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ABSTRACT 
Autistic children have differences in their movements which impact their functional 
performance. Virtual-reality enables researchers to study movement in safe, engaging 
environments. We used motion-capture to measure how 7-13-year-old autistic and 
neurotypical children make whole-body movements in a virtual-reality task. Although children 
in both groups were successful, we observed differences in their movements. Autistic children 
were less efficient moving to the target. Autistic children did not appear to use a movement 
strategy. While neurotypical children were more likely to overshoot near targets and 
undershoot far targets, autistic children did not modulate their strategy. Using kinematic data 
from tasks in virtual-reality, we can begin to understand the pattern of movement challenges 
experienced by autistic children. 
 

INTRODUCTION 
Autism is diagnosed  based on two core symptom domains–differences in social 
communication and restricted, repetitive patterns of behavior, interests, or activities–but 
differences in movements are also associated features of autism (American Psychiatric 
Association, 2013). Although movement differences are listed as associated features of autism, 
there has been less research in this domain than on the core symptoms used for diagnosis. To 
begin shedding light on the specific nature of movement differences in autistic children, we 
examined how autistic children perform goal-directed, whole-body movements.   
As many as 79-97% of autistic children are at risk of or have motor difficulties compared to 
general population norms (Bhat, 2020; Green et al., 2009; Hilton, Miller, et al., 2021; Zhang, 
Whilte, Klohr, & Constantino, 2012). These differences begin early in development and persist 
throughout childhood (Bhat, Landa, & Galloway, 2011; Fournier, Hass, Naik, Lodha, & 
Cauraugh, 2010; Lloyd, MacDonald, & Lord, 2013; Perin et al., 2019; Van Waelvelde, Oostra, 
Dewitte, Van Den Broeck, & Jongmans, 2010). In particular, autistic individuals often have gross 
motor differences, beginning with delays in meeting motor milestones (Davidovitch, Stein, 
Koren, & Friedman, 2018; Fulceri et al., 2019), continuing through the school years with 
differences in performance on standardized motor assessments (Fisher et al., 2018; Green et 
al., 2009; Jansiewicz et al., 2006; Liu & Breslin, 2013; Miller et al., 2021; Perin et al., 2019; 
Purpura, Fulceri, Puglisi, Masoni, & Contaldo, 2020), and persisting into adulthood as evidenced 
by decreased postural control and stability (Doumas, McKenna, & Murphy, 2016; Lim, 
Partridge, Girdler, & Morris, 2017). These motor differences are often related to the functional 



 

   

                    2 

 

outcomes of autistic people (Licari et al., 2019; Travers et al., 2017). Although these studies 
have documented the presence of motor problems in autism using motor milestone checklists, 
standardized assessments of motor ability, and measures of postural stability, there has been 
little attention paid to how movements of autistic children may differ from those of 
neurotypical children in terms of their efficiency, variability, and accuracy. 
Mastery of early motor skills is necessary to access many early developmental opportunities 
(Adolph, 2008), and motor skills are foundational to the development of skills in many other 
domains (e.g. affect, perception, social behavior, tool-use, additional motor skills; Adolph & 
Robinson, 2013). In autism, motor difficulties may impede children’s abilities to engage in many 
activities of daily living (ADLs; Fisher et al., 2018; Licari et al., 2019). Delayed sitting and crawling 
in infants at higher likelihood of autism have been linked to delays in the development of 
communication skills (LeBarton & Iverson, 2016). The development of self-care behaviors (e.g, 
eating, bathing, toileting, and dressing) in autistic children is related to locomotion, grasping, 
and visuomotor integration (Jasmin et al., 2009). While many autistic children eventually learn 
to perform most of these activities at some level of competency, underlying motor control 
differences likely limit their efficiency, accuracy, or level of independence.  
 Researchers have begun to examine how movements made by autistic individuals may 
differ from neurotypical individuals. Autistic individuals exhibit differences during a wide array 
of movement types including quiet standing (for review, see Lim et al., 2017), leaning (Miller, 
Caçola, Sherrod, Patterson, & Bugnariu, 2019; Wang et al., 2016), stepping (Bojanek, Wang, 
White, & Mosconi, 2020), reaching (Glazebrook, Elliott, & Lyons, 2006; Glazebrook, Elliott, & 
Szatmari 2008; Rodgers, Travers, & Mason, 2019), grasping (Carment et al., 2020; Mosconi et 
al., 2015), catching (Chen et al., 2019), tool-use (Mostofsky et al., 2006), and handwriting (Grace, 
Enticott, Johnson, & Rinehart, 2017). To date, postural control (e.g., standing, leaning, stepping) 
and upper extremity movements (e.g., reaching, grasping, catching, tool-use, handwriting) have 
been the primary focus of many studies. However, these studies have not provided 
information about how autistic individuals make whole-body movements to accomplish a task.  

Autistic individuals consistently demonstrate less stable posture (Lim et al., 2017) and 
less efficient movements across a wide range of tasks (Cook, 2016). These differences may put 
autistic individuals at an elevated risk for fatigue and falls (Maki & McIlroy, 1996; Zwicker, Suto, 
Harris, Vlasakova, & Missiuna, 2018). Specifically, medial-lateral postural control is a strong 
predictor of fall risk in community-dwelling elderly individuals (Swanenburg, de Bruin, 
Uebelhart, & Mulder, 2010) and individuals with multiple sclerosis (Sun, Hseih, & Sosnoff, 
2019), but has not been studied in autistic individuals during goal-directed whole-body 
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movements. Additionally, most studies of postural stability and control with autistic individuals 
have either used static tasks (for review, see Lim et al., 2017), or dynamic tasks that constrain a 
participant’s foot placement and movements (e.g., Miller et al., 2019). These limitations 
constrain our ability to generalize the results of static postural control studies in autism to 
dynamic postural control ability, and to generalize the results of both static and dynamic 
postural control studies in neurotypical development to autistic individuals. The approach used 
in prior studies also limits our ability to evaluate the efficiency of goal-directed whole-body 
movements in autism.  

In this study, we used a medial-lateral dynamic postural control task with no constraints 
on the types of movements that participants use to complete the task. This allowed us to 
investigate the efficiency, variability, and accuracy of autistic individuals’ movements in the 
medial-lateral direction, as well as the postural control strategies that autistic individuals use to 
complete whole-body goal-directed tasks. By focusing on these measures, we can begin to 
ascertain which sensorimotor mechanisms are driving performance differences. For example, 
low efficiency in the path taken to a target implicates differences in motor planning and 
execution (Chern et al., 2010), high variability in movements implicates differences in on-line 
modification of movements in response to sensory feedback mechanisms (Adamovich, et al., 
2001; Zheng et al., 2019), and low accuracy of an overall movement implicates differences in 
visuomotor integration of information about spatial locations of targets (Zheng et al., 2019). 
Consequently, these movement differences may indicate difficulty maintaining postural control 
during dynamic tasks, leading to increased risk of falls or fatigue (Maki & McIlroy, 1996; 
Swanenburg, et al., 2010; Zwicker et al., 2018) and decreased participation in activities (Cairney 
et al., 2010; Izadi-Najafabadi et al., 2019).  

New developments in the fields of virtual reality and gaming have provided a wide 
range of opportunities for researchers to measure the efficiency of movements and movement 
strategies in highly-controlled, safe, and engaging tasks for children (Malihi et al., 2020). Prior 
work with autistic children has focused primarily on the use of virtual reality for the assessment 
and teaching of social skills (for review, see Miller & Bugnariu, 2016). Conversely, work with 
neurotypical and other neurodivergent populations (e.g., developmental coordination disorder, 
cerebral palsy, Parkinson’s disease) have used virtual reality as a tool for the assessment of 
movements (Canning et al., 2020; Gonsalves, Campbell, Jensen, & Straker, 2015; Levac et al., 
2010). In related work, researchers have begun using video games to distinguish between 
autistic and neurotypical children by examining body movement (Ardalan, Assadi, Surgent, & 
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Travers, 2019) and imitation (Tunçgenç et al., 2020) but virtual reality has not been widely 
utilized in this way, with a few notable exceptions (e.g., Greffou et al., 2012; Miller et al., 2019).  
We have extended the use of virtual reality technology in autistic children by integrating it with 
motion capture, which has enabled us to precisely quantify and characterize differences in how 
autistic children make goal-directed, whole-body movements (Miller, Bugnariu, Patterson, 
Wijayasinghe, & Popa, 2017). Specifically, we use this method to examine goal-directed 
movement efficiency and variability, such as trial duration and path length (i.e., endpoint 
trajectory). These indices of movement efficiency and variability have been used to measure 
differences in movements in pediatric and adult populations with neurotypical development 
(Levac et al., 2010; Sveistrup, Schneiberg, McKinley, McFadyen, & Levin, 2008), cerebral palsy 
(Schneiberg, McKinley, Gisel, Sveistrup, & Levin, 2010), stroke (Longhi, Merlo, Prati, Giacobbi, & 
Mazzoli, 2016), Parkinson’s disease (Stylianou, McVey, Lyons, Pagwa, & Luchies, 2011), and 
autism (Glazebrook et al., 2006). Using this innovative approach to measuring movement 
efficiency and variability differences between autistic and neurotypical children, we can begin 
to understand the unique pattern of movement challenges experienced by autistic children.    

 Current study 
 In autism, there has been work on general gross motor skills and static postural control, 
but there is less work on dynamic, goal-directed, whole-body movements. In this study, we 
examined (1) accuracy, (2) spatial efficiency, and (3) variability of whole-body movements to a 
static target in autistic and neurotypical children using immersive virtual reality and motion-
capture technology. We examined whether (1) autistic children could successfully complete 
whole-body medial-lateral movements to a static target. We hypothesized that (1) autistic 
children would be as successful as neurotypical children in completing this task. We examined 
(2) how spatially efficient autistic children’s movements and the amount of time autistic 
children used to complete the task compared to neurotypical children. We hypothesized that 
(2) autistic children would be less spatially efficient and use more time to complete the task 
than neurotypical children. We also examined the (3) variability in autistic children’s path length 
and how children adjusted their movements to the target based on the distance from their 
starting position to the target location. We hypothesized that (3) autistic children’s movements 
would be more variable than neurotypical children’s movements.  
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METHOD 

Participants 

Potential autistic or neurotypical participants were recruited via recruitment flyers and word of 
mouth for this study from a major metropolitan area in the state of Texas in the United States. 
Potential participants with a current or prior diagnosis of a genetic or neurological disorder 
(not including autism), brain injury, meningitis, structural brain abnormality, motion sickness, 
neurofibromatosis, seizure disorder, head injury or concussion with loss of consciousness, 
psychiatric diagnosis (not including anxiety or depression), movement disorder (e.g., cerebral 
palsy), or oculomotor disorder were excluded from participation, as well as those who were 
currently taking benzodiazepines or antipsychotics. Participants who scored < 70 in the 
nonverbal domain of the WASI-II (Wechsler, 2011) were also excluded. Neurotypical individuals 
that met any of the exclusion criteria for the autistic group, had a score of > 7 on the Social 
Communication Questionnaire (Rutter, Bailey, & Lord, 2003), or had any first-degree relatives 
with a diagnosis of Autism Spectrum Disorder, Asperger’s Syndrome, or related developmental 
disorder were excluded from participation. For the autistic group, the participant’s guardian 
confirmed that their child had a prior diagnosis of Autism Spectrum Disorder or Asperger’s 
syndrome from an educational or healthcare professional according to DSM-IV or DSM-V 
criteria. This community diagnosis was confirmed by the research team using the ADOS-2  
(Lord et al., 2012) and ADI-R (Rutter, Le Couteur, & Lord, 2003) prior to experimental testing. 
This study was approved by the North Texas Regional Institutional Review Board in accordance 
with U.S. Federal Policy for the Protection of Human Subjects. Prior to participation, all 
guardians gave informed consent, and all minor participants gave assent. 

Safe Zone Task 

The Safe Zone task involves a blue ball (29.21 cm in diameter) controlled by the 
participant and a green safe zone (a green rectangle, 31.75 cm across) projected onto an 
immersive virtual reality screen (Figure 1). The task requires a participant to move their blue 
ball (controlled by a marker placed on the participant’s 7th cervical vertebrae, C7) in the 
mediolateral direction to a safe zone within 3 s. Participants’ movements were amplified 3.65 
times that of the screen distance (e.g., a participant moving from the center of the screen to 
the safe zone at 97.85 cm would need to move their body 26.8 cm to overlap the safe zone). 
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The safe zone appeared on the left or right side of the screen at either 48.93 cm (requiring the 
participant to move 13.4 cm from center) or 97.85 cm (requiring the participant to move 26.8 
cm) from the center of screen in a random order. Each trial began with the participant standing 
in the middle of the screen and a fixation cross at the center of the screen for 600ms. 
Following the cross, the trial began when the user-controlled ball and the safe zone appeared 
simultaneously on the screen (Figure 1A). Participants were instructed to move their body to 
get their ball into the safe zone (For full task instructions, see Appendix A). The participant 
could lean and/or step to move their ball to the safe zone. Participants were also instructed to 
return to the middle of the screen and stand on red foot markers taped to the floor 
approximately shoulder-width apart. To successfully complete the task, or score a “hit”, 
participants needed to move at least 70% of their ball into the safe zone for 200 ms 
continuously (Figure 1D).  If participants did not reach the safe zone or were unable to keep 
their ball in the safe zone for 200 ms continuously within 3 s, the safe zone disappeared, and 
the trial was scored as unsuccessful. Participants completed for 16 trials of this task. 

Although the safe zones always appeared at a specific distance from the center of the 
screen, the participants did not always start on the red feet markers or exactly at the center of 
the screen creating variable distances from the participants’ starting positions and the 
locations of the safe zone. To ensure that movements on trials were comparable, only trials 
were only included in the analysis if the participant started a minimum of 6.7 cm and a 
maximum of 35cm from the safe zone location and were moving less than 50% of their 
maximum velocity for that trial. Of the 448 possible trials, 318 trials (70.98%) met the inclusion 
criteria (Autistic: 63.7%, Neurotypical: 80.7%). 

The Safe Zone task was part of a battery of tasks implemented in the V-Gait Computer-
Assisted Rehabilitation Environment (CAREN; Motek Medical, Amsterdam, Netherlands). The 
data were collected using a 12-camera 120Hz infrared motion-capture system (Motion Analysis 
Corporation, Santa Rosa, CA, USA). The motion-capture system records the three-dimensional 
position of reflective markers placed on anatomical locations (e.g., C7) on a participant’s body 
within 0.5mm of accuracy. The position data for the C7 marker was initially processed in Cortex 
Software Suite (Motion Analysis Corporation, Santa Rosa, CA, USA) and a 6Hz low pass 
Butterworth filter was applied to this data. Variables of interest were calculated using a custom 
MATLAB script (The Mathworks, Inc., USA). For a full list of marker placement locations, see 
Supplementary Table 1. For more details on the apparatus, see Miller et al., 2017. 
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Figure 1. Participant moving their user-controlled blue ball into the safe zone (green rectangle). 
A. The participant starts in the center of the screen and distance is calculated as the distance 
from the participant’s location to the center of the safe zone. B. An undershoot is counted 
when a participant begins moving and their acceleration drops below 0 before reaching the 
safe zone. C. An overshoot is counted if the participant passes the safe zone by more than 30% 
of the blue ball diameter. D. Success is counted if the participant moves 70% of their blue ball 
into safe zone for 200ms within 3 seconds. 
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Variables of Interest 

Trial duration was calculated as the duration of time between when the safe zone 
appeared to the time that the participant scored a hit. Trial duration was only calculated for 
successful trials with a possible range of 0.2 to 2.9 s because failed trials were fixed at 3 s.  

Path efficiency is the ratio of the actual path length to the optimal path length. Actual 
path length was calculated by summing the three-dimensional Euclidean distance (i.e., 
mediolateral, anteroposterior, longitudinal axis) between the position of the marker on the 7th 
cervical vertebrae (C7) at each consecutive frame within a single trial. Optimal path length was 
calculated by measuring the nearest distance between the three-dimensional position of the 
participant’s C7 marker at the start of the trial and the three-dimensional center of the safe 
zone (Figure 1A). Smaller ratios are indicative of better path efficiency. Path efficiency indicates 
the overall spatial efficiency of the movement during the task.  

Path variability is the ratio of the standard deviation of each participant’s three-
dimensional path length to near and far safe zones (determined via median split) to the mean 
three-dimensional path length distance of each participant’s movements to near and far safe 
zones multiplied by 100. Path variability is a standardized measure of variation of three-
dimensional path length distances.   

Trials were coded as overshoots when a participant moved their ball through the safe 
zone with more than 30% of the ball extended beyond the opposite side of the safe zone 
(Figure 1C; e.g., moving from the left side, passing through the safe zone, and continuing to the 
right). Overshoots indicate an overestimate of the amount of movement necessary to reach 
the safe zone.  

Trials were coded as undershoots when a participant’s movement acceleration dropped below 
0 and then increased above 0 again prior to reaching the safe zone (Figure 1B). Undershoots 
indicate an underestimate of the amount of movement necessary to reach the safe zone. 
Undershoots that resulted from the change in direction required to come back to the safe 
zone following an overshoot were excluded from analysis. 

Statistical Analyses 

Generalized linear and linear mixed effects models were used to regress success, trial 
duration, overshoots, undershoots, path efficiency, and path variability on group (Autistic, 
Neurotypical), age (continuous), distance from the safe zone (continuous), screen side (left, 
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right), and/or trial number (1-16) with a random intercept of participant (R Core Team, 2021; 
Bates, Machler, Bolker, & Walker, 2015). For the linear mixed effects model, model 
assumptions of linearity and homoskedasticity of the residuals were visually evaluated using 
residual plots and the model assumption of normality of residuals was visually evaluated using 
Q-Q plots. If these assumptions were violated using a linear model, the data was modeled with 
binomial, poisson, or gamma distributions with logit or log links. For count data, (e.g., 
overshoots, undershoots), the models used poisson distributions which assume a lack of 
overdispersion. The tests for overdispersion were not significant for either model (ps > .05)  We 
conducted χ2-tests for fixed effects of generalized linear and linear mixed effects models (Fox 
& Weisberg, 2019). Alpha was set at p < .05. Estimated marginal means were reported in 
response scale, β weights and 95% confidence intervals (CI) were reported in their link scale or 
odds ratio, if applicable. For analyses of trial duration, path efficiency, path variability, 
overshoots, and undershoots, only trials that ended in a successful hit were included (282 
trials, 62.95% of all possible trials). 

RESULTS 

Participant Characteristics 

We tested 16 autistic children (Male = 14, Female = 2, Mage = 10.6 years , SDage = 1.82 
years, Rangeage = 7-13 years) and 12 neurotypical children (Male = 7, Female = 5, Mage = 9.25 
years, SDage = 1.91 years, Rangeage = 7-13 years). Participants were Asian (n = 3), Black (n = 4), 
and White (n = 21). Three participants were Hispanic. See Table 1 for clinical characteristics of 
the sample.  
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Table 1. 
 
Clinical characteristics of the participants 
Variable Group Count Mean SD Median Min Max 

Age 
Autistic 16 10.63 1.82 11 7 13 
Neurotypical 12 9.25 1.91 9 7 13 

        

MABC-2 Total 
Autistic 16 35.19 12.94 32 20 69 
Neurotypical 12 72.25 18.52 79 34 90 

        

WASI-II Non-Verbal IQ 
Autistic 15 98.40 15.22 99 71 128 
Neurotypical 12 113.50 9.09 114 99 127 

        

SCQ 
Autistic 16 21.38 7.83 23 5 30 
Neurotypical 12 2.75 1.71 2.5 1 7 

        
ADOS-2 Comparison Autistic 16 8.63 1.36 9 6 10 
        
Note. ADOS-2: Autism Diagnostic Observation Schedule; MABC-2: Movement Assessment 
Battery for Children; SCQ: Social Communication Questionnaire; WASI-II: Weschler 
Abbreviated Scale of Intelligence  
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Success 

As expected, both autistic and neurotypical participants were capable of performing the 
task, successfully scoring hits on most valid trials (Autistic: 89.96% success rate, Neurotypical: 
88.39% success rate). Differences in success were due to more difficulty at increased distance 
and participants learning to move to the safe zone more successfully in later trials. A 
generalized linear mixed effects model using a binomial distribution with a logit link was used 
to regress success onto fixed factors of group, age, distance, screen side, and trial number with 
a random intercept by participant. This analysis showed main effects of distance to the safe 
zone (Wald χ2

1 = 7.13, p = .008; Odds Ratio = 0.93, 95% CI = 0.88, 0.98; Supplementary Figure 1) 
and trial number (Wald χ2

1 = 12.98, p < .001; Odds Ratio = 1.18, 95% CI = 1.08, 1.29; 
Supplementary Figure 2). Participants were less successful as the distance to the safe zone 
increased. Participants were more successful as the trial number increased (i.e., later trials 
compared to earlier trials). There were no group differences in success (p > .05). 

Trial Duration 

Autistic participants took longer to complete the task on successful trials. A linear mixed 
effects model was used to regress trial duration of successful trials onto group, age, and 
distance to the safe zone with a random intercept by participant. This analysis showed main 
effects of group (Wald χ2

1 = 6.98, p = .008; β = 0.24, 95% CI = 0.06, 0.42; Figure 2), age (Wald χ2
1 

= 10.31, p = .001; β = -0.08, 95% CI = -0.12, -0.03), and distance to the safe zone (Wald χ2
1 = 

59.75, p < .001; β = 0.03, 95% CI = 0.02, 0.04; Supplementary Figure 3). Autistic participants 
(MAutistic = 1.94 s, SEAutistic = 0.06 s) used more time to get to the safe zone compared to 
neurotypical participants (MNeurotypical = 1.70 s,  SENeurotypical = 0.07 s). Both autistic and 
neurotypical participants used more time to get to the safe zone as the distance to the safe 
zone increased. Older participants in both groups used less time to get to the safe zones than 
younger participants. 
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Figure 2. Autistic children used more time to move to the safe zone than neurotypical children.  

Path efficiency 

Autistic participants made less efficient movements compared to neurotypical 
participants. Additionally, participants in both groups made more efficient movements to the 
safe zone as distance increased. A generalized linear mixed effects model using a Gamma 
distribution with a log link was used to regress the path efficiency of successful trials onto fixed 
factors of group, age, and distance with a random intercept by participant. This analysis 
showed a main effect of group (Wald χ2

1 = 3.89, p = .048; β = 0.23, 95% CI = 0.001, 0.47; Figure 
3), such that autistic participants (MAutistic = 1.79, SEAutistic = 0.13) used less efficient paths than 
neurotypical participants (MNeurotypical = 1.42, SENeurotypical = 0.13) as indicated by higher path 
efficiency scores. There was also a main effect of distance to the safe zone (Wald χ2

1 = 86.64, p 
< .001; β = -0.02, 95% CI = -0.03, -0.02; Supplementary Figure 4), such that both groups took 
more efficient paths to the safe zone as the distance to the safe zone increased as indicated by 
lower path efficiency scores. 
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Figure 3. Autistic children were less efficient than neurotypical children. 5 (1.8% of trials, 3 
Neurotypical, 2 Autistic) outlier points were removed to enhance data visualization. See 
Supplementary Figure 6 to view the full data.  
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Path variability 

Both autistic and neurotypical participants made more variable movements to the near 
safe zones compared to far safe zones. A generalized linear mixed effects model using a 
Gamma distribution and a log link was used to regress the coefficient of variability of the 
movement path of successful trials onto fixed factors of group, distance, and age with a 
random intercept by participant. This analysis showed a main effect of distance to the safe 
zone (Wald χ2

1 = 18.25, p < .001; β = -0.45, 95% CI = -0.65, -0.24; Figure 4), such that 
participants in both groups had larger coefficients of variability for the movements to near safe 
zones (MNear = 35.00, SENear = 3.03) compared to movements to far safe zones (MFar = 22.40, SEFar 
= 2.17).  

Figure 4. In both groups, children had more variable paths to the safe zone at near distances 
compared to far distances. Hinges correspond to the first and third quartiles. Whiskers extend 
to the largest value within 1.5 times the interquartile range. 

Overshoots 
Neurotypical participants made fewer overshoots to safe zones that were further away 

than autistic participants. A generalized linear mixed effects model using a Poisson distribution 
with a log link was used to regress number of overshoots on successful trials onto fixed factors 
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of group, age and distance with a random intercept by participant. This analysis showed main 
effects of group (Wald χ2

1 = 6.71, p = .010; β = 0.65, 95% CI = 0.16, 1.14; MAutistic = 0.48, SEAutistic = 
0.07; MNeurotypical = 0.26, SENeurotypical = 0.05) and distance to the safe zone (Wald χ2

1 = 16.47, p < 
.001; β = -0.06, 95% CI = -0.09, -0.03). These main effects were qualified by a Group X Distance 
interaction (Wald χ2

1 = 7.23, p = .007; β = 0.08, 95% CI = 0.2, 0.13; Supplementary Figure 5). 
Neurotypical participants made fewer overshoots than autistic participants as distance 
increased. 

Undershoots 

Neurotypical participants made more undershoots to safe zones compared to autistic 
participants. A generalized linear mixed effects model using a Poisson distribution with a log 
link was used to regress number of undershoots on successful trials onto fixed factors of 
group, age, and distance with a random intercept by participant. This analysis showed a main 
effect of distance to the safe zone (Wald χ2

1 = 26.11, p < .001; β = 0.06, 95% CI = 0.04, 0.08), but 
there was not a significant main effect of Group (Wald χ2

1 = 0.34, p = .561; β = 0.11, 95% CI = -
0.25, 0.46; MAutistic = 0.60, SEAutistic = 0.07, MNeurotypical = 0.53, SENeurotypical = 0.07). These main 
effects were qualified by a Group X Distance interaction (Wald χ2

1 = 6.57, p = .010; β = -0.06, 
95% CI = -0.10, -0.01; Supplementary Figure 6). Neurotypical participants made more 
undershoots as distance increased compared to autistic participants.  

DISCUSSION 
In this study of goal-directed whole-body movements to a static target, we observed 

that the movements of autistic children were markedly less efficient than those of their 
neurotypical peers, both in terms of timing and path length. Although children in both groups 
were able to complete this task (> 88% of trials scored as a hit), autistic children took an 
average of 240 ms longer to complete each trial compared to neurotypical children. At first 
glance, this increase in trial duration may seem negligible. However, when considered in the 
context of how many and how quickly a child performs goal-directed movements in their daily 
lives, a 10-20% increase in time-to-completion could contribute, at least in part, to physical and 
mental health difficulties seen in similar neurodevelopmental conditions with motor 
symptoms, such as developmental coordination disorder (Hendrix, Prins, & Dekkers, 2014; 
Tamplain & Miller, 2020). This difference may also reflect signaling delays in visual processing 
and visuomotor integration (Neufeld et al., 2020; Wang et al., 2019), or in activation of muscle 
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groups needed to initiate or modify movement as found in other neurodevelopmental 
conditions (e.g., DCD, Fong et al., 2013). 

 Autistic children also exhibited differences in the path efficiency of their 
movements compared to neurotypical children. Autistic children moved toward the safe zone 
via paths that diverged more from the optimal path (i.e., a straight line) compared to 
neurotypical children. Combined with increased trial durations, autistic children not only took 
longer to reach the safe zone, but also moved more to reach the same location compared to 
neurotypical children. These within-movement inefficiencies in autism implicate motor 
planning and motor execution difficulties, perhaps again driven by differences in visuomotor 
integration. These results extend similar findings from movement planning and execution 
during reaching in autistic adults. Across a series of studies, Glazebrook and colleagues have 
demonstrated that autistic adults make less efficient arm movements and show differences in 
motor planning (Glazebrook et al, 2006; Glazebrook et al., 2008; Zheng et al., 2019). In terms of 
activities of daily living, this suggests that autistic children may not only take longer to complete 
individual tasks, but may also expend additional energy in doing so. This may, in turn, lead to a 
higher level of exertion and fatigue for autistic children than their neurotypical peers when 
completing the same tasks. Higher levels of exertion and fatigue could discourage autistic 
children from trying similar activities in the future.  

To identify potential factors influencing path inefficiency, we examined the path 
variability in children’s movements to near and far safe zone locations. Interestingly, there were 
not significant differences in the path variability of movements between autistic and 
neurotypical children. This finding adds to the mixed findings indicating more variable 
movements in certain contexts in autistic individuals (Dufek, Harry, Eggleston, & Hickman, 
2018; Parma & de Marchena, 2016 CITE) and more research needs to be done to determine 
whether and when the variability of autistic individuals movements may differ from 
neurotypical individuals. This indicates that the inefficiencies in children’s movements to a safe 
zone are not due entirely to inconsistencies from movement to movement, but also 
differences that occur within each movement. Furthermore, although autistic children did not 
show significant differences in their path variability, they had a higher rate of excluded trials 
compared to neurotypical children, likely due to difficulty getting their bodies back to the 
center of the screen before the next trial began. This indicates that autistic children are not 
only less efficient within a single trial, but also across a series of trials. In other words, 
performing consecutive tasks without sufficient time between them may also be more difficult 
for autistic children compared to neurotypical children. 
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There were, however, differences in path variability for near and far safe zone 
distances. Children’s movements to safe zones at near distances were significantly more 
variable than their movements to safe zones at far distances. This difference in variability may 
be due to the amount of time and distance available to update a inaccurate motor plan. If a 
child executes a poor motor plan to a near target, there is less time and distance for that child 
to adjust their movement to reach the target compared to a far target. This limited time and 
distance to adjust their movement may cause them to make more adjustments after the 
execution of a movement to a near target causing greater variability overall. Further research is 
needed to delineate the effects of motor planning and execution in mediolateral whole body 
movements to far and near targets. 

We also considered strategies used to reach the safe zone as a potential factor 
influencing efficiency. Examining the number of overshoots and undershoots that autistic and 
neurotypical children used to reach the safe zone, a distinct pattern emerged. Neurotypical 
children made more undershoots to further safe zone distances and more overshoots to 
nearer safe zones distances. Conversely, autistic children made similar numbers of overshoots 
and undershoots to safe zones at all distances. This modulation of strategy seen in 
neurotypical children may reflect a prioritization of postural control for the purpose of 
maintaining balance. Given that children started in the center for trials included in the analyses 
with their feet roughly shoulder width apart, overshooting safe zones at far distances would 
potentially place the body’s center of mass outside of the limits of postural stability, meaning 
an undershoot of the safe zones at further distances is a safer strategy. For safe zones at a 
near distance, however, there is likely no potential for a negative postural stability 
consequence for overshooting a safe zone as the body’s center of mass would still be within 
children’s limits of stability. The lack of consistent modulation observed in autistic children may 
indicate either an inability to accurately estimate limits of their postural stability or an inability 
to change strategy based on perceived challenge to their postural stability. These findings are 
aligned with work by Mosconi and colleagues, in which autistic individuals did not effectively 
use feedforward information when executing and modulating grip force, making less accurate 
initial movements and often overshooting targets (Mosconi et al., 2015; Wang et al., 2015). Our 
results add to prior work, which generally implicated differences in visuomotor integration, by 
also highlighting reduced learning and refinement of motor strategies in autism across trials 
where targets recurred in the same locations multiple times.  

The current study adds to the growing literature indicating that immersive virtual reality 
can be used effectively for research with autistic children (Malihi et al., 2020; Miller & Bugnariu, 
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2016). Further, the precise measurements of movements in immersive virtual reality 
environments can be leveraged to not only determine whether the motor skills of autistic 
children are different from those of neurotypical children, but how their individual movements 
are different. This opens the door for a wide array of potential questions that can be answered 
regarding how differences in the movements of autistic children impact their daily life in 
varying contexts. 

Implications 
Overall, autistic children used more time to complete a goal-directed whole-body 

movement and were less efficient when making these movements compared to neurotypical 
children. The increased time and energy necessary to complete goal-directed whole body 
movements may have a negative impact on the functional abilities of autistic children. 
Considering our results in conjunction with prior findings of upper-extremity motor 
inefficiencies (Glazebrook et al., 2006), it is possible that complex ADLs requiring both whole-
body and upper-extremity movements (e.g., many self-care tasks) may be even more taxing for 
autistic individuals. The additive impact of these inefficiencies across a self-care routine that 
includes dressing, eating, brushing teeth, and gathering personal items would be substantial in 
terms of both time and energy. 

Given these differences, it is imperative that autistic children receive adequate 
therapeutic intervention to improve their motor skills. Unfortunately, few autistic people 
receive intervention that would improve whole-body motor skills, with only 5% of autistic 
individuals receiving physical therapy and only 37.5% receiving occupational therapy (Zablotsky 
et al., 2015). Further, many of these services are limited in scope. In the case of physical 
therapy, the focus is often on simply meeting early motor milestones (e.g., crawling, standing, 
walking). In the case of occupational therapy, goals are typically focused on sensory processing 
or handwriting. To help improve functional outcomes and quality of life for autistic children, 
policy-makers need to substantially increase access to physical and occupational therapy for 
autistic individuals, and researchers and clinicians need to develop interventions tailored 
specifically to the unique movement challenges experienced by this population. 
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Appendix A. 
Participant Task Instructions 

Participants heard a recording read the following instructions as they were projected on to the 
screen with images of the objects they describe: 

Look down at your feet. Do you see the red footprints? They look like this <Image of 
red footprints>. Put your feet on the red footprints 
If you move during the game, put your feet back on the footprints when you see this  
<Image of the cross>.  
Try to always keep your feet on the footprints!  
In this game, you will see a blue ball on the screen. This is your ball. <Image of blue 
ball>. When you move your body, your ball will move too.  
This is a green safe zone. <Image of green safe zone>. Move your body to get your ball 
in the green safe zone. Move as fast as you can! Sometimes the safe zone is in a 
different place. Try to stay in the safe zone!  

If participants did not understand the instructions, they could ask the proctor any questions 
before the task began.  
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Supplementary Table 1. 
Marker Placements 

Front of head (on glasses) Left anterior superior iliac spine 
Right side of head (on glasses) Left posterior superior iliac spine 
Left side of head (on glasses) Right anterior superior iliac spine 
Top of head (on headband) Right posterior superior iliac spine 
7th cervical vertebra Right lateral malleolus 
Sternum Right heel 
Xiphoid process Right toe 
Navel Right 5th metatarsal 
Left acromion Left heel 
Right scapula Left toe 
Right acromion Left 5th metatarsal 
Sacrum  
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Supplementary Figure 1. Children’s probability of success decreased as the distance to the safe 
zone increased. 
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Supplementary Figure 2. Children’s probability of success increased as trial number increased.  
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Supplementary Figure 3. Autistic children used more time to move to the safe zone than 
neurotypical children. In both groups, children used more time to move to the safe zone as 
distance increased. 
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Supplementary Figure 4. Autistic children were less efficient than neurotypical children. In both 
groups, children were more efficient as the distance to the safe zone increased.   
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Supplementary Figure 5. Neurotypical children made fewer overshoots compared to autistic 
children as the distance to the safe zone increased. 
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Supplementary Figure 6. Neurotypical children made more undershoots compared to autistic 
children as the distance to the safe zone increased.  
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