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Abstract  

Purpose: The aim of this study was to determine if machine learning models could predict the 
perceived morning recovery status (AM PRS), training feeling during exercise (exercise TF), and 
daily change in heart rate variability (HRV change) of endurance athletes based on training, 
dietary intake, sleep, HRV, and subjective wellbeing measures. 
 
Methods: Self-selected nutrition intake, exercise training, sleep habits, HRV, and subjective 
wellbeing of 40 endurance athletes was monitored daily for 12 weeks (3,325 days of tracking). 
Global and individualized models were constructed using nine machine learning techniques and 
combined into an ensemble model at the group level, and with a single best algorithm chosen for 
individualized models. Model performance was compared with a baseline intercept-only model. 
 
Results: Prediction error (root mean square error [RMSE]) was lower than baseline for the group 
models (12.1 vs. 17.5, 13.1 vs. 14.7, and 0.25 vs. 0.30 for AM PRS, exercise TF, and HRV change, 
respectively). At the individual level prediction accuracy outperformed the baseline model but 
varied greatly across participants (RMSE range 5.5 to 23.6, 5.7 to 18.2, and 0.05 to 0.52 for AM 
PRS, exercise TF, and HRV change, respectively). 
 
Conclusion: Daily recovery measures can be predicted based on commonly measured variables, 
with a small subset of variables providing most of the predictive power. However, at the 
individual level the key variables may vary, and additional data may be needed to improve 
prediction accuracy. 
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1. Introduction  

Coaches and athletes routinely monitor a range of metrics with the hope of gaining insight into 

how an athlete is responding to their training. These can include measures of training load 

(duration and intensity), heart rate variability (HRV), sleep, diet, and daily measures of subjective 

wellbeing, among others.1 Despite careful planning, there can still be large discrepancies 

between the training stimulus prescribed by coaches and experienced by athletes.2 Improved 

understanding of an athlete’s training response could allow a training plan to be better tailored 

to an individual’s needs, and help minimize the risks of non-functional overreaching, illness, 

and/or injury.3 

 

Training load refers to the combination of training volume and intensity, and can be measured 

and classified as either external or internal.4 External training loads are characterized by 

measures such as distance, power, or speed, whereas internal loads reflect the relative 

physiological strain represented by heart rate (HR), blood lactate, and session rating of perceived 

exertion (sRPE).3 Internal load has been recommended as the primary measure when monitoring 

athletes, as it plays a pivotal role in determining training outcomes and can reflect variations in 

the stress response to a given external load due to other stressors such as extreme temperature, 

or accumulated training fatigue.4 Coaches often use subjective wellness ratings by athletes for 

monitoring purposes, which are sensitive to fluctuations in training load.5 However, much of the 

research on the relationship between training load, sRPE, and wellness has been in team sports 

and not endurance sports, and has not accounted for potential interactions between training 

load, sleep, and dietary intake.  



 

From a nutrition perspective, athletes and sports nutritionists are continually challenged to 

balance the nutritional demands of training while also optimizing body composition and 

promoting skeletal muscle adaptation. Increasing energy and carbohydrate intake during periods 

of intensified endurance training can attenuate symptoms of overreaching,6 yet many athletes 

routinely train in an overnight-fasted state and/or restrict carbohydrate intake before exercise.7 

The interaction between dietary intake and training quality in the context of longer-term, self-

selected training and nutrition intake has not been well characterized. Although logistically 

challenging, investigating longer-term dietary intake during endurance training would help 

elucidate the role of self-selected nutrition intake on daily recovery during endurance training. 

The increased availability of valid and user-friendly mobile food-tracking apps can help facilitate 

data collection while minimizing disruption to an athlete’s training and lifestyle.  

 

The relationship between training, diet, sleep, and other lifestyle factors is complex, as many 

factors converge which may have non-linear and/or temporal relationships, with one often 

influencing the other. This underscores the need for more advanced tools for understanding 

athlete readiness and wellbeing. Machine learning techniques have been increasingly used in 

sports science, particularly in the context of multi-factorial data such as predicting injuries,8 

training feeling scores,9 and subjective wellbeing,10 as well as in nutrition research to model 

complex nutrient interactions and address confounding variables.11 However, to our knowledge 

machine learning has yet to be used to predict an endurance athlete’s perceived recovery or HRV 

based on a combination of factors routinely monitored by athletes and coaches. Therefore, the 



goal of this study was to predict perceived AM recovery status, wellbeing during exercise, and 

daily change in HRV based on training metrics, dietary intake, sleep, HRV, and subjective 

wellbeing. Secondary aims were to highlight the most important variables for accurate 

prediction, and to examine the influence of factors that can tangibly be manipulated by coaches 

and athletes.  It is hoped that such information can allow coaches to focus on a subset of variables 

with the strongest predictive power.  

  

2. Methods 

2.1 Study design 

This observational study monitored the daily self-selected nutrition intake, exercise training, 

sleep habits, HRV, and subjective wellbeing of endurance athletes for 12 weeks. Throughout the 

study period, participants were free to perform any type of exercise and consume any type of 

diet. Measures of diet, training, sleep, HRV, and subjective wellbeing were recorded daily. Models 

were created for three primary outcome variables — two subjective measures (AM Perceived 

Recovery Status (PRS) score, and Training Feeling (TF) during exercise score), and an objective 

measure of change in resting HRV from the previous day (HRV change). The study was open to 

male and females aged 18 or older who train at least seven hours per week, were using a 

smartphone app to track their dietary intake at least five days per week, capture HRV daily, and 

track sleep duration using a wearable device. All study protocols and materials were approved 

by the Auckland University of Technology Ethics Committee (22/7), and all participants provided 



informed consent prior to starting the study. Data collected from the same athletes related to 

training load and carbohydrate periodization have been reported elsewhere.12 

 

2.2 Participants 

Fifty-five endurance athletes (61.8% male, aged 42.6 ± 9.1 years, training 11.6 ± 3.9 hours per 

week) took part in the study. The primary sports represented were triathlon (67.3%), running 

(20.0%), cycling (10.9%), and rowing (1.8%). The self-reported competitive level included 

professional (2.6%), elite non-professional (qualify and compete at the international level as an 

age-group athlete, 34.6%), high-level amateur (qualify and compete at National Championship-

level events as an age-group athlete, 25.6%), and amateur (enter races but don't expect to win, 

or train but do not compete, 37.2%) athletes. 

 

2.3 Assessment of self-reported exercise 

All exercise was recorded in Training Peaks software (TrainingPeaks, Louisville, CO, USA). Each 

session was noted for modality (e.g., bike, run, swim), total time, and session rating of perceived 

exertion (sRPE13) using the Borg CR100® scale, which offers additional precision compared with 

the CR10 scale.14 Participants were instructed to rate their perceived effort for the whole training 

session within 1-h of exercise, although sRPE scores are temporally robust from minutes to days 

following a bout of exercise.13 As an indicator of the type of feedback that occurs between 

athletes and coaches on a daily basis, participants also rated a subjective (TF) score from 0–100 

using a customized scale based on the Perceived Recovery Status (PRS) scale15 (supplemental Fig. 

1). Athletes were instructed to consider how they felt during the training session, which was 



distinct from the sRPE. For example, someone could feel very good during a hard workout and 

very poor during an easy workout, or vice-versa. Additionally, participants noted the amount of 

carbohydrate (in grams) consumed within the 4-h pre-exercise window.  

 

2.4 Assessment of self-reported dietary intake 

Details of dietary assessment have been described elsewhere.12 Briefly, participants were 

instructed to maintain their typical dietary habits and record all calorie-containing food and drink 

consumed for the duration of the 12-week study, using the MyFitnessPal application 

(www.myfitnesspal.com). Due to previous habitual use, three participants used the Cronometer 

application (www.cronometer.com) and one participant used the Carbon application 

(www.joincarbon.com).  Incomplete days of tracking (2.2 ± 4.6% of days per participant) were 

removed from the data, and analysis of the calorie intake trend over time was performed for 

each participant as an additional check of compliance as previously described.12 Four participants 

were excluded from the analysis due to the detection of a downward trend in daily calorie intake 

that could not be explained by changes in training load or body weight. 

 

2.5 Assessment of resting HRV and sleep  

Resting HRV was recorded daily, and analyzed using the natural logarithm of the square root of 

the mean sum of the squared differences (Ln rMSSD) between R–R intervals.16 For participants 

using Oura ring (Oura Health, Oulu, Finland) or Whoop straps (Whoop, Inc., Boston, USA) 

nocturnal HRV was used, whereas measurements were taken upon waking for those using the 

HRV4Training (www.hrv4training.com), Elite HRV (Elite HRV, Inc., Asheville, USA), or ithlete (HRV 



Fit Ltd. Southampton, UK) smartphone apps. High correlations have been reported between 

nocturnal and morning HRV measurements.17  Nightly sleep duration was recorded using 

wearable devices, which included Oura ring, Whoop strap, Applewatch, Fitbit, and Garmin 

models. These consumer-grade devices offer adequate accuracy in detecting sleep-wake times, 

but not sleep staging.18-21 Further details of participant devices used for HRV and sleep tracking 

are shown in supplemental figure 2.   

 

2.6 Assessment of subjective wellbeing 

Each morning participants answered four questions related to subjective wellbeing, which have 

been shown to respond consistently to training-induced stress.22 The PRS scale15 was used to 

measure overall recovery with athletes manually typing a number into Training Peaks software. 

The 100-point version of the scale was used, which has been shown discriminate between 

answers better than the 10-point scale.14 In addition, ratings of life stress (1–7), sleep quality (1–

7), and muscle soreness (1–10) were also recorded into the software each morning 

(Supplemental Fig. 3). Participants were familiarized with all scales prior to starting the study. In 

addition, participants were asked to record their body mass at least one time per week. 

 

2.7 Data preparation 

Training load was calculated for each workout as the product of sRPE and duration of exercise in 

minutes,23 divided by 10 to account for the 100-point scale. Exercise was summed into daily totals 

for workout duration and training load, along with coded variables for modality of workout (e.g., 

swim, bike, run, strength, other) and if any training was performed in the fasted state. Because 



dietary protein and fat ingestion have minimal effects on substrate oxidation,24 fasted training 

was defined as consuming < 5 g of carbohydrate in the 4-h pre-exercise window. For multiple 

exercise sessions in a single day, a weighted mean based on the duration of each session was 

used to calculate a single daily value for pre-exercise carbohydrate ingestion and TF score. 

External load metrics such as HR, power, or pace were not collected because many athletes 

undertake activities that can’t be quantified on a common scale such as strength training, yoga, 

or swimming without a HR monitor. This was deemed acceptable because sRPE is considered to 

be a valid and reliable method for calculating training load across modalities.23 Seven-day rolling 

measures for training monotony (a measure of day-to-day variability in the weekly training load, 

calculated as average daily load divided by the standard deviation) and training strain (product 

of total weekly training load and training monotony) were calculated.23 Exponentially weighted 

7-d moving averages of training load, HRV, and resting HR were calculated to account for residual 

effects of recent training.25 A sleep index value was calculated as the product of sleep duration 

and subjective sleep quality.26 Daily training volume (hours per day) and training load for each 

participant is presented in supplemental Figures 4 and 5. 

 

Participants were excluded from the analysis if they trained an average of less than 6 h per week 

(n = 8) or did not log at least 85% of the required data points (n = 3). Participants who did not 

complete the full 12 weeks due to illness, injury, or drop-out but completed at least 6 weeks of 

tracking were included in the analysis (n = 11). Among participants included in the analysis (n = 

40), 2.5 ± 1.7 % of data points were missing. Missing values were imputed at the individual level 



using multiple linear regression and nearest neighbor algorithms for diet and training measures, 

and using median values for other variables.27  

 

To increase the available options for modeling and interpretation, the data were transformed 

from a time series into independent observations. A time series is a sequence of data points at 

equally spaced points in time and ordered chronologically. Time series data cannot be analyzed 

with common techniques such as linear modeling if the day-to-day observations are correlated 

with observations at previous time points (i.e., auto-correlated) and are not independent of each 

other, as key assumptions of linear regression are violated.28 To account for this, a process of 

Markov unfolding29 was used. This is based on the Markov assumption, whereby the values in 

any state are influenced only by the values of the immediately preceding or a small number of 

immediately preceding states.30 Data were analyzed for autocorrelation, and it was determined 

that a maximum of seven previous days could have a relevant influence on a given day’s data. 

This makes logical sense, as many behavioral and training schedules follow a weekly cycle. The 

process of Markov unfolding entails copying the columns of the original dataset, shifting them 

down by one row, and stacking them as new columns on the right of the dataset (labeled as lag 

1). This is repeated with shifts of 2–n, where n is the number of previous days to be included. The 

first n rows from the beginning of the dataset are discarded, as there are missing values for some 

of the lags. This results in a dataset that is a few rows shorter, but n + 1 times wider than the 

original dataset and the observations can be treated as totally independent, allowing the use of 

any modeling approach that assumes independent data. This approach to making the dataset 

~7x wider can result in the curse of dimensionality, whereby the test error tends to increase as 



the dimensionality of the problem (i.e. the number of predictors) increases,28 but this may be 

mitigated by the use of algorithms which use regularization to conduct feature selection.27 It 

should be noted that the variables created as 7-d rolling averages would allow the previous 14 

days of information to be provided to the model (i.e., a 7-d average from 7 days ago). All analyses 

were carried out with R version 4.0.3 (The R foundation for Statistical Computing, Vienna, 

Austria). Descriptive statistics are provided as mean ± SD. 

 

2.8 Models 

A series of models were built for the three outcomes of interest — AM PRS score, exercise TF 

score, and daily change in HRV, at both the group level (full dataset) and for each individual 

participant. To reduce multicollinearity, highly correlated predictors (Pearson correlation > 0.85) 

were removed from the dataset prior to training each model by removing the one with the largest 

mean absolute correlation with the rest of the data.27 For each outcome, models were made 

using the primary subset of variables (MAIN), and a subset of variables that can tangibly be 

manipulated by athletes/coaches (ACTIONABLE). Included variables are shown in Table 1. 

Descriptive statistics of these variables are provided in supplemental table 1. At the group level, 

ensemble models (described below) for each outcome were made using the two variable subsets 

(MAIN and ACTIONABLE). For comparison with the ensemble models, three linear regression 

models were created — a least absolute shrinkage and selection operator (LASSO) regression 

model using the MAIN set of variables, a linear mixed model using the 5 variables with the highest 

importance scores from the MAIN ensemble as fixed effects and participant ID specified as a 

random effect (Top 5 from group MAIN), and an intercept-only model as a baseline comparison 



that was simply predicting the mean value. The LASSO was chosen as a linear model that can be 

used with a large number of variables due to its built-in feature selection process, the mixed 

model was chosen to determine how a very limited subset of variables would perform, and the 

intercept-only baseline was used to establish a realistic upper bound for the root mean squared 

error (RMSE), as useful prediction models should have lower RMSE values. At the individual level, 

in addition to the MAIN and ACTIONABLE models, linear models were made consisting of the 5 

variables with the highest importance from the MAIN group model (Top 5 from group MAIN), the 

5 variables with the highest importance from their own respective MAIN model (Top 5 from 

individual MAIN), and an intercept-only model as a baseline comparison. 

 

For group models, data were split into a training set (75%) and a testing set (25%). To avoid data 

leakage,31 all observations from a given participant were assigned to either the training or testing 

set, and preprocessing steps such as standardization and removal of highly correlated variables 

were performed only using the training set. Nine different learning algorithms, including 

parametric and non-parametric methods, were trained for each model using the Tidymodels 

ecosystem in R. These included three linear regression models with regularization (Ridge, LASSO, 

and LASSO with interaction terms), three non-linear regression models (Multivariate Adaptive 

Regression Spline (MARS), Support Vector Machine (SVM), and K-Nearest Neighbors (KNN)), two 

ensembles of decision trees (XGBoost and Light GBM), and a single layer neural network (NNET). 

Ten-fold cross-validation was repeated five times for tuning parameter optimization, and the 

tuned models were combined into a stacked ensemble using the Stacks R package. Stacking is a 

method that takes the outputs of many models and combines them to generate a new ensemble 



model.32 Predictions from each candidate in the ensemble are weighted based on a stacking 

coefficient, generated by the betas of a LASSO regression model fitting the true outcome with 

the predictions given in the data stack. Model performance (RMSE and R-squared) was calculated 

using the hold-out (testing) dataset. Variable importance (a measure of the strength of the 

relationship between observed values of the variable and the observed response) for the group 

ensemble models was determined using a permutation-based approach, which measures a 

feature’s importance by calculating the increase of the model’s prediction error after permuting 

the feature.33 In addition to variable importance, partial dependence profiles were created to aid 

model interpretation, which show how the expected value of a model prediction changes after 

accounting for the average effect of all other variables.33 A model info sheet for detecting and 

preventing data leakage is provided as a supplemental file based on the recommendations from 

Kapoor and Narayanan.31 

 

The individual models used the same algorithms mentioned above, except for the NNET. Ten-

fold cross-validation was repeated ten times, with the best algorithm and parameter set chosen 

based on the lowest RMSE. Accuracy metrics were calculated using 500 bootstrap resamples. 

Variable importance was calculated using a model-based approach,34 and scaled so the total 

importance summed to 1. Because individual models could use different algorithms for each 

participant, scaling the importance allowed a summarization of importance across different 

model types by taking the mean values. To compare performance among the five types of 

individual models (best model MAIN, best model ACTIONABLE, Top 5 from group MAIN, Top 5 

from individual MAIN, and baseline intercept-only model), a linear mixed model was used, with 



RMSE from each model used as the dependent variable, model type specified as a fixed effect, 

and participant ID specified as a random effect. Estimated means were calculated using the 

Emmeans R package, and comparisons made using the Tukey test.  

 
Table 1 Overview of variables included in the modeling 

Category  Variables 

Training 

Exercise duration (min), modality, fasted training (yes/no), number of workouts per day, 
number of consecutive training days, session rating of perceived exertion (sRPE, highest 

for a single session each day and a duration-based weighted average for the day), 
training load (TL; min x sRPE), 7-d exponentially weighted and non-weighted moving 
average of TL, 7-d highest single-day TL, training monotony (weekly mean TL/weekly 
SD), training strain (weekly load x monotony), training feeling (TF), day of the week 

Dietary 

Total kcal, carbohydrate (CHO, g/kg), fat (g/kg), protein (g/kg), pre-exercise CHO (g), 3-d 
and 7-d moving averages of CHO, fat, protein, and kcal intake, 7-d moving average 

standard deviation of daily CHO intake and CHO monotony (weekly mean intake/ weekly 
SD) 

Sleep 
Sleep duration (hours), sleep index (sleep duration x quality), 7-d moving average sleep 

duration and sleep index 

Subjective 
measures 

Perceived Recovery Status (PRS), soreness, life stress, sleep quality 

Non-exercise 
Resting HRV and resting HR (daily, change from previous day, and 7-d moving averages 

of each) 

Planned 
interactions 

AM PRS: 7-d average TL * 3-d average CHO intake 
7-d training monotony * 3-d average CHO intake 

Exercise TF: Pre-exercise CHO intake * TL 
Prior day CHO intake * prior day TL 

7-d average CHO intake * 7-d average TL 
    HRV: Prior day TL * sleep duration 
Prior day TL * prior day AM PRS score 

Subject 
characteristics 

Participant ID, age, HRV app, sleep app, percentage of missing data, competitive level, 
primary sport, training age, body weight 

Top 5 Variables 
from group MAIN 

AM PRS: AM PRS 1 and 2 days ago, soreness, life stress, sleep quality  
Exercise TF: AM PRS, AM PRS 2 days ago, pre-exercise CHO, training strain 7 days ago, 

exercise duration (min) 
    HRV: 7-d avg HRV change 1 day ago, HRV change 1, 2, and 7 days ago, HRV 1 day ago 

Italics indicate variables that were removed from the ACTIONABLE models. Descriptive statistics 
for these variables are provided in supplemental table 1.  
 



3. Results  

A total of 3,325 days of tracking were included in the analysis (83.1 ± 9.6 per participant). Average 

participant training volume was 11.9 ± 3.5 h per week. Mean daily dietary intake was 38.9 ± 8.6 

kcal/kg, 4.0 ± 1.5 g/kg carbohydrate, 1.9 ± 0.4 g/kg protein, and 1.7 ± 0.5 g/kg fat. Average sleep 

duration was 7.5 ± 0.7 hours per night. Values for the three main outcomes were 61.7 ± 18.5, 

62.2 ± 15.7, and 0.0 ± 0.3 for AM PRS, exercise TF, and HRV change, respectively. Density plots 

showing the distribution of the three main outcome variables for each participant are shown in 

supplemental Figure 6. MAIN group models demonstrated improved accuracy compared with 

the baseline model (Table 2). Accuracy of the individual models was improved compared with 

the baseline models (Table 3) but varied more than 5-fold across participants (Figure 1). Figures 

2–4 show the ten variables with the highest importance from the group modeling for AM PRS 

(Figure 2), Exercise TF (Figure 3), and HRV change (Figure 4), as well as a scatterplot comparing 

predicted vs. actual values (inset into each figure), and partial dependence plots showing how 

the expected value of a model prediction changes based on these variables. Figure 5 shows the 

ten variables with the highest mean importance scores across all participants for the individual 

MAIN models.  

  



Table 2 Accuracy of Group Models 

Outcome Model Variables RMSE [95% CI] R2 
AM PRS Ensemble MAIN 12.1 [11.5, 12.7] 0.52 
AM PRS LASSO MAIN 12.9 [12.3, 13.6] 0.45 
AM PRS LMM Top 5 from MAIN Ensemble 13.6 [13.0, 14.3] 0.41 
AM PRS Ensemble ACTIONABLE 16.4 [15.6, 17.3] 0.16 
AM PRS Baseline Intercept only 17.5 [16.7, 18.4] NA 

Exercise TF Ensemble MAIN 13.1 [12.4, 13.8] 0.23 
Exercise TF LMM Top 5 from MAIN Ensemble 13.1 [12.4, 13.8] 0.22 
Exercise TF LASSO MAIN 13.2 [12.5, 13.9] 0.20 
Exercise TF Baseline Intercept only 14.7 [14.0, 15.5] NA 
Exercise TF Ensemble ACTIONABLE 14.9 [14.1, 15.7] 0.02 

HRV change Ensemble MAIN 0.25 [0.24, 0.26] 0.40 
HRV change LASSO MAIN 0.25 [0.24, 0.26] 0.41 
HRV change LMM Top 5 from MAIN Ensemble 0.26 [0.25, 0.27] 0.33 
HRV change Baseline Intercept only 0.30 [0.29, 0.32] NA 
HRV change Ensemble ACTIONABLE 0.32 [0.31, 0.34] 0 

 
AM PRS: AM Perceived Recovery Status, Exercise TF: Exercise Training Feeling score, LASSO: linear 
regression model with regularization, LMM: Linear Mixed Model with participant ID specified as 
a random effect, RMSE: Root Mean Squared Error, in units of the original measurement (0–100 
for AM PRS and Exercise TF, and Ln rMSSD for HRV change). 
 
 
 
  



Table 3 Accuracy of Individual Models 

Outcome Model Variables RMSE a R2 
AM PRS Linear Top 5 from individual MAIN 12.1 ± 4.3a 0.31 ± 0.17 
AM PRS Linear Top 5 from group MAIN Ensemble 12.4 ± 4.1a 0.28 ± 0.16 
AM PRS * MAIN 12.8 ± 4.2ab 0.23 ± 0.13 
AM PRS * ACTIONABLE 13.3 ± 4.4b 0.19 ± 0.11 
AM PRS Baseline Intercept only 14.2 ± 4.3c NA 

Exercise TF Linear Top 5 from individual MAIN 11.9 ± 3.6a 0.23 ± 0.10 
Exercise TF * ACTIONABLE 12.6 ± 3.3b 0.11 ± 0.07 
Exercise TF Baseline Intercept only 12.7 ± 3.3b NA 
Exercise TF * MAIN 12.8 ± 3.8b 0.12 ± 0.07 
Exercise TF Linear Top 5 from group MAIN Ensemble 12.8 ± 3.6b 0.14 ± 0.11 

HRV change Linear Top 5 from individual MAIN 0.20 ± 0.09a 0.59 ± 0.15 
HRV change * MAIN 0.23 ± 0.11b 0.41 ± 0.19 
HRV change Linear Top 5 from group MAIN Ensemble 0.24 ± 0.09b 0.37 ± 0.09 
HRV change Baseline Intercept only 0.30 ± 0.12c NA 
HRV change * ACTIONABLE 0.31 ± 0.12c 0.08 ± 0.05 

 
AM PRS: AM Perceived Recovery Status, Exercise TF: Exercise Training Feeling score, RMSE: Root 
Mean Squared Error, in units of the original measurement (0–100 for AM PRS and Exercise TF, 
and Ln rMSSD for HRV change). *For MAIN and ACTIONABLE models, values are from the single 
best-performing algorithm (LASSO: 30%, SVM: 30%, XGBoost: 23%, Light GBM: 12%, KNN: 4%, 
Ridge: 1%, and MARS: 0.4% of models). All metrics were established using 500 Bootstrap 
resamples. a Within each outcome, models not sharing any letter are significantly different by the 
Tukey test at the 5% level of significance. 
 
 
 
 



 
 

Figure 1. Root mean squared error (RMSE) of the group and individual models, separated 
by the variable set included in the model and ordered by mean RMSE values. For group 
models, MAIN and ACTIONABLE models represent the ensemble model, and “Top 5 from 
MAIN” represents a linear mixed model with the top 5 features from the MAIN group 
model based on variable importance scores. For individual models, “Top 5 from group 
MAIN” represents a linear model with the same top 5 features from the MAIN group 
model, and “Top 5 from individual MAIN” represents a linear model with the top 5 
features from each participant’s MAIN model. RMSE values were determined using out-
of-sample data for group models and using 500 Bootstrap resamples for individual 
models. 

 
 

 



 

Figure 2. AM PRS group model results from the best performing model (ensemble using 
MAIN variables). Top 10 most important variables based on permutation-based feature 
importance are shown in a boxplot, along with a scatterplot of actual vs. predicted values 
on an out-of-sample dataset (inset), and partial dependence plots for the top 9 
continuous variables (right), where colored lines represent the average of all observations 
shown individually as the grey lines. The vertical dashed line in the boxplot represents the 
full model RMSE from the training dataset. 
 

 

 
Figure 3. Exercise TF group model results from the best performing model (ensemble 
using MAIN variables). Top 10 most important variables based on permutation-based 
feature importance are shown in a boxplot, along with a scatterplot of actual vs. predicted 
values on an out-of-sample dataset (inset), and partial dependence plots for the top 9 
continuous variables (right), where colored lines represent the average of all observations 



shown individually as the grey lines. The vertical dashed line in the boxplot represents the 
full model RMSE from the training dataset. 
 

 

 
Figure 4. HRV change group model results from the best performing model (ensemble 
using MAIN variables). Top 10 most important variables based on permutation-based 
feature importance are shown in a boxplot, along with a scatterplot of actual vs. predicted 
values on an out-of-sample dataset (inset), and partial dependence plots for the top 9 
continuous variables (right), where colored lines represent the average of all observations 
shown individually as the grey lines. The vertical dashed line in the boxplot represents the 
full model RMSE from the training dataset. 

 
 

 
Figure 5. Variables with the highest mean variable importance scores from the individual 
MAIN models for AM PRS (A), Exercise TF (B), and HRV change (C) models. Root mean 
squared error (RMSE) and R-squared (Rsq) values shown are the average of the individual 
MAIN models. 

 
 



4. Discussion 

Athlete monitoring can help coaches better understand how an athlete is adapting to a training 

program, and minimize the risk of developing non-functional overreaching, illness, and/or injury.3 

This study utilized a novel approach to monitoring endurance athletes throughout 12 weeks of 

self-selected training to better understand the factors that can predict an athlete’s day-to-day 

recovery and wellbeing. Key findings from this study are 1) day-to-day recovery measures can be 

predicted based on commonly measured variables, 2) a small subset of variables offers similar 

predictive capability as the full dataset, 3) predictive accuracy varies greatly at the individual 

level, and 4) remote monitoring of multiple training, diet, sleep, and recovery measures can be 

performed throughout longer-term training in real-world environments. 

 

4.1 Model Performance 

All models constructed using the MAIN variables outperformed the baseline model, 

demonstrating utility of the tracked variables. Unexpectedly, performance at the group level of 

the ACTIONABLE models was poor, indicating they alone do not offer any added value for 

predicting the recovery markers used in our study. As shown in the scatterplots in Figures 2–4, 

prediction accuracy was generally worse for scores on the upper and lower ends, likely due to 

the small number of extremely low or high values with which to train the models. At the individual 

level, the most striking finding was the large degree of variation in model performance (Figure 

1). This suggests key variables may be missing from the models that could disproportionately 

affect some athletes more than others. For example, alcohol intake, acute illness, and the 



menstrual cycle are known to influence HRV.35 Moreover, participants spent only ~10% of their 

waking hours engaged in exercise, indicating the potential for many non-exercise factors to 

influence recovery and wellness such as walking, job-related physical activity/stress, massage, 

sauna, and/or ice baths. Future studies could expand on the current work by accounting for some 

or all of these additional factors.  

 

At the group level, the ensemble models displayed the best overall performance, but these 

algorithms can be computationally expensive and slow to run. Because of this, two linear 

regression models were constructed as practical alternatives. The LASSO regression model is well 

suited to handle a large number of predictors because it uses regularization to reduce estimated 

coefficients towards zero,28 essentially removing non-needed variables from the model. We also 

used a linear mixed model of the top 5 variables based on variable importance scores, with 

participant ID included as a random effect. Although the ensemble outperformed the other 

models for AM PRS score, the LASSO and linear mixed model performed well on out-of-sample 

data and the three models had roughly the same accuracy for exercise TF and HRV change (Table 

2).  

 

When constructing individual-level MAIN and ACTIONABLE models, the single best model from 

the suite of machine learning algorithms was chosen as the accepted model. Two linear 

regression models were then made, using the top 5 variables from the group and individual MAIN 

models. The best performance was achieved from the linear models with the top 5 individual 

variables (Table 3), highlighting the importance of a very small subset of variables that coaches 



and practitioners could pay closer attention to. Importantly, the difference in performance 

between linear models of the top 5 from individual and top 5 from group models highlights the 

fact that the most important variables for each athlete will be different (Table 3). From a practical 

perspective, a prudent approach might be to start by monitoring a wide array of variables, and 

reduce the number based on feedback from initial models. 

 

4.2 Variable Importance 

The variable importance calculations of the group-level models revealed a small number of 

variables having a disproportionately large influence on prediction accuracy (Figures 2–4).  This 

finding is corroborated by the generally good performance of the linear mixed models, which 

included only the top 5 variables, and implies the ability for coaches and practitioners to focus 

on just a few of the many variables that are routinely monitored. These include muscle soreness, 

life stress, and sleep quality for AM PRS scores, pre-exercise CHO, training strain, exercise 

duration, and AM PRS for exercise TF scores, and the changes in HRV over recent days for 

predicting the current day’s change in HRV. However, when trying to predict at the individual 

level, the chosen variables should be specific to the individual. The aggregated importance scores 

from the individual models shown in Figure 5 are far more diverse than at the group level, 

supporting the notion that the most important variables vary among different athletes. For 

example, among two participants with the lowest RMSE values for the AM PRS models, the most 

important variables were muscle soreness, prior-day PRS scores, and prior-day protein intake for 

one athlete, while the top variables for another athlete were all related to sleep (prior night, 

previous nights, and 7-d rolling averages). The importance of the individual differences is further 



evidenced by the improved performance (2–17% improvement in RMSE) of the individual linear 

models that used the individual’s top 5 variables compared with the top 5 group variables (Table 

3).  

 

4.3 Explain vs. Predict 

The priority of a statistical model can be to explain (i.e., test causal explanations), predict (new 

or future observations), or describe the data structure in a compact manner.36  The focus of this 

analysis was on predictive power, for several reasons. The observational nature of our data from 

free-living environments is better suited to predictive modeling, whereas laboratory-controlled 

experimental data are better for explanatory modeling.36 In the context of a large dataset with 

complex relationships, predictive modeling can help uncover potential new causal mechanisms 

and lead to the generation of new hypotheses.36 This is reflected in the variable importance 

scores, particularly for HRV change, where few of the top predictors could be thought of as having 

any causal role. However, new hypotheses could be generated relating to a potential reversion 

to the mean effect for HRV, for example, based on the negative relationship between the top 

predictors and the daily change in HRV (Figure 4, partial dependence plot). From a practical 

perspective, use of these models should be limited to communicating the expected values for an 

athlete on a given day, rather than suggesting ways to modulate the variables of interest. 

 

4.4 Athlete monitoring  

Direct monitoring of training and fatigue responses is common in high-performance sport 

environments.1 Better understanding of an athlete’s response to training and recovery could help 



coaches improve the effectiveness of a training program. However, it is challenging to control 

for, or even account for, the large number of variables potentially influencing an athlete’s 

response to training, particularly over longer time frames. Observational studies can help to 

answer questions that would not be feasible to study in a controlled laboratory environment. A 

strength of this study design is the length of monitoring period, which allowed athletes to capture 

a range of daily and weekly training volumes. Advances in technology have also opened far more 

opportunities to gather valid and reliable data from athletes in their home training 

environments.37,38 Although dietary intake can often be underreported, nearly all previous 

studies have used short-duration food records rather than smartphone apps. It has been 

suggested that familiarity with and interest in keeping food records may lead to more reliable 

estimates of energy intake,39 and in our study all participants were already habitually recording 

dietary intake using a smartphone app. Although this approach to gathering data would not suit 

all athletes, many are accustomed to daily tracking of a wide range of data, and it is likely that a 

model-based analytical approach could offer valuable insight.  

 

4.5 Machine Learning 

Machine learning has been increasingly used in sports science, often for predicting injuries,8 but 

also for predicting training feeling scores,9 and subjective wellbeing.10 Machine learning 

algorithms can be criticized for their lack of transparency, particularly when combined in an 

ensemble as we did in this study. This approach was chosen to optimize prediction accuracy, with 

linear models constructed as a transparent alternative. Indeed, the ensemble models achieved 

the best performance, but the linear models also performed nearly as well (Tables 2 and 3). This 



finding is echoed by a systematic review showing no performance benefit of machine learning 

over logistic regression for clinical prediction models.40 However, in our study the complex 

models played a critical role in being used to identify the top variables for the linear models. 

 

4.6 Limitations  

Limitations of this study relate to the observational and uncontrolled nature of the data 

collection, the large number of variables collected, and the potential for important factors to 

have not been collected. Participants were required to record their training, diet, sleep, HRV, and 

subjective wellbeing daily for 12 weeks. We specifically recruited people who were already doing 

this routinely, as this approach would not be practical for all athletes. Data integrity was checked 

based on the number of missing values, and by looking for trends in dietary reporting that could 

not be explained by changes in training load or body weight. Nonetheless, it is possible that 

participants did not always enter data as accurately as possible. There is also the risk of bias in 

reporting if an athlete is aware that their coach or a researcher will be seeing their data, 

answering based on what they think is desirable. Despite capturing a wide range of variables, we 

only had a single measure of internal training load and no measure of external load. This was 

done to accommodate athletes training across a variety of endurance and strength training 

modalities. Future research in single-sport athletes (e.g., cyclists or runners) would allow 

additional load metrics like HR, total work, or distance to be more easily factored into the 

modeling. In addition, energy availability, alcohol intake, and menstrual cycle tracking would be 

desirable metrics to include. Future work could also benefit from using continuous sliding scales 

for subjective wellbeing measures that would allow decimal places to be recorded, rather than 



the 7- or 10-point integer scales built-in to the training monitoring software. This was the reason 

we used the 100-point, rather than 10-point PRS scale.14 Finally, no performance measures were 

captured, leaving the ultimate utility of this approach unclear. 

 

5. Perspective 

To our knowledge, this is the first study of its kind to track this diverse range of self-selected and 

self-reported training of endurance athletes. Findings from this study, and the approach used, 

can enable coaches and athletes to better understand and focus on the few key measures which 

can offer an outsized amount of predictive capability. Although the prediction accuracy could 

likely be improved by capturing additional variables of interest, the current predictions offer 

information that is practically relevant. For example, an RMSE value of 12 from our model using 

the 100-point scale would translate to an average error of 1.2 when using a 10-point wellbeing 

scale, providing a coach with a useful gauge of an athlete’s readiness. These data also reveal the 

importance of looking into factors affecting each athlete, rather than applying group-level 

findings to the individual. Importantly, use of these models should be limited to communicating 

the expected values for an athlete on a given day, rather than suggesting ways to modulate the 

variables of interest. This approach can also be combined with domain knowledge to individualize 

key metrics for athlete monitoring and evaluation. 

 



Figure captions 

Figure 1. Root mean squared error (RMSE) of the group and individual models, separated by the 
variable set included in the model and ordered by mean RMSE values. For group models, MAIN 
and ACTIONABLE models represent the ensemble model, and “Top 5 from MAIN” represents a 
linear mixed model with the top 5 features from the MAIN group model based on variable 
importance scores. For individual models, “Top 5 from group MAIN” represents a linear model 
with the same top 5 features from the MAIN group model, and “Top 5 from individual MAIN” 
represents a linear model with the top 5 features from each participant’s MAIN model. RMSE 
values were determined using out-of-sample data for group models and using 500 Bootstrap 
resamples for individual models. 
 
Figure 2. AM PRS group model results from the best performing model (ensemble using MAIN 
variables). Top 10 most important variables based on permutation-based feature importance are 
shown in a boxplot, along with a scatterplot of actual vs. predicted values on an out-of-sample 
dataset (inset), and partial dependence plots for the top 9 continuous variables (right), where 
colored lines represent the average of all observations shown individually as the grey lines. The 
vertical dashed line in the boxplot represents the full model RMSE from the training dataset. 
 
Figure 3. Exercise TF group model results from the best performing model (ensemble using MAIN 
variables). Top 10 most important variables based on permutation-based feature importance are 
shown in a boxplot, along with a scatterplot of actual vs. predicted values on an out-of-sample 
dataset (inset), and partial dependence plots for the top 9 continuous variables (right), where 
colored lines represent the average of all observations shown individually as the grey lines. The 
vertical dashed line in the boxplot represents the full model RMSE from the training dataset. 
 
Figure 4. HRV change group model results from the best performing model (ensemble using 
MAIN variables). Top 10 most important variables based on permutation-based feature 
importance are shown in a boxplot, along with a scatterplot of actual vs. predicted values on an 
out-of-sample dataset (inset), and partial dependence plots for the top 9 continuous variables 
(right), where colored lines represent the average of all observations shown individually as the 
grey lines. The vertical dashed line in the boxplot represents the full model RMSE from the 
training dataset. 
 
Figure 5. Variables with the highest mean variable importance scores from the individual MAIN 
models for AM PRS (A), Exercise TF (B), and HRV change (C) models. Root mean squared error 
(RMSE) and R-squared (Rsq) values are the average of the individual MAIN models. 
 
 
 
Availability of data and materials 



The authors are willing to discuss data sharing under collaborative agreements. Please contact 
the corresponding author. 
 
Code availability 
The R code used in this analysis is publicly available, using a synthetic dataset mimicking the 
original data at https://github.com/Jeffrothschild/ML_predictions_code  
 
 

Supplemental Figures 

Supplemental figure 1 – Training Feeling (TF) scale  
  



 

 
 
Supplemental figure 2. Participant devices used for sleep and HRV tracking.   
 
 
 

 
Supplemental figure 3 – 100-pt PRS scale and scale for other subjective measures 
 
 



 
Supplemental figure 4 – Daily training volume (hours per day) for each participant for each day 
of the study. 
 
 



 
Supplemental figure 5 – Daily training load (product of session RPE and exercise duration in 
minutes) for each participant for each day of the study. 
 



 
Supplemental figure 6 – Density plot showing the distribution of the three main outcome 
variables for each participant. 
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Supplemental Table 1. Descriptive statistics of main variables

stat AM_sleep_qualilty AM_soreness AM_stress
Mean 4.5 4.3 3.2
SD 1.2 1.9 1.2
Min 1 1 1
Max 7 9 8

stat diet_carb_g diet_carb_g_kg diet_fat_g diet_fat_g_kg diet_kcal diet_kcal_kg diet_protein_g diet_protein_g_kg
Mean 281.7 4 116.6 1.6 2759.6 39 136.7 1.9
SD 146.2 2 52.8 0.7 866.9 11.9 46 0.6
Min 0 0 9.2 0.1 626 8 1 0
Max 1351 17.6 386 6.1 7378 122.9 386 5.3

stat exercise_CARB_before exercise_duration_min exercise_load exercise_RPE_max exercise_RPE_weighted exercise_wrkts_per_day
Mean 43.4 102.7 388.3 41.5 36.1 1.5
SD 36.3 74.6 415.5 23.2 20.1 0.9
Min 0 0 0 1 1 0
Max 250.3 589.7 3852.9 120 120 8

stat roll_monotony roll_strain sleep_hours sleep_index pulse
Mean 1.4 3734.3 7.5 33.9 49.5
SD 0.7 2671.7 1.1 10.6 7.1
Min 0.4 7.6 2.1 3.5 30
Max 12.7 20571.9 11.5 77 82

For explanation of variables refer to Table 1 of main paper



Model Info Sheet for Detecting and Preventing 
Leakage in ML-based Science 
 
 
 
 
Section 1: Information about paper or report 
 
 
1) Author(s): Jeffrey A. Rothschild, Tom Stewart, Andrew E. Kilding, Daniel J. Plews 
 
 
 
2) Title of the paper or report which introduces the model 
 
Predicting daily recovery during long-term endurance training using Machine Learning 
analysis 
 
 
3) DOI or permanent link to the paper or report (for example, link to arxiv.org webpage) 
 
 
 
4) License: Under which license(s) are the data and/or model shared? 
 
 
 
5) Email address of the corresponding author 
 
Jeffrey.Rothschild@aut.ac.nz 
 
 
 
Section 2: Scientific claim(s) of interest 
 
 
6) Does your paper make a generalizable claim based on the ML model?  
 
Our models aid the prediction of day-to-day recovery status among endurance athletes 
 
 
7) Is the scientific claim made about a distribution or population from which you can 
sample?  



 
Yes 
If yes: (a) what is the population or distribution about which the scientific claim is being 
made?  
 
Endurance athletes training ≥ 6 hours per week 
 
(b) What is the sample used for the study?  
 
Male and female endurance athletes aged 18 or older who train at least seven hours 
per week and use a smartphone app to track their dietary intake, heart rate variability 
(HRV), and sleep. 
 
 
8) Does the scientific claim only apply to certain subsets of the distribution mentioned in 
Q6?  
 
 Our model might not generalize to athletes not currently tracking the various metrics.  
 
 
 
Section 3: Train-test split is maintained across all steps in creating the model 
 
 
9) Train-test split type: How was the dataset split into train and test sets?  
 
For group models, data were split into a training set (75%) and a testing set (25%). To 
avoid data leakage, all observations from a given participant were assigned to either the 
training or testing set, and preprocessing steps such as standardization and calculations 
for removal of highly correlated variables were performed only using the training set.  
 
For individual models there were not enough data points for a test-train split, so cross-
validation was used for hyperparameter tuning and accuracy metrics were calculated 
using 500 bootstrap resamples. 
 
 
10) Are there duplicates in the dataset? If yes, explain how duplicates are handled to 
ensure the train-test split. 
 
No. 
 
 
 
 



 
 
11) In case the dataset has dependencies (e.g., multiple rows of data from the same 
patient), describe how the dependencies were addressed (for example, using block-
cross validation). 
 
All data splits (test-train and cross-validation) were performed so that a given participant 
could not be in both the training and testing sets. To address potential issues with 
autocorrelation, a process of Markov unfolding was used (described in the manuscript). 
 
 
12) List all the pre-processing steps used in creating your model. For example, imputing 
missing data, normalizing feature values, selecting a subset of rows from the dataset for 
building the model. 
 
Missing data was imputed at the individual level, prior to joining data into a grouped 
dataset. Multiple linear regression and nearest neighbor algorithms were used for diet 
and training measures, and median values were used for other variables 
 
Normalization, the removal of variables with zero variance, and the removal of highly 
correlated variables was performed on the training data, using the recipes R package in 
the Tidymodels framework. 
 
 
13) How was the train-test split maintained during each pre-processing step? If 
applicable, use a separate line for each step mentioned in Q14.  
 
The test-train split is maintained throughout the process in the Tidymodels framework. 
 
 
14) List all the modeling steps used in creating your model. For example, feature 
selection, parameter tuning, model selection. 
 

- Highly correlated variables were removed from the training set 
- Parameter tuning was performed on the 9 different algorithms using a workflow 

set in the workflowsets R package. 
- Models were selected in two main ways: 

o Group models – the tuned models were fed into the Stacks R package, 
which then created an ensemble using bootstrap resampling 

o Individual models – the model (and hyperparameter set) with the lowest 
RMSE was selected as the chosen model 

 
 



15) How is the train-test split is observed during each modeling step? If applicable, use 
a separate line for each step mentioned in Q16.  
 
The test-train split is maintained throughout the process in the Tidymodels framework. 
 
 
16) List all the evaluation steps used in evaluating model performance. For example, 
cross-validation, out-of-sample testing. 
 
Group models – Accuracy metrics were established using the previously unseen test 
dataset 
Individual models – Accuracy metrics were established using 500 Bootstrap resamples 
 
 
17) How is the train-test split observed during each evaluation step? If applicable, use a 
separate line for each step mentioned in Q18. 
 
 
Group models – Accuracy metrics were established using the previously unseen test 
dataset. 
Individual models – Bootstrap resamples were used in lieu of a test-train split. 
 
 
 
 
Section 4: Test set is drawn from the distribution of scientific interest. 
 
 
18) Why is your test set representative of the population or distribution about which you 
are making your scientific claims? 
 
Data were collected and analyzed using 40 athletes from this population. 
 
 
19) Explain the process for selecting the test set and why this does not introduce 
selection bias in the learning process. 
 
The test set was randomly selected from the initial dataset. 
 
 
20) In case your model is used to predict a future outcome of interest using past data, 
detail how data in the training set is always from a date earlier than the data in the test 
set. 
 



Although lagged values were included in the test set, the test-train split was performed 
at the participant level (meaning no participants were in both sets). 
 
 
Section 5: Each feature used in the model is legitimate for the task 
 
 
21) List the features used in the model, alongside an argument for their legitimacy. A 
legitimate feature is one that would be available when the model is used in the real 
world and is not a proxy of the outcome being predicted. You can also include this list in 
an appendix and reference the relevant section of your Appendix here.  
 

Category  Variables 

Training, dietary 
intake, sleep duration 

These are variables that are routinely tracked by athletes and coaches and would 
be expected to have the largest influence on day-to-day recovery 

Engineered features 

We created 7-d moving averages of several factors relating to training load and 
dietary intake, with the assumption that accumulated training load (and/or energy 

deficit/surplus) could influence day-to-day recovery. We also calculated a sleep 
index (sleep duration x quality) based on other published findings. 

Subjective measures 
Athletes daily perceptions of soreness, life stress, and sleep quality were 
considered an important reflection of real-world practices by coaches. 

Non-exercise 
As objective recovery measures, we included resting HRV and resting HR (daily, 

change from previous day, and 7-d moving averages of each) 

Subject 
characteristics 

Participant ID, age, HRV app, sleep app, percentage of missing data, competitive 
level, primary sport, training age, body weight, day of the week. These could help 

to explain variation between athletes. 
For outcome measures recorded in the morning (AM PRS, HRV change), any variables that occurred later the 
same day were excluded from the modeling (e.g., how someone felt during exercise that day, or their dietary 

intake that day). 

 
  
 


