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ABSTRACT 

Objective: Consistent physical activity is key for health and well-being, but it is vulnerable to 

stressors. The process of recovering from such stressors and bouncing back to the previous 

state of physical activity can be referred to as resilience. Quantifying resilience is fundamental to 

assess and manage the impact of stressors on daily physical activity. In this tutorial, we present 

a method to quantify the resilience process for physical activity data. We leverage the prior 

operationalization of resilience as area under the curve and expand it to suit the characteristics 

of physical activity time series. Methods: As use case to illustrate the methodology, we quantified 

resilience in step count for eight participants following the first COVID-19 lockdown as a stressor. 

Steps were collected daily using wrist-worn devices. The methodology is implemented in R and 

all coding details are included. Results: For each person’s step count time series we fitted 

multiple growth models and identified the best one using the Bayesian information criterion 

(BIC). Then, we used the predicted values from the selected model to identify the point in time 

when the participant recovered from the stressor and quantified the resulting area under the 

curve as a measure of resilience for step count. Further resilience features were extracted to 

capture the different aspects of the process. Conclusions: By developing a methodological guide 

with a step-by-step implementation in R, we aimed at fostering increased awareness about the 

concept of resilience for physical activity and facilitate the implementation of related research.  
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INTRODUCTION 

Physical inactivity is responsible for the development and progression of non-

communicable diseases and for premature mortality; consequently, promoting physical activity 

is a top-ranked public health priority (Lee et al., 2012). There is consistent evidence suggesting 

that physical activity (e.g., expressed as daily step counts or minutes of moderate to vigorous 

physical activity) is sensitive to a multitude of adverse events including, but not limited to, 

pandemic outbreaks (Costello et al., 2021; Larson et al., 2021), acute diseases (McKee et al., 2019), 

and extreme weather events (Bernard et al., 2021; Wagner et al., 2019). Additionally, other events 

which are not adverse per se (e.g., pregnancy, relocation, medical treatments) have also been 

shown to have a negative impact on physical activity (Corder et al., 2020; Devoogdt et al., 2010; 

Engberg et al., 2012). All these events can act as stressors for physical activity, and thus may be 

followed by a decrease in physical activity levels. The process of recovering from such stressors 

and bouncing back to the previous state of physical activity can be referred to as resilience (Den 

Hartigh & Hill, 2022; Scheffer et al., 2018). Describing and quantifying this process in the physical 

activity domain is therefore crucial to improve our understanding of the impacts of various 

stressors on individuals, to identify factors that are associated with better or worse resilience, 

and to foster adaptive capacities in individuals. However, so far, no methods have been reported 

in the literature that clearly characterize and quantify resilience from physical activity behavior 

data. 
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Resilience is an interdisciplinary construct that has been receiving increasing attention in 

the last decades (Estrada et al., 2016). Although resilience broadly relates to the ability of a system, 

e.g., here a human,  to maintain specific functions in the presence of a stressor (Baggio et al., 

2015), the concept has been used in many different ways across various scientific disciplines (e.g., 

ecology, engineering, environmental sciences, social sciences, psychology; Scheffer et al., 2018). 

This multidisciplinary interest in resilience has led to the proliferation of different 

conceptualizations and definitions which has hampered advances in its theoretical 

understanding and investigative methods (Bryan et al., 2019; Den Hartigh & Hill, 2022). In a recent 

viewpoint, Den Hartigh and Hill (2022) reviewed different conceptualizations of resilience in 

psychology. They proposed that this concept should be defined as “the process of returning to 

the previous state following a stressor (i.e., bouncing-back)” (p. 4), whereby stressor is 

understood as any event that has a disruptive negative impact on a specific system. This 

definition provides good conceptual clarity as it (i) ensures consistency with the etymological 

meaning of resilience (i.e., “re” – back, “salire” – to leap/jump), (ii) is in line with the 

conceptualization adopted in material sciences and the field of complex systems where this 

definition and measure of resilience are consolidated, and (iii) distinguishes the concept of 

resilience from other terms that have been assimilated to it in previous research, such as thriving 

and adaptation (Carver, 1998; Den Hartigh & Hill, 2022).  

Measuring resilience requires the assessment of the dynamic recovery process following 

the exposure to one or several stressors (e.g., Hill et al., 2018; Scheffer et al., 2018). To this aim, 
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recent advances in mobile sensing have greatly facilitated the quantification of resilience by 

making the collection of high-resolution time series possible for various outcomes (Scheffer et al., 

2018). For instance, in the physical activity domain, activity monitors or smartphones are 

becoming ubiquitous, facilitating the assessment of high-resolution fluctuations in physical 

activity in real life over prolonged periods of time (Chevance, Perski, et al., 2021). These dynamic 

time series measures can be leveraged to develop methods that characterize and quantify 

resilience (Den Hartigh & Hill, 2022; Scheffer et al., 2018). Using time series, researchers in different 

psychological domains (e.g., psycho-endocrinology, psycho-pathology) have adopted the area 

under the curve (AUC) approach to quantify resilience (Kuranova et al., 2020; Pruessner et al., 2003) 

(see Figure 1a). The AUC combines two independent features of the resilience process: the 

magnitude of the perturbation (i.e., the degree by which a specific system is impacted by a 

stressor) and the recovery rate (i.e., the time duration for the system to bounce back to a pre-

stressor level). The trapezoid formula is commonly used to quantify the AUC from time-series 

and ultimately resilience (Hill et al., 2021; Pruessner et al., 2003): 

𝐴𝑈𝐶 = ∑ (
(𝑥𝑖+1 + 𝑥𝑖) ∗  𝑡𝑖

2
)

𝑛−1

𝑖

 

Where xi represents the value of the variable of interest at a given time i (e.g., daily step 

count), n represents the total number of observations, and ti represents the time difference 

between the measurement points. Figure 1b shows the AUC determined using a traditional 

trapezoid formula. AUC as a measure for resilience has been successfully used for outcomes 
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such as reaction times, experimental motor tasks or physiological signals for which resilience 

has previously been estimated using the trapezoid formula (e.g., Gerber et al., 2017; Hill et al., 

2021). We argue here that the trapezoid formula is not suited to quantify the AUC, and ultimately 

the resilience process, from physical activity time series. Previous research has shown that 

physical activity signals (e.g., step count, minutes spent in light physical activity or moderate-to-

vigorous physical activity) have the particularity of being highly variable (Chevance, Baretta, Heino, 

et al., 2021; Costello et al., 2021; Hooker et al., 2020) compared to the aforementioned outcomes. 

Therefore, identifying the recovery point and hence determining the end of the resilience 

process (i.e., timepoint when the system reaches relatively stable levels following its return to 

pre-stressor levels) based on physical activity signals is not straightforward and prone to errors. 

Figure 2 illustrates this “fluctuation issue” by showing two step count time series following a 

stressor (the time series are taken from the sample later used in the methods and results 

sections of this tutorial). The green horizontal line represents the pre-stressor level of daily steps 

while the dark grey rectangle zooms in on the part of the time series where the system has 

probably bounced back to the pre-stressor level; however, it is not possible to precisely identify 

the moment in time when this happened because of the natural fluctuations characteristic of 

physical activity behavior, here step count. This represents a major issue because without the 

identification of the recovery point it is impossible to determine the boundaries of the AUC, and 

thus the end of the resilience process. 
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Figure 1. 1a. Conceptual visualization of the resilience process as described in and adapted 

from Den Hartigh & Hill, 2022. 

 

1b. Visualization of a theoretical AUC calculated using the trapezoid formula. 

 

Note. Time course of time-series with several measurements; each trapezoid (in orange) is 

calculated using the trapezoid formula and the sum of all the trapezoids composes the area 

under the curve (AUC). x(i) denotes the single measurement, and t(i) denotes the time interval 

between the measurements. The figure is not based on real data.  
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Figure 2. Example of step count time series from two participants included in this tutorial. 

  

Note. P = participant, vertical red dashed line = stressor event, horizontal green line = baseline level, 

black line = time series for step count, vertical black dashed line = first day after the stressor when the 

fluctuation in daily step count is above baseline level, grey rectangle = area highlighting intense and 

repeated fluctuations around baseline level: it covers 60 days following the first fluctuation above the 

baseline level.  

 



 

   

                    8 

 

Aim of the tutorial  

The objective of this tutorial is to introduce a new methodological approach to quantify 

resilience from physical activity data while accounting for the high variability and natural 

fluctuations of physical activity signals. Specifically, we propose to use fitted values – as opposed 

to observed values – to precisely identify the recovery point and therefore quantify the AUC as 

a measure of resilience. To this aim, we fit different growth models to each participant’s time 

series and select the model that best describes the data. The fitted values from the selected 

model are then used to compute a resilience score and other indicators of the resilience 

process. As a use case to illustrate the application of the method, we investigate the resilience 

process in daily step count following the first COVID-19 lockdown (i.e., here our stressor) in 

Catalunya, Spain. To facilitate the application of this new method in the future, the following 

section details a step-by-step tutorial describing how to replicate and implement the analyses 

with the open-source statistical software R (R Core Team, 2021). Data and code are provided in 

the supplemental materials for replication (see: https://osf.io/3h7em/). 

 

METHOD 

Background of the time series used in the tutorial 

To illustrate the concrete application of the proposed methodological approach, we use 

step count time series collected in Catalunya (Spain), as part of the COVICAT study (Kogevinas et 

al., 2021), in the period between October 1, 2019 and September 30, 2020. The COVICAT study 

https://osf.io/3h7em/
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obtained ethical approval. These data were retrospectively collected using crowdsourcing from 

participants of the GCAT cohort (Obón-Santacana et al., 2018), i.e., participants consented to share 

their data collected via wearable devices with the research team in September 2021 with a data 

extraction API supported by Thryve (https://thryve.health/).   

The resulting time series can be conceptually split into two phases by the stressor event. 

In this example, the stressor is represented by the start of the first COVID-19 lockdown (March 

15, 2020), including a 7-week long law-enforced home confinement, which has been previously 

shown to have negatively impacted daily step count and other physical activity outcomes (e.g., 

moderate to vigorous physical activity; Costello et al., 2021; Larson et al., 2021). We refer to the pre-

stressor phase as “baseline” and use it to compute the baseline level of daily step count. In the 

current example, the baseline phase corresponds to the period between October 1, 2019 and 

March 15, 2020. We limited the baseline phase to this period because it represents a good 

compromise between length of the time series and its proximity to the onset of the stressor. For 

the post-stressor phase, we limited the period to September 30, 2020, shortly before the second 

COVID-19 state of emergency was issued in Catalunya on October 15, 2020. We removed the 

first 2 weeks of October 2020 from the analysis because the daily step count in the time series 

started decreasing again with the increase in the pandemic trajectory in Catalunya. To simplify 

the description of the use case, we analyzed the time series for eight participants. The sample 

size was kept small to ensure an agile tutorial while the participants were purposely selected to 

showcase relevant individual differences in the resilience process. 
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Note that the time series used in this tutorial might contain missing values in daily step 

count as we did not to apply any missing value imputation. This approach is consistent with a 

previous viewpoint on handling missing values in longitudinal studies (Oud & Voelkle, 2014) 

suggesting that a time series can be seen as a way to measure an underlying process (here 

resilience) that develops continuously over time, even if the process is only observed at some 

available measurement points. For this approach, it is crucial to have enough measurement 

points in each time series. As a rule of thumb, we only included time series with <10% missing 

values in the post-stressor phase. 

Software Packages 

R is a free software environment for statistical computing which provides powerful 

resources (i.e., packages) for data wrangling, data visualization, and a wide range of statistical 

modelling approaches (R Core Team, 2021). Most of the packages used in the tutorial (e.g., dplyr, 

tidyr, purrr, ggplot) are from the tidyverse ecosystem (Wickham et al., 2019). Additionally, we used 

functions from the mgcv package (Wood, 2011) for fitting non-linear models. Throughout the 

tutorial, we refer to a function by specifying the source package as part of the code (i.e., 

package::function()). In case the package is not mentioned, it means that the function is directly 

available in R without the import of any specific package. Eventually, further ad-hoc functions 

have been developed for the purpose of this tutorial. 
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The reading of the article is supported by chunks of R code embedded in the body text. 

Additionally, the extended R code, the time series data, and a comprehensive R Markdown file 

are included in the supplemental materials (https://osf.io/3h7em/). 

Results 

This results section is organized into two sequential parts. The data import and pre-

processing part describes how to: import the data in R (step 1), define dates relevant for 

quantifying the resilience process (step 2), and calculate the pre-stressor level, henceforth 

referred to as baseline level (step 3). The subsequent data modelling and resilience score 

calculation part provides guidance on how to fit growth models to the step count time series 

(step 4) and select the model that provides the best fit (step 5), and finally, on the use of the 

fitted values from the best model to calculate resilience scores and a series of other resilience 

features (step 6 and step 7). 

Data import and pre-processing 

Step 1: Import the data 

The participants' data are saved in a csv file named ts_tutorial.csv (see supplemental 

material). The file contains three columns named “id”, “date” and “steps”. The variable “id” is a 

string that identifies each participant, the variable “date” refers to the specific date of the 

measurement, and the variable “steps” corresponds to the daily number of steps done on a 

https://osf.io/3h7em/
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specific date by a given participant. The file contains 8 time series (one time series corresponds 

to one participant) with 366 data points each.  

In order to import the csv file in R, we use the readr::read_csv() function and assign it 

to an object:  

df.1 <- read_csv('data_res.csv') 

Now, the data are a data frame “df.1” with named columns and ready for data processing and 

modeling. 

Step 2: Define dates and phases in the time series 

In the current example, we define the dates of start and end of the time series, and the 

date of the stressor (i.e., beginning of the lockdown). To this aim, the function 

lubridate::date() converts a string into a date format object.  

start_ts <- lubridate::date('2019-10-01') 

lckd <- lubridate::date('2020-03-15') 

end_ts <- lubridate::date('2020-09-30') 

Because we are interested in comparing the period before and after the stressor 

occurred, we create a new categorical variable called “phase” which specifies whether the 

observation is pre-lockdown (value = “baseline”) or post lock-down (value = “post-stressor”). We 

combine the dplyr::mutate() function, which allows to add variables to a data frame, with the 

dplyr::case_when() function, which is used to recode values from a variable x into different values 

in a variable y. The pipe symbol %>% is part of the magrittr package and allows to concatenate 

multiple functions in a sequential order.  
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df.2 <- df.1 %>%  
  mutate(phase = case_when(date <= lckd  ~ 'baseline', 
                          date > lckd ~ 'post_stressor')) 

Step 3: Define the baseline level of daily steps and filter out the pre-stressor 

observations  

As mentioned, the concept of resilience refers to the dynamic process of returning to a 

previous state. Therefore, the concept of previous state needs to be operationalized. We operationalized 

it as the lower bound of the two-sided confidence interval (95%) of the median number of daily steps 

during the baseline phase, which is here represented by the five months and a half preceding the 

lockdown. We opted for the lower bound of the confidence interval instead of the median itself 

because we wanted to identify a baseline range for step count rather than a strict threshold. We 

used the median instead of the mean because it is less impacted by extreme observations (i.e., 

outliers) or potential skewed distributions. To implement this step, we first use the 

dplyr::filter() function to include only the observations in the time series referring to the 

baseline phase; the dplyr::group_by(), tidyr::nest() and purrr::map() functions are 

then used to apply the DescTools::MedianCI() function to each participant separately. This 

last function calculates the median value as well as its lower and upper bounds for each time 

series. The argument na.rm = TRUE inside the DescTools::MedianCI() function removes the 

missing observations before calculating the median value while the purrr::pluck() function 

extracts the lower bound of the confidence interval from the output of MedianCI(). 

baseline_level <- df.2 %>%  
  filter(phase == 'baseline') %>%  
  group_by(id) %>% nest() %>%  
  mutate(baseline_steps = map_dbl(data, 
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                                  ~ DescTools::MedianCI(.$steps, conf.level = 
0.95, na.rm = TRUE) %>% pluck('lwr.ci'))) %>%  
  select(id, baseline_steps) 

Once the baseline step count value for each participant has been defined, this information 

needs to be appended to a data frame which contains the part of the time series concerning the 

post-stressor phase only. To do so, we take the source data frame df.2 and use 

dplyr::filter() to filter only the observations corresponding to the post-stressor phase. 

Then, the baseline_steps variable is appended to df.2 by joining the baseline_level data 

frame using the dplyr::left_join() function with the “id” variable as identifier. The newly 

created data frame df.3 contains daily step count data for the post-stressor phase only which 

is the phase we analyze to measure the resilience process for each participant. Eventually, we 

create a new variable “prog_day” which defines for each participant the progressive day of the 

time series during the post-stressor phase. This variable will then be used as predictor of daily 

step count in modeling the resilience process (see step 4). 

df.3 <- df.2 %>%  
  filter(phase == 'post_stressor') %>%  
  left_join(baseline_level, by = 'id') %>%  
  group_by(id, baseline_steps) %>%  
  mutate(prog_day = seq_along(date)) 

 Data modelling and resilience score calculation 

Step 4: Applying concurrent growth models to the step count time series 

Growth modeling is an analytic approach for modeling systematic within-person change across 

a series of repeated measurements (Grimm & Ram, 2009). The aim of a growth model is to look 
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at the change of a variable over time. By specifying a growth model, it is possible to precisely 

determine the moment in time when the participant has bounced back to the previous state 

(i.e., the baseline level). Different growth models can be applied to the data with the aim to see 

which model better fits the data and describes the change over time. In the present tutorial, we 

fit different types of growth models for each participant’s time series: i) a simple linear model, 

also known as first-order polynomial or monomial; ii) a second-order polynomial to fit quadratic 

trends which describe non-linear patterns of change (Blozis & Cudeck, 1999; Ram & Grimm, 2007); 

and iii) two generalized additive models (GAMs) which allow to fit smoothed functions as 

combinations of multiple low-level functions (e.g., linear function, quadratic function, logarithmic 

function). GAMs have been introduced in order to overcome the limitations of polynomials. For 

instance, polynomials tend to have problems with curves that have many bends (e.g., sinusoidal 

patterns; Winter & Wieling, 2016). Accounting for such trends is particularly relevant for step count 

time series, which have been shown to be characterized by multiple, sudden changes over time 

(Chevance, Baretta, Heino, et al., 2021). A further reason for modelling with GAM is the opportunity 

to detect potential multiple drops in the step count time series. This is crucial if we think about 

a case where a participant has successfully recovered from the COVID-19 lock down stressor, 

but then a further drop in step count occurs due to another stressor (e.g., birth of a child). The 

growth models are specified as follows. The simple linear model (lm_mon) is fitted using the lm() 

function with step count (steps) as dependent variable and progressive day since the stressor 

(prog_day) as predictor. Note that the tilde symbol ~ in the models’ formula separates the 
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dependent variable from the independent variable(s) and should be read as “is predicted by”. 

The second-order polynomial (lm_pol) is an extension of the simple linear model and is fitted by 

adding a quadratic term I(prog_day^2) to the linear model formula. GAMs are fitted using the 

mgcv::gam() function. Two different GAMs are fitted: gam_tp and gam_cc. The s() function is used 

within GAM model formulae to specify the smooth term through the bs argument (which 

indicates the smoothing basis to use) and the basis dimension through the k argument (which 

sets the upper limit on the degrees of freedom associated with the smooth term). In our 

implementation, the bs term specification differentiates gam_tp and gam_cc. Specifically, for the 

gam_tp model, we opted for bs = “tp” (i.e., thin plate regression splines) which is the default 

option because thin plate regression splines generally yield the best performance in terms of 

mean squared error (Winter & Wieling, 2016). However, we also included a GAM with bs = "cc" 

(i.e., cyclic cubic regression splines) based on previous research which used GAMs to model step 

count time series (Chevance, Baretta, Golaszewski, et al., 2021) and better describes cyclic trends 

which are common in step count data (e.g., Chevance, Baretta, Heino, et al., 2021). The k 

argument was set to k = 7 in line with previous work on step count (Chevance et al., 2022). The 

preferred smoothness selection criterion we opted for is the restricted maximum likelihood 

(method = 'REML') because it is less prone to local minima than the other criteria. The present 

description of the GAMs specification is based on Wood (2017) which provides a detailed 

description of the GAM approach and its implementation in R via the mgcv package. 
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We adopted the tidyr::nest() function and evoke the purrr::map() function to fit the 

different models to each person’s time series separately in an idiographic fashion. 

df.4 <- df.3 %>%  
  group_by(id, baseline_steps) %>%  
  nest() %>%  
  mutate(lm_mon = map(data, ~ lm(steps ~ prog_day, data = .)), 
         lm_pol = map(data, ~ lm(steps ~ prog_day + I(prog_day^2), data = .), 
         gam_tp = map(data, ~ gam(steps ~ s(prog_day, bs = "tp", k = 7), meth
od = 'REML', data = .)),  
         gam_cc = map(data, ~ gam(steps ~ s(prog_day, bs = "cc", k = 7), meth
od = 'REML', data = .)))  

Step 5: Selecting the best growth model for each participant 

After having fitted different functions, the next step is to select the model that best 

describes the data for each participant individually. This step is done individually rather than at 

group level, because the aim is to obtain individual resilience measures. We based the model 

selection on the Schwarz Bayesian information criterion (BIC) as a comparative goodness-of-fit 

index, where lower values are associated with a better goodness-of-fit. The BIC was preferred 

over the Akaike's information criterion (AIC) because it suites the goal of selecting the ‘correct’ 

model with better goodness-of-fit while the AIC is a good approach if the fitted model mainly 

aims to predict (Chakrabarti & Ghosh, 2011). Additionally, we encourage visual inspection of each 

model as this contributes to selecting the best model beyond goodness-of-fit indices.  

From an implementation point of view, it is necessary to compute the BIC index for all 

models under consideration for every participant and then select the model with the lowest 

index. In R, we apply the function BIC() to extract the BIC value from the models we computed 
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in the previous step. The BIC() function is used inside the purrr::map_dbl() function because 

the aim is to get the values for all the time series  (i.e., participants). Note that BIC() is part of 

the flexmix package which is automatically imported into R when the mgcv package is loaded. 

The best model (final_mod) for each participant is selected by comparing the BIC values of each 

model (see table 1 and figure 3).   

df.5 <- df.4 %>%  
  mutate(bic_mon = map_dbl(lm_mon, BIC),  
         bic_pol = map_dbl(lm_pol, BIC),  
         bic_gam_tp = map_dbl(gam_tp, BIC), 
         bic_gam_cc = map_dbl(gam_cc, BIC), 
         final_mod = case_when(bic_mon < bic_pol & bic_mon < bic_gam_tp & bic
_mon < bic_gam_cc ~ lm_mon, 
                               bic_pol < bic_mon & bic_pol < bic_gam_tp & bic
_pol < bic_gam_cc ~ lm_pol, 
                               bic_gam_tp < bic_mon & bic_gam_tp < bic_pol & 
bic_gam_tp < bic_gam_cc ~ gam_tp, 
                               bic_gam_cc < bic_mon & bic_gam_cc < bic_pol & 
bic_gam_cc < bic_gam_tp ~ gam_cc)) 

 

Table 1. Bayesian information criterion (BIC) for each model fitted to the individual time series 

id Linear monomial Quadratic 

polynomial 

GAM thin plate GAM cubic cycle 

P1 3820.31 3815.94 3805.93 3823.09 

P2 3660.83 3662.94 3665.34 3666.43 

P3 3630.28 3596.40 3597.50 3595.12 

P4 3809.64 3809.48 3813.43 3821.14 

P5 3783.05 3788.06 3783.08 3798.86 

P6 3439.68 3437.88 3440.48 3440.08 

P7 3627.13 3615.84 3616.75 3620.63 

P8 3640.32 3645.44 3641.10 3682.59 

Note. P = participant, in bold the BIC for the selected model 
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Figure 3. Comparison of growth model curves for each time series (participant) 

 

Note. P = participant; blue line = selected model, black dashed lines = non-selected models, green 

horizonal green line = baseline level, grey line = observed step counts. 

Step 6: Adding the predicted values for step count to the time series 

The next step is to create a new column in the time series data frame which contains the 

fitted values for step count from the selected model (i.e., the blue line in figure 3). We then take 
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the first fitted value and subtract it from baseline level in order to estimate the initial drop after 

the onset of the stressor. It is worth remarking the fact that we are using the first fitted value to 

identify the initial drop, therefore the result is not impacted by typical fluctuations of the observed 

values in step count time series. Within this tutorial, researchers have the option to set logical 

conditions to exclude participants from the analysis based on their initial drop value. For 

instance, participants can be excluded if they don’t experience any drop after the onset of the 

stressor (initial drop > 0) or if the drop is not substantial. For the purpose of this tutorial, we set 

the logical condition of removing those participants who didn’t experienced any substantial drop, 

defined as 20% reduction in steps relative to the baseline level (see Chevance, Baretta, Heino, et 

al., 2021 for comparison of different drop thresholds in step count data). We opted for this 

solution because from a methodological standpoint we want to show how the proposed 

approach applies to the quantification of resilience for those participants who experienced a 

meaningful drop after the onset of the stressor. Note that the operationalization of substantial 

drop can be tuned by researchers to meet different research questions (e.g., relative or absolute 

change in step count) and fit to the study characteristics (e.g., population under scope, type of 

physical activity signal, type of stressor). 

On the implementation side, we use the dplyr::mutate() function to add the fitted 

values (modelr::add_predictions) from the selected model (final_mod) to each time series 

(data). Then we apply the init_drop() function which we developed for this tutorial. The 

function extracts the first fitted value for each time series according to the selected model and 
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subtracts it from the baseline level. As next step, we define the substantial drop (sub_drop) as 

20% of baseline level. Eventually, if the init_drop value is smaller than sub_drop, we remove 

the participant from the subsequent analysis because it means that there was no substantial 

drop after the onset of the stressor. 

df.6 <- df.5 %>%  
  mutate(data = map2(data, final_mod, ~ add_predictions(.x, .y, var = "pred_s
teps")), 
         init_drop = map2_dbl(final_mod, baseline_steps, init_drop), 
         sub_drop = baseline_steps * 0.2) %>%  
  filter(init_drop > sub_drop) 

Step 7: Quantifying and characterizing the resilience process 

As a final step, we quantify resilience, operationalized as the AUC (see Figure 1), and we 

also provide indicators of additional resilience features (see table 2 and figure 4). A detailed 

descriptions of these parameters and their implementation in R is now presented while a 

visualization of these parameters is provided in figure 4.  

1. Initial drop. The indicator corresponds to the difference between baseline level and the fitted 

value at the first day after the stressor. It quantifies the system perturbation informing whether 

and how much step count decreased after the onset of the stressor (expressed in steps 

compared to the baseline level). The function used to compute the initial drop is init_drop(). 

2. Recovery Rate. This resilience feature informs about the duration for the system to bounce back 

to the baseline level and thus is expressed in number of days. In order to compute it, we need 

to identify the recovery point (here the day) when the fitted value from the selected model is 

equal or greater than the baseline level. In order to do so, we apply the rec_rate() function 
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which is an ad-hoc built function. If the rec_rate()returns a missing value (NA), it means that 

the individual has not recovered from the stressor during the time period considered in the time 

series (200 days in the current example). In this case, one option is to extend the length of the 

time series (post-stressor phase) and check if a longer period of time allows to identify the time 

point when the system recover from the stressor.  

3. Main resilience score 1: Area Under the Curve (AUC). The AUC represents the total number of steps 

reduced between the onset of the stressor until the recovery point compared to baseline. In 

order to calculate it and hence quantify the resilience process, we use a formula that calculates 

the cumulative difference between the predicted values and the baseline values in the time 

period before the recovery happens: 

𝐴𝑈𝐶 = ∑ (|𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 − 𝑓(𝑥𝑖)|)
𝑛

𝑖
 

Where n corresponds to the recovery rate value, baseline represents the baseline value, and f(xi) 

is the fitted value of steps at measurement point i. The AUC value represents the cumulative 

decrease in steps after the onset of the stressor and is expressed in terms of number of steps. 

The resilience process should be then interpreted as follows: a lower AUC value describes a 

better resilience process while a higher AUC value describes a worse resilience process. In case 

the recovery rate function returns a missing value (i.e., no recovery happened), the AUC is 

calculated from the length of the time series instead of from the recovery rate (n argument in 

the AUC function). This means that the AUC for participants who do not recover from the 
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stressor is artificially limited and tends to be underestimated. The corresponding R function 

auc() was developed for this tutorial. 

4. Main resilience score 2: Relative Area Under the Curve (rAUC). The AUC provides a measure of the 

resilience process in absolute terms. Though this information is of crucial importance to answer 

various research questions at an idiographic level (e.g., what is the impact of a stressor x on step 

count for the individual y), it does not allow to make adequate comparisons between individuals 

unless the baseline level is taken into account. As an example, let us consider two individuals (y, 

z) with the same recovery rate (100 days) and same AUC (100’000 total steps), but with different 

baseline levels (e.g., 5’000 for individual y, 8’000 for individual z). It follows that in relative terms, 

the stressor x has impacted the individual y more than the individual z. To account for it, we 

propose a function rel_auc() to calculate a further parameter that weights the resilience score 

based on the baseline level and is calculated as the AUC divided by the baseline level. This value 

represents the relative impact produced by the stressor as a ratio of the baseline level for each 

individual. 

𝑟𝐴𝑈𝐶 = (
𝐴𝑈𝐶

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ∗ 𝑛
) 

Where AUC represents the area under the curve, n corresponds to the recovery rate value or 

the length of the time series in case the individual hasn’t recovered from the stressor, and 

baseline represents the baseline value. 
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5. Maximum perturbation. The maximum perturbation corresponds to the difference between 

baseline and the smallest fitted value during the resilience process and it is expressed in steps. 

The function used to compute the initial drop is max_drop(). Note that depending to the 

selected model (e.g., linear, GAM), the maximum perturbation may overlap to the initial drop in 

most of the cases. 

6. Day of maximum perturbation. It corresponds to the day of the time series when the maximum 

drop occurred. The function used to compute the initial drop is max_drop(). 

7. Average perturbation. This resilience descriptor refers to the daily average impact of the stressor 

on step count data (steps per day). We develop the ad-hoc function avg_prtb() to extract this 

parameter.    

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛 = (
𝐴𝑈𝐶

𝑛
) 

Where AUC represents the area under the curve and n corresponds to the recovery rate value 

or the length of the time series in case the individual hasn’t recovered from the stressor. This is 

relevant for understanding the average daily decrease in steps following the onset of the 

stressor. 

Finally, the function res_plot() returns a ggplot object that shows the resilience process (see 

figure 5). 

length_ts <- as.integer(end_ts - lckd) 
 
df.7 <- df.6 %>%  
  mutate(recovery_rate = map2_dbl(baseline_steps, data, ~ rec_rate(.x, .y$pre
d_steps)), 
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         resilience = pmap_dbl(list(baseline_steps, data, recovery_rate), ~ a
uc(..1, ..2$pred_steps, ..3)), 
         rel_resilience = pmap_dbl(list(resilience, baseline_steps, length_ts
, recovery_rate), ~ rel_auc(..1, ..2, ..3, ..4)), 
         max_pert = map2_dbl(final_mod, baseline_steps, ~ max_drop(.x, .y)), 
         max_pert_day = map2_dbl(final_mod, baseline_steps, ~ which_drop(.x, 
.y)), 
         avg_perturbation = pmap_dbl(list(resilience, recovery_rate, length_t
s), ~ avg_prtb(..1, ..2, ..3)), 
         res_plot = pmap(list(data, baseline_steps, recovery_rate, id), ~ res
_plot(..1, ..2, ..3, ..4, ymax = 25000))) 

 

Table 2. Comparison of resilience scores and resilience features across participants 

id Baselin

e level1 

Initial 

drop2 

Recovery 

rate3 

AUC1 rAUC4 Max 

pert1 

Max pert 

day5 

Avg 

pert1 

P1 14589 7245 NA 640886 0.22 7245 1 3204 

P2 7528 4784 NA 768963 0.51 4784 1 3844 

P3 9370 3698 128 212618 0.18 4349 15 1661 

P4 12143 7136 164 450445 0.23 7136 1 2746 

P5 7569 3299 131 216025 0.22 3299 1 1649 

P6 8956 8280 NA 886527 0.49 8280 1 4432 

P7 14061 9978 134 499632 0.27 9978 1 3728 

P8 6236 3301 89 145392 0.26 3301 1 1633 

Mean 10057 5965 129 477561 0.30 6047 3 2862 

Note. Units for resilience scores and features are: 1 = steps, 2 = delta steps, 3 = number of days, 4 = 

percentage, 5 = progressive day since stressor; pert = perturbation; NA = baseline level not recovered 

during the study 
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Figure 4. Visualization of resilience scores and features for participant P3 

  
Note. Green horizontal line = baseline level of steps, AUC = area under the curve, rAUC = relative area 

under the curve, avg = average. 
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Figure 5. Visualization of resilience process for each time series (participant) 

 

Note. P = participant; orange area = resilience; green horizontal line = baseline steps; plain 

black line = fitted step count values; grey line = observed values for step count. 
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Discussion 

We conclude this tutorial with an illustrative overview of the interpretation of results 

coming from the implementation of the proposed methodological approach and a discussion 

on the advantages, its limitations, and some research implications.  

Results interpretation 

The provided resilience scores and features allow to explore whether participants 

managed to return to their pre-lockdown level of step count, when it happened, and how much 

their daily step count decreased after the onset of the stressor (see table 2). For instance, five 

out of eight participants recovered after the onset of the stressor (average recovery time of 129 

days) while three participants did not recover during the post-stressor phase (200 days following 

the stressor). Seven out of eight experienced the maximum perturbation right after the 

lockdown (day of maximum perturbation = 1) with an initial average drop of 6,249 daily steps 

after which their trajectory improved. Only one participant (P3) experienced the maximum drop 

15 days after the onset of the stressor. On average, the resilience score of the eight participants 

is of 477,561 steps, while the average perturbation is of 2,862 steps per day during the recovery 

process. This last number is in line with previous research (Costello et al., 2021) showing an 

average decrease of 2,872 steps per day following the COVID-19 pandemic mitigation strategies 

in San Diego, California. Furthermore, thanks to the main resilience scores (AUC), we are able to 

estimate the overall decrease of step count following the onset of the COVID-19 lockdown. From 

an idiographic standpoint, we can see that participants who never bounced back to pre-
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lockdown level of step count (P1, P2, P6) share the worst resilience scores (640,886, 768,963 and 

886,527 steps respectively) and, on average, they ‘lost’ 3,204, 3,844 and 4,432 steps per day 

during the 200 days following the lockdown. Finally, from a more qualitative point of view, it is 

possible to see that the resilience trajectory of five out of eight participants is represented by 

non-linear growth models (GAM with thin plate smooth term for P1; GAM with cyclic cubic 

smooth term for P3; quadratic model for P4, P6, P7) while the resilience trajectory of the other 

three participants is better characterized with linear models (see figures 3 and 5). Overall, results 

suggested that the resilience process might differ extensively across individuals both 

quantitatively and qualitatively. 

Strengths and limitations 

The innovative aspect of the approach presented in this tutorial is that it leverages the 

fitted values from the selected growth model to quantify the AUC and ultimately resilience using 

an idiographic approach. By using the fitted values, the method allows to control for the natural 

daily fluctuations in step count data and, hence, identify the point in time when the individual 

recovers from the stressor. Additionally, by fitting growth models, the proposed approach is 

consistent with the conceptualization of resilience as a process (Den Hartigh & Hill, 2022; Scheffer 

et al., 2018). In the tutorial, we used this method to quantify resilience from step count data as a 

use case, but its application is not limited to this physical activity outcome. It can be used also to 

explore the resilience process for other physical activity outcomes which are characterized by 
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high variability (e.g., minutes spent in light or moderate to vigorous physical activity; Costello et 

al., 2021; Hooker et al., 2020). Additionally, further health-related signals characterized by high 

variability, e.g., psychotherapy outcomes (Olthof et al., 2020) or heart rate variability (Namazi, 2021), 

might benefit from this methodology. Another strength of this tutorial includes the utilization of 

the open-source statistical software R, which should facilitate the replication and application of 

the proposed method. This aspect is particularly relevant as R is becoming increasingly popular 

among researchers from the social sciences working with time series (e.g., Stadnitski & Wild, 2019). 

The current tutorial is not without limitations. First, we proposed a methodological 

approach that suites relatively long time series and it might not be appropriate to assess 

resilience in case where the number of measurement points doesn’t allow to model the data 

properly (i.e., measurement points <50; Stadnitski & Wild, 2019). Additionally, since the proposed 

method aims to control for natural fluctuations in physical activity behavior, it would not allow to 

assess resilience in case the recovery rate is so fast that it can be confused with the typical time 

series fluctuations (e.g., a 3 days recovery rate for step count after the formation of a blister on 

a foot). A further limitation is that this tutorial included just one type of stressor: future 

applications of this approach to assess the impact of other stressors on step count and other 

physical activity signals will help to consolidate the methodology (Liu et al., 2022). Last, we 

presented four types of growth models to fit the step count data. For the sake of conciseness, 

we did not expand on growth model tuning and instead proposed to fit functions that have been 

shown to be appropriate to model step count data in the past (Chevance, Baretta, Golaszewski, et 
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al., 2021; Chevance et al., 2022). However, it would be possible to define further functions (e.g., 

polynomial cubic, GAMs with different types and number of dimensions) for inclusion in the 

growth model comparison (as part of step 4 and 5).   

Research implications 

This tutorial provides a methodological toolbox that can foster and facilitate further 

scientific investigation in different ways. First, it allows to explore the determinants of the 

resilience process (e.g., psychological factors, individual differences, environmental barriers and 

facilitators) for physical activity. Understanding how individual differences, such as physiological, 

psychological or contextual factors, may lead to different resilience outcome is crucial to identify 

intervention strategies that improve individuals’ adaptive capacities and ultimately promote 

faster and smoother resilience. Additionally, the provided resilience scores can be used to assess 

and compare the efficacy of specific interventions to promote efficient recovery in physical 

activity following a stressor. For instance, the AUC and the other resilience indicators (e.g., 

recovery rate, average perturbation) can be used as outcomes to test the effectiveness of 

interventions aiming at reducing the impact of stressors on physical activity. 

Conclusions 

In this tutorial article, we presented a new methodological approach to quantify and 

characterize resilience for physical activity data and provided support for its implementation with 

the open-source software R.  We sought to generate a methodological guide with a step-by-step 
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implementation that would contribute to create a ready-to-go toolbox that can be easily applied 

by interested readers. Ultimately, we hope this tutorial article fosters increased awareness about 

the concept of resilience for physical activity time series, and stimulates interest in further 

studying this process. 
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