the OMS and between the camera and the OMS of selected variables. RMSDs and 
correlations were determined over the whole movement cycle and averaged over the means 
of participants. The ICC agreement was determined from the values at the instant of peak 
shoulder elevation angle during the lateral fly, and at the instant of peak elbow flexion angle 
during the biceps curl. For normal distributions the mean and SD were reported, for non-
normal distributions the median and IQR were reported and indicated with an asterisk. 

  Kinect-OMS Camera-OMS 

Variable RMSD (Mean 

± SD or 

Median ± 

IQR*) 

r (Mean ± SD 

or Median ± 

IQR*) 

I

C

C 

RMSD (Mean ± 

SD or Median ± 

IQR*) 

r (Mean ± SD or 

Median ± IQR*) 

I

C

C 

  

Lateral fly 

Shoulder elevation 
angle (deg) 

4.79 ± 3.88 0.99±0.00 0
.
8
6 

3.92 ± 4.12 1.00±0.00 0
.
3
0 

  

Shoulder 
elevationplane 

angle (deg) 

9.86 ± 9.22 0.31±0.72* 0
.
4
8 

6.00 ± 0.99 0.58±0.37 0
.
1
4 

  

Shoulder 
internal/external 

rotation angle (deg) 

13.40 ± 
9.03 

0.80±0.14 0
.
6
8 

7.81 ± 5.69 0.94±0.02 -
0
.
1
6 

  

Shoulder elevation 
moment (Nm) 

0.74 ± 1.10 0.99±0.00 0
.
8
4 

0.99 ± 1.47 0.99±0.01* 0
.
3
6 

  

Shoulder 
internal/external 

moment (Nm) 

1.08 ± 1.61 0.85±0.16 0
.

1.41 ± 2.20 0.76±0.25 0
.
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4
0 

2
1 

Biceps curl 

Elbow 
flexion/extension 

angle (deg) 

7.68 ± 9.67 0.98±0.01 0
.
2
2 

7.24 ± 9.34 0.99±0.01 0
.
0
5 

  

Elbow 
flexion/extension 

moment (Nm) 

0.78 ± 1.14 0.98±0.01 0
.
6
8 

0.87 ± 1.13 0.99±0.01 0
.
4
7 

  

 
Camera-OMS 

When comparing the outcome parameters assessed using the camera with those 
assessed using the OMS, strong to excellent correlations were found for most parameters, 
including the shoulder elevation angle, the shoulder internal/external rotation angle, the elbow 
flexion/extension angle, the shoulder elevation moment, the shoulder internal/external 
moment and the elbow flexion/extension moment, with coefficients ranging from 0.76 to 1.00, 
and RMSDs ranging from 3.9 to 7.8 degrees for angles and 0.87 to 1.41 Nm for moments 
(Table 2). The corresponding figures of these parameters (Fig.2-Fig.5) show that shapes and 
magnitudes over the movement cycle were largely similar for outcome parameters based on 
the camera and the OMS, although the camera results seemed to underestimate peak angles 
and moments. In line with this, the ICCs for these variables were all found to be poor (<0.47), 
indicating poor between-system agreement in the detection of peak values. For the other 
parameter, the shoulder elevation plane angle, a moderate correlation was found, with a 
coefficient of 0.58 (Table 2). However, the RMSDs of six degrees of this parameter seemed 
comparable to the aforementioned parameters.  The corresponding figure of this parameters 
(Fig.2) shows differences in magnitude, but largely similar shapes over the complete movement 
cycle. Again, the ICCs for this variable was found to be poor (<0.21). 

 
Kinect-OMS 

When comparing the parameters assessed using the Kinect with the parameters 
assessed using the OMS, strong to excellent correlations were found for most parameters, 
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including the shoulder elevation angle, the shoulder internal/external rotation angle, the elbow 
flexion/extension angle, the shoulder elevation moment, the shoulder internal/external 
moment and the elbow flexion/extension moment, with coefficients ranging from 0.80 to 0.99, 
and RMSDs ranging from 4.79 to 13.40 degrees for angles and 0.74 to 1.08 Nm for moments 
(Table 2). The corresponding figures of these parameters (Fig.2-Fig.5) show that shapes and 
magnitudes over the movement cycle were largely similar between the Kinect and the OMS. 
For the other parameter, the shoulder elevation plane angle, a weak correlation was found, 
with a coefficient of 0.31 and RMSD of 9.86 degrees (Table 2). When the corresponding figure 
(Fig.2) is inspected, differences in shape and magnitude can be detected. The ICCs between the 
Kinect and the OMS are acceptable for two parameters (>0.8): the shoulder elevation angle 
and the shoulder elevation moment. For the other parameters, the ICC was not acceptable 
(<0.8), indicating poor between-system agreement in detection of those peak parameters. 
 

Discussion 
The hypothesis of the present study was that the single camera deep learning-based 

method is a feasible and valid way to estimate biomechanical parameters during strength 
exercises. In line with the expectations, measurements were highly feasible because only one 
standard camera was required, and post-processing was less effort-consuming than the OMS 
method because instead of marker trajectory cleaning and gap filling, the only task was to run 
pre-made scripts with the recorded videos as input to obtain the estimated 3D joint center 
locations. In addition, results showed that significantly less trials had to be excluded based on 
missing data for the camera-based method compared to the OMS method. Regarding the 
validity, for both the camera and the Kinect, most biomechanical parameters were found to 
have strong to excellent correlations and reasonable RMSDs. However, results were not 
consistent for all parameters, and the ICC s showed poor absolute agreement on peak values 
for most parameters, especially for the camera.  

The comparison between the camera-based system and the state-of-the-art system 
revealed strong to excellent correlations and reasonable RMSDs for most joint angles and 
moments, but also showed an exception. A lower correlation, though similar RMSD, was found 
for the shoulder elevation plane angle. These low correlations may be the result of the 
relatively small range in these angles and moments within the strength exercises studied. 
Correlations are sensitive to data distributions and tend to be weaker when calculations are 
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performed on a smaller range of values [24]. Nevertheless, it is important that the validity for a 
larger variety of angles and moments is investigated in future research. 

When the RMSDs and correlations of the camera vs OMS based parameters were 
compared to those of the Kinect vs OMS, it appeared that the camera and Kinect based 
parameters showed similar agreements to the state-of-the-art on most counts, although the 
camera appeared to outperform the Kinect for two parameters. These parameters were the 
shoulder elevation plane angle and the internal/external rotation angle, which yielded higher 
correlations and lower RMSDs. This result is interesting since the Kinect has the benefit of a 
depth sensor whereas the camera has not. As aforementioned, a possible explanation may be 
provided by the different applied pose estimation algorithms. Whereas the Kinect extracted 
pose information based on a random forest approach from single images, the camera-based 
method used convolutional neural networks (CNNs) which can incorporate more temporal and 
spatial information [9, 25]. Therefore, CNNs can provide more accurate and smoother results 
than random forest approaches which may explain the better and smoother results regarding 
part of the camera-based parameters.  

Unlike the reasonable RMSDs and correlations for whole movement cycles, the 
agreement between the camera-based parameters and those determined by the state-of-the-
art at peak instants were found to be poor, as indicated by the low ICCs in Table 2 and the 
typical discrepancy around peak values in Fig. 2-5. A potential explanation that may have 
contributed to this result are the bone length constraints that were incorporated by Pavllo, 
Feichtenhofer [9] in the camera pose estimation method to improve predictions. These ‘soft’ 
constraints included that bone lengths had to remain similar during the trials and had to be 
similar to the bone lengths of the subjects on which the model was trained [9]. The 
participants in the present study were relatively tall (mean ± SD body height: 1.84 ± 0.07m) and 
their bone lengths appeared to be underestimated by the model. When bone lengths that are 
too small must be fitted to data of larger subjects, this may increase errors and decrease 
consistency in the estimation of the 3D poses and subsequently in the estimation of angles 
and moments, especially around peak values (i.e. peak elbow flexion), thus potentially leading 
to lower ICCs. In contrast, the Kinect was not restricted by such a bone length constraint in 
estimation of 3D joint centers, which could explain why the Kinect seemed to perform more 
consistently throughout whole movement cycles and has higher ICCs (Table 2). For the future, 
it is important that the deep-learning model is trained on a larger variety of subjects, to 
improve accuracy and consistency of obtained biomechanical parameters, especially around 
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peak values, because valid estimation of absolute peak angles and moments are important in 
for instance the assessment of injury risk [26, 27]. 

A strength of the present study is that the employed method to obtain biomechanical 
parameters from simple videos has not been investigated before, making this study unique. 
However, a number of methodological limitations apply to the present study. First of all, the 
present study had a small sample size and only two strength exercises were examined, since it 
concerned an exploratory study into a new type of technology. Future research should 
investigate the camera-based motion capture method in a larger sample and during a larger 
variety of exercises, to obtain reliable validities. Secondly, the OMS was regarded as state-of-
the-art, whereas it is known that soft tissue artifacts are associated with this system [3]. Thirdly, 
the time series of the parameters resulting from the employed systems were synchronized at 
the instant of peak angles, while for instance a pulse synchronization might have been 
preferable. The correctness of the synchronization procedure was checked by calculating the 
delays corresponding to cross-correlations of the time series. The delays were found to be 
minimal (<0.001s), indicating that the performed synchronization method was sufficient.  

The findings of the present study may have practical implications in the field of sports 
biomechanics. The camera-based method might be applicable in the future to assess injury 
risk and performance in a strength training environment, as it is cheap, widely available, not 
restricted to a controlled environment, and the first results regarding the validity showed 
reasonable accuracies for a part of the parameters. However, it is evident that improvements 
are warranted in measurement of single (peak) angles and moments, and more research is 
needed to investigate this method in a larger variety of exercises and subjects. In addition, it 
would be interesting to evaluate the method in other sports, in which other challenges like 
high movement speed and varying distance to the camera may play a role. Moreover, it should 
be noted that if this method is to be applied in the future to provide direct feedback to athletes 
on their performance and/or injury risk, a number of practical issues will need to be 
addressed. Firstly, a considerable amount of computation time was required by the employed 
deep-learning algorithm to estimate 3D poses. This could be an issue if this method were to be 
used to provide direct feedback to athletes, in which case it is important that computations can 
be performed in (close to) real-time. Secondly, during the measurements of the present study, 
it appeared that the estimations were strongly disturbed when another person was visible in 
the background. Therefore, future research should focus on improving both the computation 
time of 3D pose estimation algorithms, as well as the ability to deal with background 
disturbances. 
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Conclusion 
Biomechanical analysis based on data from a single standard camera combined with a 

deep-learning algorithm is a feasible method to obtain biomechanical parameters during 
strength exercises, as it is low-cost, easily applicable in a gym environment, and open-source 
software is available. In addition, the results provide some first clues regarding the accuracy, 
showing high correlations and acceptable RMSDs for part of the joint angles and moments 
cycles compared to the state-of-the-art, but poor agreement on peak angles and moments, 
which are especially important in assessment of performance and injury risk. Accuracies may 
be improved by training the model on subjects with a larger variety of anthropometries. It is 
evident that future research should validate this method in a larger sample and for other 
exercises and/or other sports situations, and focus on improving the computation time and 
robustness against background disturbances, if this method is to be employed for a real-time 
feedback application. 
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