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Abstract16

Backward somersault dismounts at parallel bars in artistic gymnas-17

tics are considered fundamental movements for other advanced skills,18

such as double backward tucked and piked somersaults. It has been19

previously discussed that angular momentum reduction around the20

center of mass occurs right before takeoff. However, such angular21

momentum reduction would decrease the number of rotations during22

somersaults, making it difficult for a gymnast to perform higher-valued23

dismounts. We hypothesized that avoiding this angular momentum re-24

duction may be essential for enabling a large number of rotations and25

tested this hypothesis based on computer-based optimizations. We26

first determined the best stunt and observed hip flexion in the middle27

of the stunt, which is an unlikely movement for gymnasts. To avoid28

conclusions with applications only limited to unusual stunts with such29

hip flexion, we performed yet another optimization under additional30

constraints suppressing hip flexion in the middle of a stunt. In both31

these optimized stunts, angular momentum reduction was observed,32

thereby rejecting our hypothesis. However, an induced acceleration33

analysis of these stunts revealed that wrist and shoulder coordination34

weakened this angular momentum reduction, suggesting the impor-35

tance of inter-joint coordination for better performance in backward36

somersault dismounts.37

Introduction38

Backward somersault dismounts at parallel bars in artistic gymnastics are39

considered fundamental movements for other advanced skills, such as double40

backward tucked and piked somersaults. (Fig. 1). A typical sequence of a41

backward somersault dismount at parallel bars begins with a still handstand42

on the parallel bars, followed by shoulder extension and takeoff from the43
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parallel bars. However, gymnasts typically need to have an extended airtime44

and high angular momentum around the center of mass (CoM) for high-45

valued dismount skills.46

A previous study has revealed that the horizontal and vertical momen-47

tum of the CoM decreases and increases, respectively, during the upward48

swing phase of a backward somersault dismount (Prassas and Papadopou-49

los 2001). They indicated that the force originating from parallel bars that50

induced the momentum change also reduced the angular momentum around51

the CoM. This was because the position of the CoM was higher and in front52

of the point of support.53

However, this angular momentum reduction around the CoM could also54

reduce the number of rotations in the following backward somersault dis-55

mount because the number of rotations is proportional to the product of56

the airtime and angular momentum around the CoM. Such reduction in the57

number of rotations would make it more difficult for a gymnast to demon-58

strate high-valued dismount skills. Thus, we hypothesized that avoiding this59

angular momentum reduction during the upward swing phase is essential for60

somersault dismounts with higher number of rotations. To test this hypoth-61

esis, we conducted computer-based optimizations. We first determined the62

best stunt by maximizing the number of rotations via optimization and63

observed hip flexion in the middle of the stunt, which is not typical for gym-64

nasts. To avoid conclusions that could only be applied to unusual stunts with65

hip flexion in the middle, we performed yet another optimization under ad-66

ditional constraints suppressing this hip flexion and tested the hypothesis67

by analyzing the two optimized results.68
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Method69

Model Configuration70

A two-dimensional model of a human and the parallel bars was developed to71

maximize the number of somersault rotations (Fig. 2). The human model72

comprised three segments representing the trunk, arms, and legs. The seg-73

ments were connected at the wrist, shoulder, and hip joints. The wrist was74

assumed to be fixed on the parallel bars because gymnasts grasp parallel75

bars tightly with their hands. Further, the inertial parameters of the body76

were determined based on the body mass and the lengths of the body seg-77

ments of a male gymnast (Ae et al. 1992). Notably, positive directions for78

the joint angles were assumed as follows: ulnar flexion for the wrist, exten-79

sion for the shoulder, and flexion for the hip. All the angles were defined to80

be zero in the handstand position. Note that the origin of the displacement81

of parallel bars yPB can be realized when no force is applied, including the82

gravitational force. In our model, each joint had a torque actuator that83

incorporated its physiological properties such as torque–angle and torque–84

angular velocity relationships. The torque of each actuator (τW , τS and τH)85

was determined based on the method proposed by Millard et al. (2019) (Fig.86

S-1). A linear spring and damper were used to represent the parallel bars87

(Linge et al. 2006).88

A movement was simulated beginning from a still handstand, and a dis-89

crete time series of the active state for each joint with a 1/20 s resolution90

was used as the input. Cubic spline interpolation was used to obtain a91

time series with finer time resolution. The joint torque at each time was92

calculated considering the active states and the torque–angle–angular ve-93

locity relationships (Millard et al. 2019). The obtained joint torques were94
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used to numerically integrate Newton’s equations, and the angles and an-95

gular velocities were obtained (Fig. S-2). To identify the input yielding96

the best performance, an optimizing algorithm with genetic algorithms and97

simulated annealing was developed.98

To quantify the performance of a simulated movement, the number of99

rotations Nr was defined as follows:100

Nr =
LCoM |takeoff
2πIstretched

Tair, (1)

where LCoM |takeoff denotes the angular momentum around the CoM at101

takeoff, Istretched denotes the moment of inertia for the stretched posture,102

and Tair denotes the airtime. The takeoff occurred when the displacement103

of the parallel bars yPB was equal to zero and θBody > 180◦, where θBody :=104

θW + θS . Here, Tair is defined as the time when the CoM approaches the105

height of the CoM in a standing position on the ground that is 1.8m below106

the parallel bars. The stretched posture is also defined as a standing position107

(θS = 180◦ and θH = 0◦).108

Here, Nr is a suitable indicator of performance for the following two109

reasons: (1) larger Nr values enable gymnasts to perform more difficult110

backward dismounts, and (2) when they perform tucked or piked dismounts,111

gymnasts can prepare for a suitable landing with larger Nr values by stretch-112

ing their bodies before landing, which requires extra rotations.113

Two conditions were defined for successful movements: (1) |θW | < 45◦114

all the time, which otherwise was considered out of balance, and (2) yPB < 0115

all the time because otherwise the parallel bars vibrated quickly and became116

unrealistic. The integration of Newton’s equations of motion was terminated117

when the simulated movement surpassed either of the two conditions.118
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Two optimizing conditions were also defined: (1) unconstrained condi-119

tion using the aforementioned method and (2) hip-flexion suppressed con-120

dition, which yields an additional condition. The additional condition was121

θH < 0 all the time while θBody < 180◦. The hip-flexion suppressed condi-122

tion was used because we observed, in the best stunt of the unconstrained123

condition, hip flexion in the middle of the stunt, which actual gymnasts do124

not usually perform, and thus sought for an optimized stunt without such125

hip flexion. In the figure legends, we denote the unconstrained condition as126

“Uncon” and the hip-flexion suppressed condition as “HFS.”127

Contribution of joint torques to physical quantities128

The contribution of joint torques to LCoM and other physical quantities129

was analyzed, as previously reported (Liu et al. 2006, Zajac et al. 2002,130

Hirashima 2011, Koike et al. 2019).131

Notably, the generalized acceleration, including translational and angu-132

lar acceleration, can be expressed based on a linear combination of general-133

ized forces, including forces and torques. For example, the angular acceler-134

ation of the wrist joint (αW ) can be expressed as135

αW = AτW
αW

τW +AτS
αW

τS +AτH
αW

τH +AFPB
αW

FPB + CαW (2)

( = ατW
W + ατS

W + ατH
W + αFPB

W + CαW ), (3)

where AτW
αW

, AτS
αW

, AτH
αW

, AFPB
αW

, and CαW are coefficients that do not involve136

generalized forces (τW , τS , τH , or FPB). ατW
W (= AτW

αW
τW ) can be defined as137

the contribution of τW to αW , and ατS
W , ατH

W , and αFPB
W can be defined sim-138

ilarly. CαW contains effects that are independent of joint torques and FPB139

such as those of the gravitational force and inertia. The angular acceleration140
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of the shoulder and hip joints (αS and αH) and the acceleration of parallel141

bars (aPB) can be expressed similarly.142

For the x coordinate of the CoM (xCoM ), the equation of motion is143

MaxCoM = Fx, (4)

where axCoM denotes the horizontal acceleration of the CoM, and Fx denotes144

the horizontal force originating from the parallel bars and acting on the145

upper limb (Fig. 2b). As xCoM = xCoM (θW , θS , θH , yPB),146

axCoM = cWαW + cSαS + cHαH + cPBaPB + d, (5)

where cW , cS , cH , cPB, and d are coefficients that do not involve generalized147

accelerations. Therefore, from Equations 2–5,148

Fx = AτW
Fx

τW +AτS
Fx
τS +AτH

Fx
τH +AFPB

Fx
FPB + CFx (6)

( = F τW
x + F τS

x + F τH
x + FFPB

x + CFx), (7)

where AτW
Fx

, AτS
Fx
, AτH

Fx
, AFPB

Fx
, and CFx are coefficients that do not involve149

generalized forces. F τW
x (= AτW

Fx
τW ) is defined as the contribution of τW to150

Fx, and F τS
x , F τH

x , and FFPB
x are defined similarly. CFx contains effects that151

are independent of joint torques and FPB such as those of the gravitational152

force and inertia. From the equation of motion for the y coordinate of the153

CoM (yCoM ), the vertical force Fy originating from the parallel bars and154

acting on the upper limb can be calculated similarly:155

Fy = AτW
Fy

τW +AτS
Fy
τS +AτH

Fy
τH +AFPB

Fy
FPB + CFy (8)

( = F τW
y + F τS

y + F τH
y + FFPB

y + CFy), (9)
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where AτW
Fy

, AτS
Fy
, AτH

Fy
, AFPB

Fy
, and CFy are coefficients that do not involve156

generalized forces. F τW
y (= AτW

Fy
τW ) is defined as the contribution of τW to157

Fy, and F τS
y , F τH

y , and FFPB
y are defined similarly. CFy contains effects that158

are independent of joint torques and FPB such as those of the gravitational159

force and inertia.160

LCoM satisfies the following equation:161

dLCoM

dt
= (p⃗W − p⃗G)× F⃗ + τW

= (yCoM − yPB)Fx − xCoMFy + τW (10)

where p⃗G and p⃗W denote the position vectors of the CoM and wrist joint,162

respectively, and F⃗ (= [Fx, Fy]
T ) represents the external force vector at the163

wrist joint (Fig. S-3, 2b). Therefore, from Equation 6–10,164

dLCoM

dt
= AτW

dLCoM
τW +AτS

dLCoM
τS +AτH

dLCoM
τH +AFPB

dLCoM
FPB + CdLCoM

,

(11)

where AτW
dLCoM

, AτS
dLCoM

, AτH
dLCoM

, AFPB
dLCoM

, and CdLCoM
are coefficients that165

do not involve τW , τS , τH , or FPB. A
τW
dLCoM

τW is defined as the contribution166

of τW to the torque around the CoM, and AτS
dLCoM

τS , A
τH
dLCoM

τH , and FFPB
y167

are defined similarly. CdLCoM
contains effects that are independent of joint168

torques and FPB such as those of the gravitational force and inertia.169

Result170

The performance of the optimized movements in both conditions was suffi-171

ciently significant to perform the triple backward piked somersault (Fig. 3).172

This indicates successful optimization, given that the most successful back-173
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ward somersault dismount by real gymnasts is the double backward piked174

somersault (Fig. 1d).175

The number of rotations in the unconstrained condition was larger than176

that in the hip-flexion suppressed condition (Table 1). This was expected as177

all the movements satisfying the hip-flexion suppressed condition also satisfy178

the unconstrained condition. Although Tair in the unconstrained condition179

was shorter than that in the hip-flexion suppressed condition, the number180

of rotations was larger in the unconstrained condition because of its larger181

rotational velocity.182

The number of rotations was positively correlated with LCoM |takeoff183

but negatively correlated with Tair (Fig. 4), suggesting that increasing the184

LCoM |takeoff was more crucial for increasing the number of rotations than185

increasing Tair. This indicates the necessity of avoiding the reduction of186

LCoM for a large number of rotations.187

In the following description, time intervals are denoted by [s, t], where188

s and t denote time points before takeoff. For example, [−0.4 s, −0.2 s]189

represents the time interval from 0.4 s to 0.2 s before the takeoff.190

The wrist and shoulder angles (θW and θS) and the displacement of191

parallel bars (yPB) were quite similar in both conditions, whereas the hip192

angle (θH) in the unconstrained condition was remarkably larger than that193

in the hip–flexion suppressed condition (Fig. 5). θH in the unconstrained194

condition was positive at [−0.4 s, −0.2 s] in the middle of the downward195

phase. We refer to this movement as the “hip flexion,” which any gymnast196

is unlikely to perform.197

With regard to the active states, the wrist and shoulder active states198

demonstrated a similar pattern in both conditions; the wrist active state199

was maintained at around 1 before −0.8 s, whereas the shoulder active state200
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was maintained at around 1 after −0.8 s (Fig. 5). The hip active states in201

both conditions were not similar, especially at [−0.6 s, −0.4 s]; the hip active202

state in the unconstrained condition rose up earlier than that in hip-flexion203

suppressed condition. It appears that this earlier rise of the hip active state204

caused hip flexion in the middle of the downward phase.205

The changes in LCoM in both conditions were similar to each other; it in-206

creased right after −0.8 s and decreased after −0.1 s (Fig. 6). This reduction207

is similar to that in a previous study (Prassas and Papadopoulos 2001). We208

refer to this reduction of LCoM after −0.1 s as the “brake effect.” Therefore,209

our hypothesis that claimed the necessity of avoiding LCoM reduction for a210

large number of rotations was rejected.211

We decomposed the torque around the CoM in [−0.1 s, 0 s] based on212

Equation 10 to examine the reason for the brake effect; while τW was always213

positive, the other two terms, (yCoM − yPB)Fx and −xCoMFy, were mostly214

negative (Fig. 7a). These negative torques around the CoM were also215

consistent with that in the previous study (Prassas and Papadopoulos 2001).216

We further decomposed (yCoM − yPB)Fx into yCoM − yPB and Fx, and217

−xCoMFy into xCoM and Fy. (Fig. 7b, 7c). (yCoM−yPB)Fx was negative at218

[−0.1 s, 0 s] because (yCoM −yPB) remained positive and Fx turned negative219

at −0.15 s, and −xCoMFy was negative because Fy remained positive and220

xCoM turned positive at −0.1 s. The main cause of the brake effect was221

(yCoM − yPB)Fx with respect to the magnitude.222

Discussion223

In this study, we conducted computer-based optimization of backward som-224

ersault dismount at parallel bars to test the hypothesis that avoiding the225

brake effect is required for a large number of rotations. In both the optimized226
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stunts, the brake effect was observed, rejecting our hypothesis. However, we227

propose that, in these two optimized stunts, the brake effect is minimized228

via the coordination between the wrist and shoulder joints, suggesting the229

importance of weakening the brake effect.230

Considering Equation 10, the brake effect could be weakened via four231

approaches: (1) decreasing yCoM − yPB, (2) decreasing Fy, (3) increasing232

Fx, and (4) decreasing xCoM . However, we argue that (1), (2), and (3) are233

not effective in weakening the brake effect for a large number of rotations,234

whereas (4) is effective.235

In (1), the rise of yCoM − yPB in the upward swing phase is quite impor-236

tant to gain Tair, since it determines the vertical CoM velocity at takeoff.237

The rise of yCoM − yPB also gains CoM height at takeoff, which would in-238

crease Tair. Thus, decreasing yCoM − yPB to weaken the brake effect would239

reduce Tair; therefore, we assume that decreasing yCoM−yPB is not effective240

to weaken the brake effect.241

As regards (2), decreasing Fy would also reduce Tair, which may reduce242

the number of rotations.243

With regard to (3), increasing Fx is not effective either, because increas-244

ing Fx would also decrease Fy, as discussed below. First, Fx is proportional245

to −Fy in [−0.1 s, 0 s]. This holds because Fx and Fy in [−0.1 s, 0 s] are al-246

most equal to FFPB
x and FFPB

y , respectively (Fig. S-4). This approximation247

holds because the effect of large FPB by large |yPB| surpasses the effect of248

other terms. Therefore,249

Fx

Fy
≈

AFPB
Fx

AFPB
Fy

(12)
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250

∵ Fx ≈ FFPB
x = AFPB

Fx
FPB, Fy ≈ FFPB

y = AFPB
Fy

FPB (13)

251

∴ Fx ∝ Fy (14)

Furthermore, because Fx/Fy < 0 in [−0.15 s, 0 s], AFPB
Fx

/AFPB
Fy

< 0 in252

[−0.15 s, 0 s]. This indicates that increasing Fx would also reduce Fy, which253

would in turn reduce Tair.254

As regards (4), xCoM can be reduced by generating a negative Fx before255

the occurrence of the brake effect, and its cumulative effect in reducing xCoM256

is more significant when a negative Fx is generated as early as possible.257

According to Fig. 8, τW generated a negative Fx before −0.8 s, and τS258

generated a positive Fx after −0.8 s, which was suitable considering the259

cumulative effect.260

However, a negative Fx would also reduce LCoM , as yCoM − yPB > 0261

(Equation 10). This indicates that τW reduced the brake effect by reducing262

xCoM while reducing LCoM with a negative Fx, and τS generated LCoM with263

a positive Fx (Fig. 8). This coordination pattern of τW and τS was caused264

by a unique feature of τW discussed below.265

The effect of generating a negative Fx via joint torques on LCoM can be266

evaluated by267

A
τ(·)
dLCoM

A
τ(·)
Fx

(
=

A
τ(·)
dLCoM

τ(·)

A
τ(·)
Fx

τ(·)
=

dL
τ(·)
CoM

F
τ(·)
x

)
. (15)

Reduction in dL
τ(·)
CoM due to a negative F

τ(·)
x is smaller for smaller A

τ(·)
dLCoM

/A
τ(·)
Fx

268
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because269

dL
τ(·)
CoM =

A
τ(·)
dLCoM

A
τ(·)
Fx

F
τ(·)
x = −

A
τ(·)
dLCoM

A
τ(·)
Fx

| − F
τ(·)
x |. (16)

According to Fig. 9a, AτW
dLCoM

/AτW
Fx

is smaller than AτS
dLCoM

/AτS
Fx

(note that270

AτH
dLCoM

/AτH
Fx

is remarkably similar to AτS
dLCoM

/AτS
Fx
, although it is not plotted271

herein). This indicates that generating a negative Fx with τW is the best272

strategy to reduce xCoM with less LCoM reduction.273

This unique feature of τW is attributable to the fact that the wrist joint274

is fixed on the parallel bars while neither the shoulder nor the hip joint has275

such a constraint. To clarify the difference, the torque around the CoM276

generated by τS is given as (Equation 10):277

(yCoM − yPB)F
τS
x − xCoMF τS

y =
[
(yCoM − yPB)A

τS
Fx

− xCoMAτS
Fy

]
τS

= AτS
dLCoM

τS . (17)

As −xCoMAτS
Fy

is sufficiently small compared with (yCoM − yPB)A
τS
Fx

(Fig.278

9b), the following approximation holds:279

AτS
dLCoM

AτS
Fx

≈ yCoM − yPB. (18)

The same holds for τH (data not shown). In contrast, because the wrist280

joint is fixed on the parallel bars, the torque around the CoM generated by281

τW is as follows:282

(yCoM − yPB)F
τW
x − xCoMF τW

y + τW

=
[
(yCoM − yPB)A

τW
Fx

− xCoMAτW
Fy

+ 1
]
τW

= AτW
dLCoM

τW . (19)
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As −xCoMAτW
Fy

is extremely small (data not shown), the following approxi-283

mation holds:284

AτW
dLCoM

AτW
Fx

≈ yCoM − yPB +
1

AτW
Fx

(20)

Furthermore, because AτW
Fx

is negative (Fig. 9c), the following inequality285

holds:286

AτW
dLCoM

AτW
Fx

−
AτS

dLCoM

AτS
Fx

≈ 1

AτW
Fx

< 0, (21)

287

∴
AτW

dLCoM

AτW
Fx

<
AτS

dLCoM

AτS
Fx

. (22)

Therefore, τW can generate a negative Fx with a lower LCoM reduction than288

τS or τH . Owing to this feature, τW before −0.8 s can successfully reduce289

xCoM to weaken the brake effect considering xCoM decreased before −0.8 s290

(Fig. S-5).291

Alternatively, AτS
dLCoM

/AτS
Fx

andAτH
dLCoM

/AτH
Fx

are larger than AτW
dLCoM

/AτW
Fx

.292

This implies that τS and τH can generate a certain amount of LCoM with293

a less positive Fx than τW . A reduction in the positive Fx would also294

reduce xCoM , resulting in weakening of the brake effect. Furthermore, be-295

cause AτH
dLCoM

is extremely small compared with the other terms (Fig. 9d),296

generating a torque around the CoM via τS would be more effective than297

generating it via τH after −0.8 s.298

In summary, the coordination between the wrist and shoulder joint ap-299

pears to be a strategy for generating LCoM while reducing the brake effect.300

The wrist first generates a negative Fx, and the shoulder then generates a301

positive Fx to effectively reduce the value of xCoM considering the cumula-302
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tive effect. The wrist generates a negative Fx because it generates the least303

LCoM reduction with a negative Fx, and the shoulder generates a positive304

Fx because it generates the largest LCoM production with a positive Fx.305

CONCLUSION306

The aim of this study was to test the hypothesis that avoiding the reduction307

of angular momentum around the CoM right before takeoff is required for a308

large number of rotations in backward somersault dismount at parallel bars.309

We performed computer-based optimization and observed the reduction of310

angular momentum in optimized stunts, rejecting our hypothesis. However,311

we found that wrist and shoulder torques were activated in order, and an312

induced acceleration analysis revealed that this coordination weakens the313

reduction of the angular momentum.314

However, the reason why either of the optimized stunts did not com-315

pletely avoid the reduction of angular momentum around CoM is unclear.316

In the optimized stunts, the angular momentum was mainly reduced by the317

negative horizontal force from the parallel bars (Fig. 7). Since the negative318

horizontal force was proportional to the positive vertical force (Equation 14),319

decreasing the magnitude of the negative horizontal for larger angular mo-320

mentum would have decreased the positive vertical force, thereby decreasing321

the airtime. Thus, our future task involves identifying the tradeoff between322

the angular momentum and airtime caused by the forces from the parallel323

bars.324
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Table 1: Best performances in the two conditions following Equation 1. Note

that rotational velocity is equal to
LCoM |takeoff
2×π×Istretched

.

Condition
Number of Rotational velocity Airtime
rotations [s−1] [s]

Unconstrained 1.26 1.46 0.856

Hip–flexion suppressed 1.22 1.40 0.871
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(a) (b)

(c)

(d)

Figure 1: Examples of backward somersault dismounts in the order of their
difficulty. (a) Single backward piked somersault (the easiest). (b) Single
backward stretched somersault. (c) Double backward tucked somersault.
(d) Double backward piked somersault (the most difficult). For any of the
backward dismounts, the gymnasts begin with handstands and swing down
their entire body until takeoff while supporting their body above the parallel
bars. The moment of inertia decreases in the order of the stretched, piked,
and tucked postures. The difficulty is evaluated by combining the moment of
inertia and the number of rotations. Although the moment of inertia in the
tucked posture is smaller than that in the stretched posture, the difficulty
corresponding to (c) is greater than that corresponding to (b) because the
number of rotations is larger in (c). (d) is the most difficult dismount among
the backward dismounts performed by real gymnasts.
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(a) (b)

Figure 2: Illustration of simulated model parameters and external forces
acting on the gymnast. (a): Simulated model. The model consists of a
gymnast and parallel bars. The gymnast is modeled as three linked segments
with the wrist, shoulder, and hip joints. Each joint has a torque actuator
with its physiological characteristics. The parallel bars are modeled using
a linear spring and damper. The angles of all the joints (θW , θS , θH) are
defined, with zeros corresponding to the handstand posture. The positives
are considered in ulnar flexion for the wrist, extension for the shoulder, and
flexion for the hip. (b): Definition of FPB, Fx, and Fy. Note that FPB is
a vertical force acting from the spring-damper element to the parallel bars,
and Fx and Fy are the horizontal and vertical forces acting from the parallel
bars to the wrist joint, respectively. Fy does not always match with FPB

because the parallel bars have mass and vertical acceleration.
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(a)

(b)

Figure 3: Simulated performance of the optimization results in the piked
posture to compare the difficulty with that shown in Fig. 1d. (a) Best
performance in the unconstrained condition in the piked posture. (b) Best
performance in the hip-flexion suppressed condition in the piked posture.
Both performances qualified the triple backward piked somersault dismount.
(a) was better than (b) because (a) had enough rotation to stretch the body
to prepare for landing while (b) did not have enough rotation to stretch the
body for landing.

(a) (b)

Figure 4: (a) Nr vs. LCoM |takeoff . (b) Nr vs. Tair. The results whose
Nr > 0.8 found in the two optimizations were plotted.
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Figure 5: Relevant kinematic variables and active states of each joint: from
the top, joint angles of the wrist, shoulder, and hip, displacement of the
parallel bars, and active states of the wrist, shoulder, and hip in the uncon-
strained (blue) and the hip-flexion suppressed (red) conditions.
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Figure 6: Angular momentum around the CoM (LCoM ) in the unconstrained
(blue) and the hip-flexion suppressed (red) conditions.
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(a) (b)
(c)

Figure 7: Analysis of the brake effect. (a): Decomposition of torque around
the CoM based on Equation 10. From the top, τW , (yCoM − yPB)Fx, and
−xCoMFy are presented. The positive value corresponds to increasing LCoM .
(b): Decomposition of (yCoM − yPB)Fx into Fx and yCoM − yPB. From the
top, (yCoM−yPB)Fx, Fx, and yCoM−yPB are presented. (c): Decomposition
of −xCoMFy into Fy and xCoM . From the top, −xCoMFy, Fy, and xCoM are
illustrated.
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Figure 8: Breakdown of Fx into the contributions of the wrist, shoulder, and
hip torques, as well as FPB, and CFx .
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(a)

(b)

(c) (d)

Figure 9: (a): Ratio of the coefficients of contribution to the torque around
the CoM (= A

τ(·)
dLCoM

) to Fx (= A
τ(·)
Fx

). The larger the value, the lower the
magnitude of Fx that needs to be generated to gain a certain amount of
torque around the CoM. (b): Breakdown of AτS

dLCoM
into terms via Fx and

Fy. Note that the terms obtained via Fx are equal to (yCoM −yPB)A
τS
Fx
, and

the terms obtained via Fy are equal to −xCoMAτS
Fy
. (c): Coefficients of the

contributions of the wrist, shoulder, and hip torques to Fx . (d): Coefficients
of the contributions of the wrist, shoulder, and hip to the torque around the
CoM (= dLCoM ).
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Supplementary Figures357
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(a) (b)

(c)
(d)

(e) (f)

Figure S-1: Physiological properties incorporated into the toque actuators.
(S-1a), (S-1c), (S-1e) Torque–angle relationship for the wrist, shoulder, and
hip, respectively. (S-1b), (S-1d), (S-1f) Torque–angular velocity relationship
for the wrist, shoulder, and hip, respectively. The torque–angle relationships
do not affect τ significantly when θ is far from the edge of the motion range.
The torque–angular velocity relationships also do not affect τ significantly
under eccentric ω. However, they change τ significantly under concentric ω
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Figure S-2: Simulation Flow. A time series of the active state for each
joint with a 1/20 s resolution is used as input (upper left). Cubic spline
interpolation is used to obtain a time series (lower left). To simulate the
state at t = t1, the joint torque (τ) for each joint is calculated considering
the active states and the torque–angle–angular velocity relationships with
θ and ω (top middle). The obtained joint torques are used for numerically
integrating Newton’s Equations, and the angles and angular velocities are
obtained.
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Figure S-3: The external forces and torque that affect LCoM are displayed.
The gravity acting on the gymnast does not affect LCoM because the gravity
applies to the CoM, thus creating no torque around the CoM. Fx and Fy

affect LCoM with a non-zero moment arm, and τW directly affects LCoM .
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Figure S-4: Breakdown of Fx and Fy into the contributions of the wrist,
shoulder, hip joint torques, FPB, and the remaining terms in [−0.2 s, 0 s].
From the top, the breakdown of Fx and that of Fy are presented. Both
FFPB
x and FFPB

y were almost identical to Fx and Fy, respectively.
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Figure S-5: Horizontal force (= Fx) and horizontal position of the CoM
(= xCoM ). From the top, Fx and xCoM are presented. Fx tends to be
negative at [start of motion, −0.8 s], and it tends to be positive at [−0.7 s,
−0.2 s], which makes xCoM downward convex. This time history utilizes the
cumulative effect to decrease xCoM .
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