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Abstract

Backward somersault dismount at parallel bars in artistic gymnas-

tics is considered a fundamental movement for other advanced skills,

such as double backward tucked and piked somersaults. We aimed to

identify strategies to maximize the number of rotations in the backward

somersault dismount through computer–based optimization. We first

determined the best stunt and observed hip flexion in the middle of the

stunt, which is an unlikely movement for gymnasts. To study the effect

of this hip flexion, we performed optimization under additional con-

straints to suppress this hip flexion. Analyzing the similarities and dif-

ferences between these two conditions revealed the following essential

features in backward somersault dismount: 1) To increase the number

of rotations, increasing the angular momentum is more effective than

increasing flight time. 2) Wrist and shoulder coordination observed

in both optimization conditions increased the angular momentum. 3)

The hip flexion observed only in the first optimization increased the

angular momentum through coordination among the wrist, shoulder,

and hip joints.

Introduction

Backward somersault dismount at parallel bars in artistic gymnastics is con-

sidered a fundamental movement for other advanced skills, such as double

backward tucked and piked somersaults. (Fig. 1). A typical sequence of

backward somersault dismount at parallel bars starts with a still handstand

on the parallel bars, followed by shoulder extension and takeoff from the

parallel bars. The gymnasts need to have extended airtime and high angu-

lar momentum around the center of mass (CoM) for high-valued dismount

skills.
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Previous studies have revealed the relationships between judged scores

and kinematic and/or kinetic variables in single and double backward somer-

sault dismounts (Prassas 1995, Prassas and Papadopoulos 2001, Gervais and

Dunn 2003). However, strategies to improve the performance still remain

elusive.

This study investigated strategies to maximize the number of rotations

in backward somersault dismounts by using computer–based optimization.

We first determined the best stunt by optimization and observed hip flex-

ion in the middle of the stunt, which gymnasts do not typically perform.

To study the effect of this hip flexion, we performed another optimization

under additional constraints suppressing hip flexion in the middle of the

stunt. Computer-based optimization is suitable for this purpose because, in

the actual analysis of gymnasts, to know whether a stunt performed by a

gymnast is optimal, to impose constraints on the movement of gymnasts,

and to have gymnasts optimize their performance under the constraints are

infeasible.

Method

Model Configuration

A two-dimensional model of the human and parallel bars was developed

to maximize somersault rotation (Fig. 2). The human model consisted of

three segments representing the trunk, arms, and legs. The segments were

connected at the wrist, shoulder, and hip joints. The wrist was assumed to

be fixed on the parallel bars because gymnasts grasp parallel bars tightly

with their hands. Inertial parameters of the body were determined based

on the body mass and the lengths of the body segments of a male gymnast
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(Ae et al. 1992). A linear spring and damper was used to represent the

parallel bars (Linge et al. 2006). Positive directions for the joint angles were

assumed as ulnar flexion for the wrist, extension for the shoulder, and flexion

for the hip. All the angles were defined as zero in the handstand position.

The origin of the displacement of the parallel bars yPB is realized when no

force is applied including gravitational force.

Each joint had a torque actuator that incorporated its physiological prop-

erties such as torque–angle and torque–angular velocity relationships. The

torque of each actuator was determined by the method of Millard et al.

(2019) (Fig. 3). The torque at a given instant was the sum of the active and

passive torques, and the active torque was determined by the active state,

joint angle, and angular velocity:

τPos = τPE + λ τMPos tAPost
V
Pos (0 ≤ λ ≤ 1) (1)

τNeg = τPE + |λ| τMNeg tANegt
V
Neg (−1 ≤ λ < 0), (2)

where τPE is the passive torque, λ is the active state varying between -1

and 1, τMPos/Neg is a constant, tAPos/Neg, t
V
Pos/Neg are the normalized torque–

angle and torque–velocity curves modeled with a Gaussian function and

hyperbola, respectively.

A movement was simulated from a still handstand with the input of time

series of the active state for each joint (Fig. 4). An optimizing algorithm

with genetic algorithms and simulated annealing was developed to search

for the best performance.

As the performance of a simulated movement, the number of rotations
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Nr was defined as follows:

Nr =
LCoM |takeoff
2πIstretched

Tair, (3)

where LCoM |takeoff is the angular momentum around the CoM at takeoff,

Istretched is the moment of inertia of the stretched posture, and Tair is the

airtime. The takeoff occurred when the displacement of the parallel bars

yPB was equal to zero and θBody > 180◦, where θBody := θW + θS . Tair

is defined as the time when the CoM reached the height of the CoM in a

standing position on the ground which is 1.8m below the parallel bars. The

stretched posture is also defined as the standing position (θS = 180◦ and

θH = 0◦).

Nr was suitable as the performance for the following two reasons: (1)

larger Nr enables gymnasts to perform more difficult backward dismounts;

and (2) when they perform tucked or piked dismounts, gymnasts can pre-

pare for a suitable landing with larger Nr by stretching their bodies before

landing, which requires extra rotations.

There were two condition for successful movement: (1) |θW | < 45◦ all

the time, which otherwise was considered out of balance; and (2) yPB < 0 all

the time, because otherwise the parallel bars vibrated quickly and became

unrealistic. The integration of Newton’s equations of motion was terminated

when the simulated movement broke either of the two conditions.

There were two optimizing conditions: (1) unconstrained condition using

the aforedescribed method; and (2) hip–flexion suppressed condition, which

yields an additional condition. The additional condition was θH < 0 all the

time while θBody < 180◦. The hip–flexion suppressed condition was used to

study the effect of hip flexion in the middle of movement observed in the
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unconstrained condition, which actual gymnasts do not usually perform. In

the figure legends, we denote the unconstrained condition as “Uncon” and

the hip–flexion suppressed condition as “HFS.”

Contribution of joint torques to physical quantities

The contribution of joint torques to LCoM and other quantities was analyzed

as previously accomplished (Liu et al. 2006, Zajac et al. 2002, Hirashima

2011, Koike et al. 2019).

Generalized acceleration, including translational and angular accelera-

tion, can be expressed using a linear combination of generalized forces, such

as force and torque. For example, the angular acceleration of the wrist joint

(αW ) can be expressed as

αW = AτW
αW

τW +AτS
αW

τS +AτH
αW

τH +AFPB
αW

FPB + CαW (4)

( = ατW
W + ατS

W + ατH
W + αFPB

W + CαW ), (5)

where AτW
αW

, AτS
αW

, AτH
αW

, AFPB
αW

, and CαW are coefficients that do not involve

generalized forces (τW , τS , τH , or FPB). ατW
W (= AτW

αW
τW ) is defined as the

contribution of τW to αW , and ατS
W , ατH

W , and αFPB
W are defined similarly.

CαW contains the effects independent of joint torques and FPB such as those

of gravitational force and inertia. The angular acceleration of the shoulder

and hip joints (αS and αH) and the acceleration of the parallel bars (aPB)

can be expressed similarly.

For the x coordinate of the CoM (xCoM ), the equation of motion is

MaxCoM = Fx, (6)

where axCoM is the horizontal acceleration of the CoM, and Fx is the hori-
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zontal force acting on the upper limb from the parallel bars (Fig. 5a). Since

xCoM = xCoM (θW , θS , θH , yPB),

axCoM = cWαW + cSαS + cHαH + cPBaPB + d, (7)

where cW , cS , cH , cPB, and d are coefficients that do not involve generalized

accelerations. Therefore, from Equations 4–7

Fx = AτW
Fx

τW +AτS
Fx
τS +AτH

Fx
τH +AFPB

Fx
FPB + CFx (8)

( = F τW
x + F τS

x + F τH
x + FFPB

x + CFx), (9)

where AτW
Fx

, AτS
Fx
, AτH

Fx
, AFPB

Fx
, and CFx are coefficients that do not involve

generalized forces. F τW
x (= AτW

Fx
τW ) is defined as the contribution of τW to

Fx, and F τS
x , F τH

x , and FFPB
x are defined similarly. CFx contains the effects

independent of joint torques and FPB such as those of gravitational force

and inertia. From the equation of motion for the y coordinate of the CoM

(yCoM ), the vertical force Fy acting on the upper limb from the parallel bars

can be calculated in the same manner:

Fy = AτW
Fy

τW +AτS
Fy
τS +AτH

Fy
τH +AFPB

Fy
FPB + CFy (10)

( = F τW
y + F τS

y + F τH
y + FFPB

y + CFy), (11)

where AτW
Fy

, AτS
Fy
, AτH

Fy
, AFPB

Fy
, and CFy are coefficients that do not involve

generalized forces. F τW
y (= AτW

Fy
τW ) is defined as the contribution of τW to

Fy, and F τS
y , F τH

y , and FFPB
y are defined similarly. CFy contains the effects

independent of joint torques and FPB such as those of gravitational force

and inertia.
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LCoM satisfies the following equation:

dLCoM

dt
= (p⃗W − p⃗G)× F⃗ + τW

= (yCoM − yPB)Fx − xCoMFy + τW (12)

where p⃗G and p⃗W are the position vectors of the CoM and wrist joint, and

F⃗ is the external force vector at the wrist joint (Fig. 5b). Therefore, from

Equation 8–12,

dLCoM

dt
= AτW

dLCoM
τW +AτS

dLCoM
τS +AτH

dLCoM
τH +AFPB

dLCoM
FPB + CdLCoM

,

(13)

where AτW
dLCoM

, AτS
dLCoM

, AτH
dLCoM

, AFPB
dLCoM

, and CdLCoM
are coefficients that

do not involve τW , τS , τH , or FPB. AτW
dLCoM

τW is defined as the contribu-

tion of τW to the torque around the CoM, and AτS
dLCoM

τS , A
τH
dLCoM

τH , and

FFPB
y are defined similarly. CdLCoM

contains the effects independent of joint

torques and FPB such as those of gravitational force and inertia. Because

AFPB
dLCoM

FPB and CdLCoM
are independent of the joint torques, the sum of

the two, AFPB
dLCoM

FPB + CdLCoM
, is referred to as the torque–independent

term.

Furthermore, by integrating Equation 13, the contribution of the terms

to LCoM at t2 with respect to t1 can be calculated as

∫ t2

t1

dLCoM

dt
dt =

∫ t2

t1

AτW
dLCoM

τWdt+

∫ t2

t1

AτS
dLCoM

τSdt+

∫ t2

t1

AτH
dLCoM

τHdt

+

∫ t2

t1

(
AFPB

dLCoM
FPB + CdLCoM

)
dt.

(14)

For instance,
∫ t2
t1

AτW
dLCoM

τWdt is considered the contribution of τW to LCoM .
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Let the time of takeoff be 0 and the time when LCoM has the same

value in the two optimizing conditions be t0(< 0). The difference in LCoM

between the two conditions at takeoff can then be expressed as

∆
(
LCoM |0t0

)
= ∆

(∫ 0

t0

AτW
dLCoM

τWdt

)
+∆

(∫ 0

t0

AτS
dLCoM

τSdt

)
+∆

(∫ 0

t0

AτH
dLCoM

τHdt

)
+∆

(∫ 0

t0

(AFPB
dLCoM

FPB + CdLCoM
)dt

)
,

(15)

where

∆
(
LCoM |0t0

)
=
(
LCoM |0t0

)
|Unconstrained −

(
LCoM |0t0

)
|Hip−Flexion Suppressed

(16)

and

LCoM |0t0 =

∫ 0

t0

dLCoM

dt
dt. (17)

The difference in LCoM generation at takeoff due to τW can be expressed as

∆
(∫ 0

t0
AτW

dLCoM
τWdt

)
, and that due to the torque–independent term can be

expressed as ∆
(∫ 0

t0
(AFPB

dLCoM
FPB + CdLCoM

)dt
)
.

According to the analysis of Equation 15, we inferred that the factors of

the time series of θW were different between the unconstrained condition and

the hip–flexion suppressed condition. The factors were examined considering

∆αW = ∆(AτW
αW

τW ) + ∆(AτS
αW

τS) + ∆(AτH
αW

τH) + ∆(AFPB
αW

FPB + CαW ),

(18)
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where

∆αW = αW |Unconstrained − αW |Hip−Flexion Suppressed.

Furthermore, the difference in θW caused the difference in τS , and the

difference in τS caused the difference in ωS . The factors causing the differ-

ence in ωS were examined based on

∆αS = ∆(AτW
αS

τW ) + ∆(AτS
αS

τS) + ∆(AτH
αS

τH) + ∆(AFPB
αS

FPB + CαS ) (19)

where

∆αS = αS |Unconstrained − αS |Hip−Flexion Suppressed.

Result

The performance of the optimized movements in both conditions was suf-

ficiently significant to perform the triple backward piked somersault (Fig.

6). This indicates successful optimization, given that the most successful

backward somersault dismount by the real gymnasts is the double backward

piked somersault (Fig. 1d). Although the difference in the performances be-

tween the two conditions appears small, it is remarkable because improving

the already excellent performance is challenging.

The performance in the unconstrained condition was better than that in

the hip–flexion suppressed condition (Table 1). This was expected as all of

the movements satisfying the hip–flexion suppressed condition also satisfy

the unconstrained condition. Although Tair in the unconstrained condition

was shorter than that in the hip–flexion suppressed condition, the number
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of rotations was larger in the unconstrained condition because of its larger

rotational velocity.

The number of rotations was positively correlated with LCoM |takeoff

but negatively correlated with Tair (Fig. 7), suggesting that increasing the

LCoM |takeoff was more crucial for increasing the number of rotations than

increasing Tair. How to increase LCoM is addressed in the Discussion section.

In the following description, time intervals are denoted by [s, t], where s

and t are the time before the takeoff. For example, [−0.4 s, −0.2 s] represents

the time interval from 0.4 s to 0.2 s before the takeoff.

There was a significant difference in θH between the unconstrained and

hip–flexion suppressed conditions (Fig. 8). θH was positive at [−0.4 s,

−0.2 s] in the unconstrained condition, which any gymnast is unlikely to

perform. We refer to this feature as hip flexion. On the contrary, θW and

θS were similar in both conditions.

Concerning the active states, the wrist and hip active states were not

similar, while those of the shoulder after −0.8 s matched well (Fig. 9). The

wrist active state decreased earlier in the unconstrained condition, although

θW was similar. In contrast, the hip active state increased earlier in the

unconstrained condition and held at the maximum for a longer duration

than in the hip–flexion suppressed condition; thus, the hip flexion occurs

only in the unconstrained condition.

yPB was also remarkably similar to each other in the two conditions (Fig.

10). They were close to zero at [−0.6 s, −0.4 s] and decreased quickly.

The change in LCoM was similar to each other; it increased right after

−0.8 s and decreased after −0.1 s (Fig. 11). We refer to this decrease in

LCoM after −0.1 s as the “brake effect.” The dominant factors increasing

LCoM were τS and the torque–independent term (Fig. 12). τS increased
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LCoM after −0.8 s in both conditions, and the torque–independent term

decreased LCoM after −0.1 s. Thus, the torque–independent term appears

to have caused the brake effect.

Discussion

We investigated strategies to increase the number of rotations in the back-

ward somersault dismount performed at parallel bars. Because we found

that increasing LCoM appeared to be a better strategy for increasing the

number of rotations than increasing Tair, we present the following two strate-

gies to increase LCoM : (1) Wrist and shoulder coordination observed in both

conditions weaken the brake effect by activating their torques in order (2)

Hip flexion observed only in the unconstrained condition increases LCoM via

the action–reaction law.

Wrist and shoulder coordination as a common strategy

The wrist and shoulder active states demonstrated a similar pattern in both

conditions: the wrist active state was maintained at around 1 before −0.8 s,

whereas the shoulder active state was maintained at around 1 after −0.8 s

(Fig. 9). We propose that this common feature provides a strategy for

improving performance by minimizing the brake effect.

We analyzed the brake effect by decomposing it based on Equation 12;

only τW was always positive at [−0.1 s, 0 s], whereas the other two terms,

(yCoM −yPB)Fx and −xCoMFy, were mostly negative (Fig. 13). Decreasing

yCoM − yPB or increasing Fx would reduce the brake effect (Fig. 14), while

decreasing xCoM or Fy would also reduce the brake effect (Fig. 15).

Therefore, weakening of the brake effect could be achieved via four ap-

proaches: (1) decreasing yCoM − yPB, (2) decreasing Fy, (3) increasing Fx,
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and (4) decreasing xCoM . However, we argue that (1), (2), and (3) are not

effective in weakening the brake effect for high performance, whereas (4) is

effective.

In (1), yCoM − yPB is the vertical distance between the CoM and the

wrist joint, as yPB is identical to the vertical location of the wrist joint.

Therefore, yCoM −yPB is determined by the posture and inertial parameters

of the body. yCoM − yPB is minimized when θW = 0 ◦, θS = 180 ◦, and

θH = 0 ◦. This posture would correspond to an action of pushing the body

upright with the arms placed against the parallel bars, and it was already

realized at approximately −0.15 s, which denotes a time period before the

occurrence of the brake effect. Thus, decreasing yCoM − yPB further may

not be possible.

As regards (2), decreasing Fy would also reduce Tair, which may decrease

performance.

With regard to (3), increasing Fx is not effective either because increasing

Fx would also decrease Fy, as discussed below. First, Fx is proportional to

−Fy in [−0.1 s, 0 s]. This holds because Fx and Fy in [−0.1 s, 0 s] are almost

equal to FFPB
x and FFPB

y , respectively (Fig. 16). Therefore,

Fx

Fy
≈

AFPB
Fx

AFPB
Fy

(20)

∵ Fx ≈ FFPB
x = AFPB

Fx
FPB, Fy ≈ FFPB

y = AFPB
Fy

FPB (21)

∴ Fx ∝ Fy (22)

Furthermore, because Fx/Fy < 0 in [−0.15 s, 0 s], AFPB
Fx

/AFPB
Fy

< 0 in
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[−0.15 s, 0 s]. This indicates that increasing Fx would also reduce Fy, which

would in turn reduce Tair.

As regards (4), decreasing xCoM is achievable by generating a negative

Fx before the occurrence of the brake effect, and its cumulative effect in

reducing xCoM is more significant when a negative Fx is generated as early

as possible. According to Fig. 17, τW generated a negative Fx before −0.8 s,

and τS generated a positive Fx after −0.8 s, which was suitable considering

the cumulative effect.

However, a negative Fx would also reduce LCoM , as yCoM − yPB > 0

(Equation 12). This indicates that τW reduced the brake effect by reducing

xCoM while reducing LCoM with a negative Fx, and τS generated LCoM

with a positive Fx. This coordination pattern of τW and τS was caused by

a unique feature of τW discussed below.

The effect of generating a negative Fx via joint torques on LCoM can be

evaluated by

A
τ(·)
dLCoM

A
τ(·)
Fx

(
=

A
τ(·)
dLCoM

τ(·)

A
τ(·)
Fx

τ(·)
=

dL
τ(·)
CoM

F
τ(·)
x

)
. (23)

Reduction in dL
τ(·)
CoM due to a negative F

τ(·)
x is smaller for smaller A

τ(·)
dLCoM

/A
τ(·)
Fx

because

dL
τ(·)
CoM =

A
τ(·)
dLCoM

A
τ(·)
Fx

F
τ(·)
x . (24)

According to Fig. 18, AτW
dLCoM

/AτW
Fx

is smaller than AτS
dLCoM

/AτS
Fx

(note that

AτH
dLCoM

/AτH
Fx

is remarkably similar to AτS
dLCoM

/AτS
Fx
, although it is not plotted

herein). This indicates that generating a negative Fx with τW is the best

strategy to reduce xCoM with less LCoM reduction.

This unique feature of τW is attributable to the fact that the wrist joint
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is fixed on the parallel bars while neither the shoulder nor the hip joint has

such a constraint. To clarify the difference, the torque around the CoM

generated by τS is given as (Equation 12, Fig. 5b):

(yCoM − yPB)F
τS
x − xCoMF τS

y =
[
(yCoM − yPB)A

τS
Fx

− xCoMAτS
Fy

]
τS

= AτS
dLCoM

τS . (25)

As −xCoMAτS
Fy

is sufficiently small compared with (yCoM − yPB)A
τS
Fx

(Fig.

19), the following approximation holds:

AτS
dLCoM

AτS
Fx

≈ yCoM − yPB. (26)

The same holds for τH (data not shown). In contrast, because the wrist

joint is fixed on the parallel bars, the torque around the CoM generated by

τW is as follows:

(yCoM − yPB)F
τW
x − xCoMF τW

y + τW

=
[
(yCoM − yPB)A

τW
Fx

− xCoMAτW
Fy

+ 1
]
τW

= AτW
dLCoM

τW . (27)

As −xCoMAτW
Fy

is extremely small (data not shown), the following approxi-

mation holds:

AτW
dLCoM

AτW
Fx

≈ yCoM − yPB +
1

AτW
Fx

(28)

Furthermore, because AτW
Fx

is negative (Fig. 20), the following inequality
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holds:

AτW
dLCoM

AτW
Fx

−
AτS

dLCoM

AτS
Fx

≈ 1

AτW
Fx

< 0, (29)

∴
AτW

dLCoM

AτW
Fx

<
AτS

dLCoM

AτS
Fx

. (30)

Therefore, τW can generate a negative Fx with a lower LCoM reduction than

τS or τH . Owing to this feature, τW before −0.8 s can successfully reduce

xCoM to weaken the brake effect (Fig. 21).

Alternatively, AτS
dLCoM

/AτS
Fx

andAτH
dLCoM

/AτH
Fx

are larger than AτW
dLCoM

/AτW
Fx

.

This implies that τS and τH can generate a certain amount of LCoM with

a less positive Fx than τW . A reduction in the positive Fx would also re-

duce xCoM , resulting in weakening of the brake effect. Furthermore, because

AτH
dLCoM

is extremely small compared with the other terms (Fig. 22), gen-

erating a torque around the CoM via τS would be more effective than that

via τH after −0.8 s.

In summary, the coordination between the wrist and shoulder joint ap-

pears to be a strategy for generating LCoM while reducing the brake effect.

The wrist first generates a negative Fx, and the shoulder then generates a

positive Fx to effectively reduce the value of xCoM considering the cumula-

tive effect. The wrist generates a negative Fx because it generates the least

LCoM reduction with a negative Fx, and the shoulder generates a positive

Fx because it generates the largest LCoM production with a positive Fx.
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Effect of hip flexion

To study the effect of hip flexion on performance, we first identified the

factors responsible for the difference in LCoM between the two conditions.

Subsequently, we traced the factors back to hip flexion to understand how

hip flexion increased LCoM in the unconstrained condition.

To identify the factors causing the difference in LCoM between the two

conditions, we considered −0.738 s as t0 in Equation 15 to determine the

breakdown of the contribution of joint torques to LCoM . This was because

the instant at -0.738 s occurred right before LCoM started to increase con-

sistently in both conditions, and LCoM had the same value at -0.738 s (Fig.

11).

Based on the analysis conducted using Equation 15, we conclude that the

difference in LCoM resulted from the difference in the τW contribution (Table

2), and the τW contribution to LCoM differed in [−0.738 s, −0.4 s] (Fig. 23).

From the breakdown of AτW
dLCoM

τW (Fig. 24), we conclude that the difference

in the τW contribution to LCoM resulted from the difference in τW itself,

rather than that in AτW
dLCoM

. Furthermore, the difference in τW primarily

resulted from the difference in the wrist active state, which can be inferred

from the observation that the shape of the active state was similar to that of

τW , while the changes in θW and ωW were highly similar in both conditions

(Fig. 25). The negative wrist active state in the unconstrained condition

resulted in a negative τW , which generated additional LCoM because AτW
LCoM

was negative. In contrast, the positive wrist active state in the hip–flexion

suppressed condition resulted in a positive τW , thereby generating a low

value of LCoM .

To understand why the positive wrist active state occurred in the hip–

flexion suppressed condition at the expense of decreasing LCoM , we replaced

17



the wrist active state of the hip–flexion suppressed condition, with the un-

constrained condition. Thereafter, the simulated movement resulted in a

failure; the wrist angle quickly became less than −45◦, and the gymnast did

not manage to take off from the parallel bars. (Fig. 26). This result suggests

that, in the hip–flexion suppressed condition, a positive wrist active state is

necessary for successful movement and that, in the unconstrained condition,

the effect of a negative wrist active state resulting in a lower value of θW is

compensated by other factors.

To comprehend what factors aided in maintaining θW larger than −45◦

in the unconstrained condition, we analyzed the value of αW that directly

affected θW . The analysis based on Equation 18 revealed that the differ-

ence in τS contribution to αW was the most significant among all the other

terms, and it was positive in [−0.8 s, −0.7 s], which rendered the value of

αW in the unconstrained condition larger (Fig. 27). This indicates that τS

maintained the value of θW larger than −45◦ in the unconstrained condition.

The difference in the τS contribution to αW resulted from the difference in

τS itself (Fig. 28). τS affected αW through the action–reaction law; when

τS was applied to the trunk segment, −τS was applied to the arm segment.

Furthermore, the difference in τS resulted from the difference in the shoulder

active state because the shape of the active state was similar to that of τS in

both conditions, while the difference in θS or ωS between the two conditions

was not sufficiently large to affect the maximal torque in the two conditions

(Fig. 29).

A smaller τS generating a larger αW in the unconstrained condition made

the realization of a negative τW possible, resulting in a higher contribution

of τW to LCoM . Simultaneously, a smaller value of τS reduced the τS contri-

bution to LCoM because AτS
dLCoM

was positive (Fig. 30). However, the total

18



τS contribution to LCoM evaluated at takeoff was larger in the unconstrained

condition (Fig. 23, 31). Until −0.5 s, τS in the hip–flexion suppressed condi-

tion contributed more to LCoM . In contrast, in [−0.5 s, −0.3 s], the uncon-

strained condition gained approximately 4 N ·m · s more LCoM by τS than

the hip–flexion suppressed condition, thereby ending up with larger LCoM

at takeoff. This was because τS in the unconstrained condition was larger

in [−0.5 s, −0.3 s], and AτS
dLCoM

was almost the same in both conditions.

Given that the shoulder active state is maximal in both conditions (Fig.

32), a larger τS in the unconstrained condition was primarily caused by a

smaller ωS in the unconstrained condition through torque–angular velocity

relationships (Fig. 3d).

To understand why ωS was smaller in the unconstrained condition than

in the hip–flexion suppressed condition, we quantified the contribution of

each joint torque to αS based on Equation 19. The largest difference between

the two conditions was that of τH , and it was smaller in the unconstrained

condition, leading to a lower value of ωS in the unconstrained condition.

(Fig. 33). The difference in AτH
αS

τH primarily resulted from the difference

in τH (Fig. 34). Note that τH affected αS through the action–reaction

law; when τH was applied to the leg segment, −τH was applied to the body

segment, thereby decreasing αS .

Furthermore, the difference in τH resulted from the hip active state be-

cause only the shape of the active state was sufficiently affected to render a

larger value of τH in the unconstrained condition (Fig. 35); the difference

in θH did not result in a larger value for τH in the unconstrained condition

because the difference in the maximal τH resulting from the θH difference

was approximately 15 N · m, and this was not enough to make τH larger

in the unconstrained condition. For ωH , a larger ωH in the unconstrained
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condition made the maximum τH in the unconstrained condition smaller,

regardless of whether the hip active state was positive or negative (Fig. 3f).

In summary, hip flexion increased LCoM through coordination between

the wrist, shoulder, and hip joints. The underlying mechanism can be out-

lined as follows:

1. The unconstrained condition gained a larger value of LCoM than the

hip–flexion suppressed condition by lowering τW .

2. Lowering τW required the unconstrained condition to lower τS to main-

tain θW > −45◦ because a large positive τS would have generated a

negative value of αW and made θW smaller.

3. However, a lower value of τS in the unconstrained condition also re-

duced the τS contribution to LCoM . To attain the same amount of

contribution to LCoM , τS had to be increased at some point between

lowering τW and takeoff.

4. The unconstrained condition successfully gained τS owing to its larger

τH that lowered ωS in the unconstrained condition through action–

reaction law.

5. The larger τH in the unconstrained condition caused visible hip flexion.

CONCLUSION

The aim of this study was to identify strategies to maximize the number of

rotations in the backward somersault dismount at parallel bars in artistic

gymnastics. Through computer-based optimization, we found that increas-

ing the angular momentum is more effective than increasing flight time to

increase the number of rotations. We further identified that strategies such
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as hip flexion in the middle of a stunt and the sequential production of wrist

ulnar flexion torque, followed by shoulder extension torque, contribute to

gaining the angular momentum.

However, in reality, no gymnasts are likely to perform this hip flexion.

Thus, our future task involves identifying the reason for the same. One

possibility is that this hip flexion requires gymnasts to precisely maintain

their balance—any movements with hip flexion in the middle of a stunt

may present a high risk of their shoulder falling under the parallel bars. A

method to evaluate the difficulty faced by gymnasts in maintaining balance

during a stunt needs to be developed to study such aspects.
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Table 1: Best performances in the two conditions following Equation 3. Note

that rotational velocity is equal to
LCoM |takeoff
2×π×Istretched

.

condition
number of rotational velocity airtime
rotation [s−1] [s]

unconstrained 1.26 1.46 0.856

hip–flexion suppressed 1.22 1.40 0.871

Table 2: Values in Equation 15 where t0 = −0.738 s. The positive value
means that the unconstrained condition generates more LCoM than the hip–
flexion suppressed condition.

term value

∆
(∫ 0

t0
AτW

dLCoM
τWdt

)
8.09

∆
(∫ 0

t0
AτS

dLCoM
τSdt

)
2.12

∆
(∫ 0

t0
AτH

dLCoM
τHdt

)
-0.662

∆
(∫ 0

t0
(AFPB

dLCoM
FPB + CdLCoM

)dt
)

-2.46
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(a) (b)

(c)

(d)

Figure 1: Examples of backward somersault dismounts sorted by their diffi-
culty. (a) Single backward piked somersault (the easiest). (b) Single back-
ward stretched somersault. (c) Double backward tucked somersault. (d)
Double backward piked somersault (the most difficult). For any of the back-
ward dismounts, the gymnasts begin with handstands and swing down their
entire body until takeoff while supporting their body above the parallel bars.
The moment of inertia decreases in the order of the stretched, piked, and
tucked postures. The difficulty is valued by combining the moment of inertia
and the number of rotations. Although the moment of inertia in the tucked
posture is smaller than in the stretched posture, the difficulty corresponding
to (c) is greater than that corresponding to (b) because the number of rota-
tions is larger in (c). (d) is the most difficult dismount among the backward
dismounts performed by real gymnasts.
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Figure 2: Simulated model. The model consists of a gymnast and paral-
lel bars. The gymnast is modeled as three linked segments with the wrist,
shoulder, and hip joints. Each joint has a torque actuator with its physio-
logical characteristics. The parallel bars are modeled using a linear spring
and damper. The angles of all the joints (θW , θS , θH) are defined, with zeros
corresponding to the handstand posture. The positives are considered in
ulnar flexion for the wrist, extension for the shoulder, and flexion for the
hip.
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(a) (b)

(c)
(d)

(e) (f)

Figure 3: Physiological properties incorporated into the toque actuators.
(3a), (3c), (3e) Torque–angle relationship for the wrist, shoulder, and hip,
respectively. (3b), (3d), (3f) Torque–angular velocity relationship for the
wrist, shoulder, and hip, respectively. The torque–angle relationships do
not affect τ significantly when θ is far from the edge of the motion range.
The torque–angular velocity relationships also do not affect τ significantly
under eccentric ω. However, they change τ significantly under concentric ω
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Figure 4: Simulation Flow. A time series of the active state for each joint
with a 1/20 s resolution is used as input (upper left). Cubic spline interpo-
lation is used to obtain a time series (lower left). To simulate the state at
t = t1, the joint torque (τ) for each joint is calculated considering the ac-
tive states and the torque–angle–angular velocity relationships with θ and ω
(top middle). The obtained joint torques are used for numerically integrat-
ing Newton’s Equations, and the angles and angular velocities are obtained.
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(a) (b)

Figure 5: Illustration of external forces and torque acting on the gymnast.
(a): Definition of FPB, Fx, and Fy. Note that FPB is a vertical force acting
from the spring–damper element to the parallel bars, and Fx and Fy are
the horizontal and vertical forces acting from the parallel bars to the wrist
joint. Fy does not always match with FPB because the parallel bars have
mass and move vertically (mPB ÿPB = FPB − Fy). However, the horizon-
tal force between the spring-damper element and the parallel bars always
matches with Fx because the parallel bars do not move horizontally. (b):
The external forces and torque that affect LCoM are displayed. The gravity
acting on the gymnast does not affect LCoM because the gravity applies to
the CoM, creating no torque around the CoM. Fx and Fy affect LCoM with
a non-zero moment arm, and τW directly affects LCoM .
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(a)

(b)

Figure 6: Simulated performance of the optimization results in the piked
posture to compare the difficulty with Fig. 1d. (a) Best performance in
the unconstrained condition in the piked posture. (b) Best performance
in the hip–flexion suppressed condition in the piked posture. Both of the
performances qualified triple backward piked somersault dismount. (a) was
better than (b) because (a) had enough rotation to stretch the body to
prepare for landing while (b) did not have enough rotation to stretch the
body for landing.

(a) (b)

Figure 7: (a) Nr vs. LCoM |takeoff . (b) Nr vs. Tair. The results whose
Nr > 0.8 found in the two optimizations were plotted.
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Figure 8: Joint angles of the wrist, shoulder, and hip in the unconstrained
(blue) and the hip–flexion suppressed (red) conditions.
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Figure 9: Active states of the wrist, shoulder, and hip in the unconstrained
(blue) and the hip–flexion suppressed (red) conditions.

Figure 10: yPB in the unconstrained (blue) and the hip–flexion suppressed
(red) conditions. Note that yPB is always maintained negative until takeoff
because keeping yPB < 0 is a common restriction in both conditions.
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Figure 11: Angular momentum around the CoM (LCoM ) in the uncon-
strained (blue) and the hip–flexion suppressed (red) conditions.

Figure 12: Contributions of the wrist, shoulder, hip joint torques, and the
torque–independent term to LCoM in Equation 14, with t1 being the start
of the motion.
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Figure 13: Decomposition of torque around the CoM based on Equation
12. From the top, τW , (yCoM − yPB)Fx, and −xCoMFy are presented. The
positive value corresponds to increasing LCoM .

Figure 14: Breakdown of (yCoM − yPB)Fx into Fx and yCoM − yPB. From
the top, (yCoM − yPB)Fx, Fx, and yCoM − yPB are presented.
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Figure 15: Breakdown of −xCoMFy into Fy and xCoM . From the top,
−xCoMFy, Fy, and xCoM are illustrated.

Figure 16: Breakdown of Fx and Fy into the contribution of the wrist,
shoulder, hip joint torques, FPB, and the remaining terms in [−0.2 s, 0 s].
From the top, the breakdown of Fx and that of Fy are presented.
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Figure 17: Breakdown of Fx into the contribution of the wrist, shoulder,
and hip torques, as well as FPB, and the remaining terms.
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Figure 18: Ratio of the coefficients of contribution to the torque around
the CoM (= A

τ(·)
dLCoM

) to Fx (= A
τ(·)
Fx

). The larger the value, the lower the
magnitude of Fx that needs to be generated to gain a certain amount of
torque around the CoM.

Figure 19: Breakdown of AτS
dLCoM

into terms via Fx and Fy. Note that the
terms obtained via Fx are equal to (yCoM−yPB)A

τS
Fx
, and the terms obtained

via Fy are equal to −xCoMAτS
Fy
.
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Figure 20: Coefficients of contribution of the wrist, shoulder, and hip torques
to Fx .

Figure 21: Horizontal force (= Fx) and horizontal position of the CoM
(= xCoM ). From the top, Fx and xCoM are presented. Fx tends to be
negative at [start of motion, −0.8 s], and it tends to be positive at [−0.7 s,
−0.2 s], which makes xCoM downward convex.
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Figure 22: Coefficients of contribution of the wrist, shoulder, and hip to the
torque around the CoM (= dLCoM ).
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Figure 23: Top:breakdown of LCoM |t−0.738 s (Equation 14) into the terms
of τW , τS , τH , and torque–independent term. Bottom: breakdown of
∆(LCoM |t−0.738 s) (Equation 15) into the terms of τW , τS , τH , and torque–
independent term.
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Figure 24: Breakdown of the wrist contribution to LCoM (= AτW
dLCoM

τW ) into
AτW

dLCoM
and τW . From the top, AτW

dLCoM
τW , AτW

dLCoM
, and τW are presented.
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Figure 25: τW and the variables determining τW in [−0.738 s, −0.4 s]. From
the top, τW , θW , ωW , and the wrist active state are presented.

Figure 26: The simulated motion combining the active states in the two
conditions. The active states are equal to those in the hip–flexion suppressed
condition, except for the wrist active state after −0.738 s. The wrist active
state after −0.738 s is equal to that in the unconstrained condition. θW
becomes smaller than −45◦ at the moment indicated by the arrow, which
satisfies the failure condition.
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Figure 27: Difference in the contributions of τW , τS , τH , and the torque–
independent term to αW (= ∆(αW )) between the two optimized conditions
following Equation 18.

Figure 28: Breakdown of the shoulder contribution to αW = (AτS
αW

τS) into
AτS

αW
and τS . From the top, (AτS

αW
τS), A

τS
αW

, and τS are presented.
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Figure 29: τS and the variables determining τS . From the top, τS , θS , ωS ,
and the shoulder active state are presented.
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Figure 30: Breakdown of the τS contribution to LCoM in [−0.8 s, −0.6 s].
From the top, τS , A

τS
dLCoM

, and AτS
dLCoM

τS are presented.
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Figure 31: Difference in τS contribution to LCoM and the relevant variables.
From the top, AτS

dLCoM
, τS , A

τS
dLCoM

τS , and ∆(LτS
CoM |t−0.738) after −0.738 s

are presented (Equation 15).
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Figure 32: τS and the variables determining τS in [−0.6 s, −0.3 s]. From the
top, τS , θS , ωS , and the shoulder active state are presented.

Figure 33: Difference in the contributions of τW , τS , τH , and the torque–
independent terms to αS (= ∆(αS)) following Equation 19.
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Figure 34: Breakdown of the hip contribution to αS (= AτH
αS

τH) into AτH
αS

and τH . From the top, AτH
αS

τH , AτH
αS

, and τH are presented.
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Figure 35: τH and the variables determining τH in [−0.6 s, −0.4 s]. From
the top, τS , θH , ωH , and the hip active state are presented.
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