
1 

 

 1 

Practice schedules affect how learners correct their errors: Secondary analysis from a contextual 2 

interference study. 3 

 4 

Taylor, S.,1 Fawver, B.,2 Thomas, J.L.,1 Williams, A.M., 1,3 & Lohse, K.R.4 5 

 6 

1 Department of Health and Kinesiology, University of Utah, Salt Lake City, UT 7 

2 US Army Medical Research Directorate-West, Walter Reed Army Institute of Research 8 

3 Institute for Human and Machine Cognition, Pensacola, FL 9 

4 Physical Therapy and Neurology, Washington University School of Medicine, Saint Louis, MO 10 

 11 

PLEASE NOTE THAT THIS IS A PRE-PRINT AND HAS NOT BEEN PEER-REVIEWED.  12 
Please cite as: Taylor, S., Fawver, B., Thomas, J.L., Williams, A.M., & Lohse, K.R. (2022). Practice 13 
schedules affect how learners correct their errors: Secondary analysis from a contextual interference 14 
study. SportRxiv. 15 
 16 
Date Submitted: April 4th, 2022 17 
 18 
Keywords: errors; phase space; random practice; timing;  19 
 20 
Author(s) Conflict of Interest and Disclosures: The authors report no conflict of interest or disclosures. 21 
Material has been reviewed by the Walter Reed Army Institute of Research. There is no objection to its 22 
presentation and/or publication. The opinions or assertions contained herein are the private views of the 23 
author, and are not to be construed as official, or as reflecting true views of the Department of the Army 24 
or the Department of Defense. The investigators have adhered to the policies for protection of human 25 
subjects as prescribed in AR 70–25. 26 
 27 
Corresponding Author: Keith R. Lohse, lohse@wustl.edu 28 
 29 

  30 



2 

 

Abstract 31 

Contextual interference is one of the most established effects in motor learning research; random 32 

practice schedules are associated with poorer performance (in the short-term) but superior learning (in the 33 

longer-term) when compared to block practice schedules. However, the way this interference affects 34 

learners on a trial-to-trial basis remains poorly understood. We present a secondary data analysis of N=84 35 

healthy young adults, replicating the contextual interference effect in a time estimation task. We used the 36 

determinant of a correlation matrix to measure the amount of order in participants’ responses. The 37 

determinant is conceptually equivalent to the unexplained variance (1-r2) but applies to higher 38 

dimensional spaces. We calculated this determinant in two different phase spaces: (1) Trial Space, which 39 

was the determinant of the previous 5 trials (lagged constant error 0-4); and (2) Target Space, the 40 

determinant of the previous 5 trials of the same target. The distinction in phase space is critical because 41 

for blocked practice the previous trial is almost always the same target, but for random practice the 42 

previous trial is almost never the same target. In Trial Space, there was no significant difference between 43 

groups (p=0.98) and no Group x Lag interaction (p=0.54), although there was an effect of Lag (p<0.01). 44 

In Target Space, there were effects of Group (p=0.02), Lag (p<0.01), and a Group x Lag interaction 45 

(p=0.03). Participants who practiced using random schedules showed smaller determinants overall, which 46 

got smaller as more past trials were included (i.e., increasingly correlated responses). This increase in 47 

orderliness was due to the random group having positively correlated errors from trial-to-trial in Target 48 

Space. We argue this “response inertia” in the random practice group suggests a greater reliance on the 49 

retrieval of the target time from memory. Data from the novel analyses presented herein support the 50 

reconstruction account of the contextual interference effect and help integrate the effect with other 51 

learning principles in psychology (e.g., retrieval practice being beneficial for long-term recall). 52 
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In their seminal study, Shea and Morgan (1979) demonstrated that randomized practice 54 

schedules, in which you randomize the order of different tasks, promoted long-term learning at the cost of 55 

short-term performance compared to blocked practice conditions. This effect, termed contextual 56 

interference (CI), explains superior learning as a function of the level of interference that occurs during 57 

practice. Random practice schedules create interference because one must switch between different tasks 58 

(e.g., ACB-BCA-CAB) during practice, whereas blocked practice leads to less interference because the 59 

same task is practiced from trial to trial (e.g., AAA-BBB-CCC). Numerous published reports suggest that 60 

the interference produced by random practice schedules during the acquisition phase is beneficial for the 61 

long-term retention of motor skills. In contrast, blocked practice has been shown to be beneficial for 62 

short-term performance during the acquisition phase (because it produces less interference), but these 63 

schedules lead to poorer performance on delayed retention and transfer tests (Merbah & Meulemans, 64 

2011; Broadbent, et al., 2017; Cross et al., 2007). 65 

Although the CI effect is one of the most robust and replicable effects in motor learning, the exact 66 

nature of “interference” or precisely why it is beneficial for long-term learning remains unclear (Lee & 67 

Simon, 2004; Wymbs & Grafton, 2009). One potentially informative approve to improve understanding 68 

of why interference is beneficial would be to study how participants make adjustments from trial to trial 69 

during practice. Although it is well documented that random-practice schedules lead to larger errors 70 

during practice on average, less research exists exploring how participants respond to and correct errors as 71 

a function of their practice schedules. It is possible that random practice is associated with larger errors 72 

during practice yet more adaptive corrections from trial to trial. Although there is not much work related 73 

to the specific concept of trial-to-trial adjustments as a function of practice schedules, but there is quite a 74 

bit of information surrounding it, including research on different types and magnitudes of errors (Lee, et. 75 

al., 2016; Albert & Shadmehr, 2016), trial-to-trial adjustments outside of practice scheduling (e.g., van 76 

Beers et al., 2015), and how errors during practice relate to exploration of the movement space (e.g., Wu 77 

et al., 2014).  78 
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Ultimately, the ability to correct errors is a good way of capturing understanding, knowledge, and 79 

skill (e.g., Marchal-Crespo, et. al., 2017; Pressing & Rodgers, 1997). ‘Errorful’ learning can play an 80 

especially important role in the consciously mediated stage of learning, such that detecting errors and 81 

determining how to correct them are critical components of skill acquisition. Through the experience of 82 

error and feedback from the error in a motor task, the motor commands that an individual uses can be 83 

updated for the next attempt. If these adjustments are consolidated, this can lead to a more permanent 84 

change in the capability for a behavior (i.e., learning; Schmidt, Lee, Winstein, Wulf, & Zelaznik, 2018). 85 

Individuals who produce a larger feedback response to error may also be able to learn more than other 86 

individuals from a given error (Albert & Shadmehr, 2016). Thus, errors – if successfully detected and 87 

adjusted for – are a vital part of the learning process (e.g., Wu et al., 2014; Lohse et al., 2020). Successful 88 

movement is about solving motor problems in new situations, not merely engraining the correct (but 89 

potentially rigid) movement pattern through repetition (e.g., Bernstein, 1966). As such, exploring how 90 

participants respond to errors under different practice schedules may yield important insights into the 91 

learning process.  92 

As beneficial as errors may be in learning, there are some instances in which having a very low 93 

rate of errors during practice have been shown to be beneficial. In these cases, motor learning tasks are 94 

constrained early in practice to minimize performance error while the skill was eventually made more 95 

technical. It is commonly hypothesized in these scenarios that with the absence of explicit instruction, 96 

minimizing error helps  prevent the use of hypothesis testing strategies, which are what ultimately allow 97 

participants to correct errors during learning (Maxwell, et al., 2001; Poolton, et al., 2005). In learning 98 

environments that minimize error, participants may be able to learn better with smaller errors, because 99 

smaller errors were less likely to invoke conscious processing, thereby making participants less likely to 100 

engage explicit/declarative approaches to problem solving (Maxwell, et al., 2001).  101 

In the current study, we explored the relationship between practice schedules, adjustments from 102 

trial to trial, and long-term learning using an existing dataset. Thomas and colleagues (2021) 103 
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demonstrated a contextual interference effect in a time estimation task (see Figure 1). Participants were 104 

required to hold a button down for three different target durations, 1500ms, 1700ms, and 1900ms, over 105 

210 practice trials (70 trials at each target). Participants assigned to the blocked schedule performed all 106 

trials at a single target before moving onto the next target, with the order of targets counterbalanced 107 

across participants. Participants assigned to the random schedule performed all trials in a pseudo-108 

randomized order, with the restriction that targets could not repeat more than once (e.g., AAB, but not 109 

AAA). Approximately one day later, participants returned for a delayed retention and transfer test. The 110 

retention test consisted of the same targets that participants practiced during acquisition, whereas transfer 111 

consisted of two new target times (1600 and 1800 ms). Results from Thomas et al. (2021) replicated the 112 

traditional contextual interference effect, with randomly-scheduled practice associated with worse 113 

performance during acquisition but superior performance on the retention and transfer-tests (see Figure 114 

1). 115 

  116 
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 118 

Figure 1. (A) Acquisition data and (B) post-test data from Thomas et al. (2021), showing absolute error 119 
as a function practice schedule (blocked versus random) and time in practice (during acquisition) or target 120 
(during the post-test). Points show the mean and bars show the 95% confidence interval at each point. 121 
Note that 1500, 1700, and 1900ms targets were practiced during acquisition and made up the retention 122 
test, 1600 and 1800ms target were not practiced during acquisition and made up the transfer test. 123 

 124 

By undertaking a secondary analysis of the data from Thomas et al. (2021), in the present study 125 

we explore how differences in practice scheduling affect the way that participants responded to errors. 126 

Specifically, although randomly-scheduled participants made larger errors during practice, we 127 

hypothesized those participants would be better at correcting those errors. In contrast, we would expect 128 

block-scheduled participants to make smaller errors on average but would be worse at correcting those 129 

errors. To capture these trial-to-trial corrections, we calculated lagged-variables in two different phase 130 
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spaces: Trial Space; and Target Space. In dynamical systems theory, “phase space” refers to a 131 

multidimensional space where each dimension represents a degree of freedom of the system. In Trial 132 

Space, we calculated correlation matrices for the constant error on the current trial (𝑛) and lagged 133 

constant error from the previous trial (𝑛 − 1) sequentially back to the fourth previous trial (𝑛 − 4). In 134 

Target Space, we calculated correlation matrices for the constant error on the current trial (𝑛𝑘) and lagged 135 

constant error for previous trials of the same target (𝑛𝑘 − 1 to 𝑛𝑘 − 4). The importance of these two 136 

phase-spaces and specific calculations are provided in the Statistical Analysis section, below. In brief, 137 

however, we hypothesized that: (1) randomly-scheduled practice would be associated with greater 138 

correlations between errors; and (2) following an error, randomly-scheduled participants would make 139 

more accurate corrections. 140 

METHODS 141 

Participants 142 

Altogether, 84 healthy young adults (age < 35 years) with no self-reported neurological or 143 

musculoskeletal impairments were recruited from the local university population via bulletin posts and 144 

word of mouth. Participants were randomly assigned into four training groups differentiated by their 145 

training schedule (blocked versus random) and whether they engaged in error estimation during practice 146 

or not. The different groups were: (1) blocked with error estimations (Mage = 22.62, SD = 2.44); (2) 147 

blocked without no estimation (Mage = 21.43, SD = 2.23); (3) random with error estimations (Mage = 23.28, 148 

SD = 4.04); and (4) random no estimation (Mage = 21.09, SD = 2.53). Although error-estimation was a 149 

factor of interest in the primary study (Thomas et al., 2021), there were no statistically significant effects 150 

of error estimation in this secondary analysis. Due to this lack of substantial differences, we collapsed 151 

across the error estimation factor. Thus, in the results below we consider only two groups, those who had 152 

a blocked practice schedule (n=41) and those who had a random practice schedule (n=43). 153 
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Five of the 84 participants were primarily left-handed, but all reported their right hand as the 154 

preferred hand to control a computer mouse. The experiment was approved by the university’s 155 

Institutional Review Board (IRB), and written informed consent was obtained from each participant. All 156 

participants were naïve to the hypotheses of the experiment. Additionally, the sample size was determined 157 

based on past-estimates of contextual interference effects on learning (Brady, 2004), yielding 80% 158 

statistical power to show the contextual interference effect in Thomas et al (2021). However, there was no 159 

a priori power calculation for any of the exploratory analyses.   160 

Task and Stimuli 161 

Details of the task have previously been described in Thomas et al. (2021), so we focus only on 162 

the most critical aspects of the methods here. Participants completed a time-estimation task using their 163 

dominant hand while seated a computer. The time-estimation task required participants to hold down a 164 

mouse button with their index finger for the duration of a target time that was shown on the screen at the 165 

beginning of each trial. The target times were 1500, 1700, and 1900 ms. This 200-ms difference was 166 

selected based on pilot data, which showed that this subtle distinction was difficult but learnable for the 167 

participants (in an effort to avoid floor/ceiling effects). 168 

All participants completed 210 trials during the practice phase, with 70 trials for each target. For 169 

participants practicing with a blocked schedule, all 70 trials for the same target were completed together, 170 

with the order of the targets counterbalanced across participants. For participants with a random practice 171 

schedule, the 70 trials for each target were pseudo-randomly interspersed across the 210 practice trials. 172 

This distribution was pseudo-random because targets were constrained that a single target time could not 173 

be repeated more than twice in sequence. In both groups, participants received signed error feedback 174 

following each trial (e.g., “-125 ms” indicating that a response was slightly too short; “+820 ms” 175 

indicating that a response was substantially too long). If participants were within +/-50 ms of the intended 176 

target, feedback of “00” was displayed on the screen indicating that the participants were accurate. This 177 

50-ms bandwidth around the target was chosen in an attempt to reduce over-correcting on the part of the 178 
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participants (i.e., ±50 ms is likely too small an interval for human nervous system to reliably correct). 179 

Following practice, all participants completed the Rating Scales of Mental Effort (RSME; Veltman & 180 

Gaillard, 1996), self-reporting their perceived mental effort during practice. Additionally, participants in 181 

the error-estimation groups were required to estimate their constant error prior to receiving feedback on 182 

every seventh trial. So, for that subset of participants we also have the error-estimate mismatch, defined 183 

as the absolute difference between estimated and actual constant error, as a measure of participants 184 

awareness of their errors (for more detail, see Thomas et al., 2021).  185 

Approximately 24 hours after practice, participants returned to the laboratory to complete 186 

retention and transfer testing. The test consisted of 40 trials, with a set of 20 trials completed in a blocked 187 

order and 20 trials completed in a random order. The order of these sets was counterbalanced across 188 

participants. In each set, participants completed 4 trials at each of 5 targets: the three original targets 189 

(1500, 1700, and 1900 ms) which were considered the retention test and two new targets (1600 and 1800 190 

ms) which are considered the transfer test. Importantly, set order did not have any statistically significant 191 

effects in our primary study (Thomas et al., 2021), so we averaged across set order and the individual 192 

target times in the present analyses, creating only one experimental factor for the post-tests: retention 193 

versus transfer tests. 194 

Trial Phase Space and Target Phase Space during Practice 195 

In order to explore sequential effects during practice, we considered the effect that the practice 196 

schedule had on neighboring trials. As shown in Figure 2, there are (at least) two different ways that we 197 

can consider the structure of practice. One we will refer to as “Trial Space”, where a trial (𝑡𝑛) is compared 198 

to the trial before it (𝑡𝑛−1) or after it (𝑡𝑛+1), regardless of what targets are being practiced on those trials. 199 

Alternatively, we can consider these relationships in “Target Space”, where a trial of a specific target 200 

(𝑡𝑛𝑘) is compared to the previous trial of the same target (𝑡𝑛𝑘−1) or the next trial of the same target 201 

(𝑡𝑛𝑘+1), regardless of the absolute trial number.  202 
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 203 

Figure 2. Conceptual diagrams showing the relationship between the current and previous trial in trial 204 
phase space (A) and in target phase space (B). Note that when auto-correlations are calculated in trial 205 
phase space, 𝑟𝑛,𝑛−1, the initial trial needs to be dropped from the analysis as there is no previous trial. 206 

When the auto-correlation is calculated in target phase space, 𝑟𝑛𝑘,𝑛𝑘−1, the first trial of each target needs 207 

to be dropped as there is no previous trial of that target. The shuffling of the errors is also shown for one 208 
randomly scheduled participant's actual data, with constant error across all 210 trials is shown in the 209 
original trial phase space (C) and transformed target phase space (D) as a function of target type (red = 210 
1500, green = 1700, and blue =1900 ms). 211 

 212 

The distinction between phase spaces is important, because in trial space, the blocked practice 213 

group almost never has a trial of one target proceeded or followed by a different target (Figure 2A); this 214 

only happens at the boundaries between blocks of trials. In contrast, the random practice group almost 215 

never has a trial of one target proceeded or followed by the same target. Indeed, the median number of 216 

trials between the same target was 3 and maximum was 9 for the random practice group. These 217 

differences mean that when the trials are re-shuffled into target space (Figure 2B), there is very little 218 

change in the trial-to-trial relationships for the blocked practice group, but there is a substantial change in 219 

the trial-to-trial relationships for the random practice group.  220 

Using both of these phase spaces, we systematically tested whether the relationship between trial-221 

to-trial corrections was different between groups. To capture the correlation between trials, we chose to 222 

use the determinant of the constant error (CE) auto-correlation matrix going back five trials in both trial 223 
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space (𝐶𝐸𝑛 to 𝐶𝐸𝑛−4) and target space (𝐶𝐸𝑛𝑘 to 𝐶𝐸𝑛𝑘−4). It is important to first explain why we chose to 224 

focus on constant error. Second, it is important to explain why the determinant of the correlation matrix is 225 

a useful statistic.  226 

First, we chose constant error as our primary outcome because it already takes the target into 227 

account, whereas a variable like the hold time on each trial does not (i.e., constant errorij = hold timeij – 228 

targetj), and because it retains the signed value of the error, whereas a variable like absolute error does not 229 

(i.e., absolute errorij = |constant errorij|; Schmidt, Lee, Winstein, Wulf, & Zelaznik, 2018). Both of these 230 

features are desirable because accounting for the target makes subsequent statistically modeling simpler 231 

(i.e., variation due to target is already removed) and retaining the sign makes the correlation between 232 

trials more interpretable (i.e., the direction errors, and thus their similarity, cannot be determined from 233 

absolute errors alone). Second, we chose the determinant of the constant error correlation matrix because 234 

it allows us to capture the structure between errors of multiple, different lags. That is, if we were solely 235 

focused on the relationship between the current trial and the previous trial, we could take the correlation 236 

coefficient from the lag-1 autocorrelation (𝑟𝑛,𝑛−1). However, we wanted to explore the possible 237 

relationship between more distant trials, for which we operationally chose a maximum lag of four (𝑛 −238 

4). Accounting for the relationship between five different trials (i.e., 𝑛 to 𝑛 − 4), means that our main 239 

outcome is not a single correlation, but a correlation matrix. The determinant of the correlation matrix 240 

thus allows us to reduce any square 𝑛 × 𝑛 matrix into a single scalar value that can be analyzed 241 

statistically. As explained below, the determinant is conceptually similar to the unexplained variance, 242 

with smaller determinants indicating stronger correlations in the matrix.  243 

The relationship of the determinant to unexplained variance is easiest to show in the case of 2 × 2 244 

correlation matrix. The determinant of a 2 × 2 matrix (𝑨) is equal to the product of the diagonal elements 245 

minus the product of the off-diagonal elements: 246 

(eq1) det(𝑨) = det ([
𝑎 𝑏
𝑐 𝑑

]) = 𝑎𝑑 − 𝑏𝑐 . 247 
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Thus, in a 2 × 2 correlation matrix (R) the determinant is: 248 

(eq2) det(𝑹) = det ([
1 𝑟2,1
𝑟1,2 1

]) = 1 − 𝑟2 249 

making the determinant of a 2 × 2 correlation matrix mathematically equivalent to the unexplained 250 

variance.  251 

As shown in Figure 3, the determinant has a geometric interpretation that we think is useful for 252 

generalizing to higher dimensional spaces. Consider the joint-distribution of two uncorrelated normally 253 

distributed variables, these uncorrelated data can be captured by a circle (e.g., a 95% confidence ellipse is 254 

shown in Figure 3A). Next, consider a distribution of two strongly correlated normally distributed 255 

variables. These correlated data would be captured by an ellipse and the axes of the ellipse are determined 256 

by the strength of the correlation (e.g., a 95% confidence ellipse is shown in Figure 3B). The ratio of 257 

squared volumes of these two distributions can be shown to equal the determinant of the empirical 258 

correlation matrix (Figure 3C). Specific determinants for two different participants (one with a blocked 259 

schedule and one with a random schedule) are shown in Figure 3D-E.  In 3D, constant error is plotted as a 260 

time series for each participant. In 3E, the lag-1 autocorrelation is shown in target space, r(nk, nk-1), for 261 

each participant. The participant who had a blocked schedule showed almost no correlation between 262 

current and previous error, making the explained variance very small, r2 < 0.01, and thus the determinant 263 

very large, d > 0.99.  In contrast, the participant who had a random schedule showed a modest correlation 264 

between current and previous error, yielding an r2 = 0.15, and thus the determinant d = 0.85.265 
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 266 

Figure 3. The geometric interpretation of the determinant for a 2 × 2 correlation matrix. (A) The circular 95% confidence region for n=1,000 267 

uncorrelated data points. (B) The elliptical 95% confidence region for n=1,000 correlated data points where 𝑟=0.7. (C) The ratio of the squared 268 
area of these regions (0.51) is equivalent to the determinant of the correlation matrix, [1 0.7; 07 1], which is 0.51. For reference, arrows show the 269 
major and minor axes of the circle (red) and ellipse (white). (D) Example time series for one block-schedule participant and one random-schedule 270 
participant. (E) Scatter plots showing the lag-1 autocorrelation for the same block- and random-schedule participants with a 95% confidence 271 
ellipse and the Pearson’s r value calculated in target space.272 
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In sum, the determinant tells us how the volume of a unit square is transformed by a given matrix 273 

(Margalit & Rabinoff, 2017). When applied to a correlation matrix, the determinant can tell us how much 274 

this volume shrinks based on the strength of the correlation (see also Lohse, Jones, Healy, & Sherwood, 275 

2014). Although this is typically shown with squares and parallelograms in linear algebra, it also holds for 276 

circles and ellipses when applied to normally distributed random variables (i.e., the major and minor axes 277 

are being transformed in a similar way). In two dimensions, the determinant reflects an ellipse whose area 278 

is dictated by the strength of a correlation (𝑟1,2) relative to a circle (the alternative distribution which 279 

assumes 𝑟1,2 = 0). In three dimensions, the determinant would reflect an ellipsoid whose volume is 280 

dictated by all three correlations (𝑟1,2, 𝑟1,3, 𝑟2,3) relative to a sphere (the alternative distribution which 281 

assumes all 𝑟′𝑠 = 0). With more than three dimensions, the geometric interpretation is difficult (nigh 282 

impossible) to visualize, but the interpretation still holds: the determinant reflects the ratio of the volume 283 

taken up by the observed distribution relative to what it would be if the variables were all independent. 284 

Thus, the determinant is bounded between 0 and 1, with a smaller determinant meaning that more 285 

variance has been explained.  286 

Statistical Analysis 287 

All data processing, analysis, and visualization were done in R 4.0.4 and R Studio (RStudio 288 

Team, 2020; Wickham et al., 2019). Code and de-identified data for these analyses are available from: 289 

https://github.com/keithlohse/taylor_2022_CI_sequential_effects. To analyze the correlations between 290 

errors, we calculated determinants using different numbers of lagged trials from one trial back (𝑛 − 1) to 291 

four trials back (𝑛 − 4), in both trial space and target space for each subject. These determinants were 292 

then analyzed using a mixed-factorial repeated measures ANOVA with a between-participants factor of 293 

Group (blocked versus random practice schedules) and within-participants factors of Phase Space (target 294 

versus trial) and Lag (including 1, 2, 3, or 4 of the previous trials in the correlation matrix). Mauchly’s 295 

test was used to assess violations of sphericity, and the Greenhouse-Geisser correction was applied when 296 

sphericity was violated (denoted by pgg, Lawrence, 2016). 297 

https://github.com/keithlohse/taylor_2022_CI_sequential_effects
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To determine the way in which prior trials related to future trials, we followed this analysis of 298 

determinants with mixed-effect regressions (Bates, Maechler, Bolker, &Walker, 2015), where the 299 

constant error on the current trial was regressed onto constant errors from the previous trial(s). Full details 300 

of the mixed-effect regression models are presented in Supplemental Appendix i, but in brief, constant 301 

error on the next trial was regressed onto fixed-effects of constant error from the previous four trials. The 302 

model also included a random intercept for each participant and random slopes of for each lagged 303 

constant error variable. These random-effects account for the within-participant nature of the data (Long, 304 

2012; Snijders & Bosker, 2011). As detailed in the Results, the only significant differences between 305 

groups were in the immediately previous trial (lag-1 error), so we focused on only the immediately 306 

previous trial in subsequent analyses.  307 

Regressing constant error onto past constant errors tells us how similar past errors are to each 308 

other. That is, a positive slope would indicate that positive errors are followed by positive errors and 309 

negative errors by negative errors. However, we also have to account for the fact that errors move around 310 

the zero-point, making the absolute distance from zero on the next trial meaningful. That is, moving from 311 

-150 ms to -50 ms is arguably as “good” of a correction as moving from -150ms to +50 ms. In order to 312 

address that issue, we also regressed absolute error on the next trial onto constant error from the previous 313 

trial. Because absolute error showed a u-shaped curvilinear relationship with previous constant error (i.e., 314 

large negative or positive constant errors were followed by large absolute errors), we also included a 315 

quadratic fixed-effect of previous constant error in the model. As before, random-effects included a 316 

random intercept and slopes for the linear and quadratic effects of previous constant error to account for 317 

the within-subject nature of these data. Statistical significance of these effects was determined using the 318 

Welch-Satterthwaite approximation to the degrees of freedom (Kuznetsova, Brockhoff, Christensen, 319 

2017). To ensure robustness of results, we used semi-parametric bootstrapping to estimate 95% 320 

confidence intervals for all model parameters (Bates, Maechler, Bolker, &Walker, 2015). 321 
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Finally, we present some exploratory regression results demonstrating how individual differences 322 

in the determinant during practice relate to individual differences in long-term retention and transfer, self-323 

reported mental effort, and error estimation accuracy (for those participants who were forced to estimate 324 

their errors). For these analyses, we regressed different dependent variables onto the determinant in target 325 

space and Group (Random versus Blocked). As with the mixed-effect regressions, full details of these 326 

models are presented in Supplemental Appendix i.  327 

RESULTS 328 

Correlations between Trials during Practice 329 

 The Group x Phase Space x Lag mixed-factorial ANOVA for the determinant of the correlation 330 

matrix yielded several statistically significant effects: a main-effect of Lag, F(3,246)=165.03, pgg<0.001, a 331 

main-effect of Phase Space, F(1,82)=10.15, pgg=0.002, a Group x Phase Space interaction, F(1,82)=7.04, 332 

pgg=0.010, a Lag x Phase Space interaction, F(3,246)=9.83, pgg=0.002, and most critically a Group x Lag 333 

x Space interaction, F(3,246)=4.39, pgg=0.036.  334 

To unpack this three-way interaction, we ran post-hoc Group x Lag mixed-factorial ANOVAs in 335 

trial space and target space separately. As shown in Figure 4, in trial space there was a non-significant 336 

effect of Group, F(1,82)=<0.01, p=0.981, a significant main effect of Lag, F(3,246)=152.31, pgg<0.001, 337 

and a non-significant Group x Lag interaction, F(3,246)=0.40, pgg=0.541. Thus, in trial space, there was 338 

greater order in responses when more previous trials were included, but this increase in order did not 339 

significantly differ as a function of practice schedule. In target space, however, there was a significant 340 

main effect of Group, F(1,82)=5.09, pgg=0.027, a main-effect of Lag, F(3,246)=120.17, pgg<0.001, and a 341 

Group x Lag interaction, F(3,246)=4.29, pgg=0.039. Thus, in target space, although both groups tended to 342 

have increasingly correlated responses when more previous trails were considered, this effect was 343 

stronger for the random practice group.  344 

 345 
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 346 

Figure 4. The determinants of the correlation matrix as a function of Group, Phase Space, and Lag (the 347 
number of previous trials included in the correlation matrix). 348 

 349 

Exploring the Nature of Adjustments from Trial-to-Trial 350 

 Correlation Matrices. Although the determinant reflects the amount of unexplained variance in a 351 

correlation matrix, it does not tell us the specific directions or magnitudes of the correlations involved. 352 

Thus, although we know that the random-practice schedule was associated with more correlated errors 353 

from trial-to-trial (i.e., more order in participants’ responses), it does not tell us specifically how an error 354 

on the previous trial relates to an error on the next trial. To understand the trial-to-trial adjustments better, 355 

we present three different analyses. First, as shown in Table 1, we present the average correlations 356 

between trials as a function of practice schedule and phase space as descriptive statistics. Although all of 357 

these correlations tend to be small (r’s < 0.20), the largest correlations were found for the random practice 358 

group in target space where weak positive correlations were common (r’s between 0.10 and 0.15) and 359 

generally double to triple the correlations found in other groups/phase spaces.  360 

Table 1.  The correlation matrices for constant error in the five previous trials as a function of phase 361 
space and group.  362 

Random Group in Target Space  Random Group in Trial Space 

 Nk Nk-1 Nk-2 Nk-3 Nk-4   N N-1 N-2 N-3 N-4 

Nk 1 0.137 0.108 0.094 0.096  N 1 0.041 0.079 0.057 0.055 

Nk-1 0.137 1 0.137 0.106 0.093  N-1 0.041 1 0.045 0.081 0.055 

Nk-2 0.108 0.137 1 0.140 0.105  N-2 0.079 0.045 1 0.047 0.083 
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Nk-3 0.094 0.106 0.140 1 0.136  N-3 0.057 0.081 0.047 1 0.048 

Nk-4 0.096 0.093 0.105 0.136 1  N-4 0.055 0.055 0.083 0.048 1 

             

Blocked Group in Target Space  Blocked Group in Trial Space 

 Nk Nk-1 Nk-2 Nk-3 Nk-4   N N-1 N-2 N-3 N-4 

Nk 1 0.043 0.052 0.050 0.051  N 1 0.040 0.053 0.050 0.045 

Nk-1 0.043 1 0.051 0.050 0.060  N-1 0.040 1 0.047 0.050 0.056 

Nk-2 0.052 0.051 1 0.052 0.061  N-2 0.053 0.047 1 0.047 0.059 

Nk-3 0.050 0.050 0.052 1 0.056  N-3 0.050 0.050 0.047 1 0.053 

Nk-4 0.051 0.060 0.061 0.056 1  N-4 0.045 0.056 0.059 0.053 1 

*Shaded regions denote correlation coefficients r>0.10. All cells show the Pearson correlation coefficient 363 
on average across participants. 364 

 365 

Constant Error on the Next Trial. Mixed-effect regressions predicting constant error on the next 366 

trial from constant error on the previous four trials showed differential effects in trial space relative to 367 

target space. (Full details of the regression models are available in Supplemental Appendix i.) In trial 368 

space, there were statistically significant main-effects of Group (p<0.001), Lag-1 error (p=0.002), Lag-2 369 

error (p<0.001), Lag-3 error (p<0.001), and Lag-4 error (p<0.001). Critically however, there were no 370 

Group x Lag interactions for either Lag-1 error (p=0.953), Lag-2 error (p=0.250), Lag-3 error (p=0.637), 371 

or Lag-4 error (p=0.917). These results can be seen in the dashed lines of Figure 5A; random practice 372 

participants generally had more positive constant errors than blocked practice participants, but the effect 373 

of the previous trial was comparable across groups (only Lag-1 error is shown).  374 

In target space, there were statistically significant main-effects of Group (p<0.001), Lag-1 error 375 

(p<0.001), Lag-2 error (p<0.001), Lag-3 error (p<0.001), and Lag-4 error (p<0.001). Critically there was 376 

also a statistically significant Group x Lag-1 error interaction (p=0.005), but no other Group x Lag 377 

interactions, Lag-2 error (p=0.244), Lag-3 error (p=0.628), or Lag-4 error (p=0.204). These results can be 378 

seen in the solid lines of Figure 5A; random practice participants not only had more positive constant 379 

errors than blocked practice participants, but random practice participants also tended to have more 380 

similar errors from one trial to the next compared to blocked practice participants (note the more positive 381 

slope of the solid line for the random group compared to the blocked group). 382 
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 383 

Figure 5.  The model predictions for constant error on the next trial (A) or absolute error on the next trial 384 
(B) as a function of the previous constant error. Coefficients for all of the models are provided in the 385 
supplemental appendix. Solid lines indicate predictions from the model in target space, dashed lines 386 
indicate model predictions in trial space. Red lines show model predictions for the random practice group, 387 
Black lines show model predictions for the blocked practice group. 388 

 389 

Absolute Error on the Next Trial. Mixed-effect regressions predicting absolute error on the next 390 

trial from constant error on the previous trial showed slightly different effects in trial space relative to 391 

target space. In trial space, there was a statistically significant main-effect of Group (p<0.001), no linear 392 

effect of Lag-1 error (p=0.221), and a significant quadratic effect of Lag-1 error (p<0.001). Although 393 

there was not a significant Group x Lag-1 interaction (p=0.967), there was a significant interaction with 394 

the quadratic effect, Group x Lag-12 (p<0.001). Participants who practiced with a random schedule tended 395 

to make larger errors on the subsequent trial and, although both groups showed u-shaped distributions to 396 

their corrections, the u-shape for the blocked practice participants was tighter and deeper than the u-shape 397 
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for the random practice participants; see Figure 5B. For reference, about 95% of the errors fell between -398 

500 ms and +500 ms, so the group difference is especially crucial in that range. 399 

In target space, there was a statistically significant main-effect of Group (p=0.003), linear Lag-1 400 

error (p=0.004), and quadratic Lag-12 error (p<0.001). Although there was not a significant Group x Lag-401 

1 interaction (p=0.103), there was a significant interaction with the quadratic effect, Group x Lag-12 402 

(p=0.025). As shown in Figure 5B, participants who practiced with a random schedule tended to make 403 

larger errors on the subsequent trial and, although both groups showed u-shaped distributions to their 404 

corrections, the u-shape for the blocked practice participants was tighter and deeper than the u-shape for 405 

the random practice participants. Interestingly, compared to trial space, there was evidence for a “tilt” in 406 

these distributions (shown by the linear effect of Lag-1 error) such that both groups tended to make 407 

slightly larger absolute errors following positive constant errors compared to negative constant errors.   408 

Associations (or lack thereof) with Long Term Learning 409 

 Retention Test. A multivariable regression model in which average absolute error on the retention 410 

test was regressed onto Group and the Determinant over the previous 5 trials in target space showed that 411 

there was a statistically significant main-effect of Group, b=-0.08, t(1,81)=-2.71, p=0.008, but not a 412 

statistically significant main-effect of the Determinant, b=-0.04, t(1,81)=-0.43, p=0.672. Collinearity for 413 

these predictors was relatively low, with variance inflation factor = 1.06. A scatterplot illustrating these 414 

effects is shown in Figure 6A. 415 

 Transfer Test. A multivariable regression model in which average absolute error on the transfer 416 

test was regressed onto Group and the Determinant over the previous 5 trials in target space demonstrated 417 

that there was a statistically significant main-effect of Group, b=-0.07, t(1,81)=-2.66, p=0.009, but not a 418 

statistically significant main-effect of the Determinant, b=-0.01, t(1,81)=-0.13, p=0.896. A scatterplot 419 

illustrating these effects is shown in Figure 6B. 420 
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Self-Reported Mental Effort. Average mental effort as self-reported on the Rating Scales of 421 

Mental Effort was regressed onto Group and the Determinant over the previous 5 trials in target space 422 

showed that there was not a statistically significant main-effect of Group, b=-7.42, t(1,81)=-1.43, 423 

p=0.156, and a marginally significant effect of the Determinant, b=-37.99, t(1,81)=-2.02, p=0.047. 424 

However, given the large p-value and a lack of predictions for this association, we did not interpret this 425 

effect further. A scatterplot illustrating these effects is shown in Figure 6C. 426 

Error Estimation Accuracy. For participants who estimated their own errors (N=42), we 427 

similarly regressed error estimation accuracy onto Group and the Determinant over the previous 5 trials. 428 

There was no statistically significant main-effect of Group, b=21.08, t(1,39)=1.05, p=0.299, and no 429 

statistically significant main-effect of the Determinant, b=-48.56, t(1,38)=-0.72, p=0.476. A scatterplot 430 

illustrating these effects is shown in Figure 6D. 431 

  432 
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 433 

Figure 6. The average absolute error (AE) during retention (A) and transfer tests (B), plus the average 434 
from the rating scales of mental effort (RMSE; C), and the mis-match between actual error and estimated 435 
error (D) as a function of the determinant in target space and group. P-values are given in the margins for 436 
the effect of Group controlling for the other variable (i.e., the difference in retention test performance had 437 
p=0.03 controlling for the determinant; the difference in the determinant had p<0.01 controlling for 438 
retention test performance). The p-value in the plot is given for the association between the variable of 439 
interest (A-D) and the determinant, controlling for Group.   440 

 441 

  442 



23 

 

DISCUSSION 443 

 In this study, we report that random practice schedules are associated with greater order in 444 

responses (i.e., stronger correlations as shown by the determinant) in target space than in trial space. In 445 

contrast, the blocked practice group showed very little difference in correlations between trial space and 446 

target space. For random practice participants, these correlations were quite small and positive (r’s 447 

between 0.10 to 0.15), but notably larger than the correlations in either phase space or for blocked 448 

practice participants (r’s between 0.00 to 0.05). 449 

These findings for the determinants of the correlation matrix supported our first hypothesis that a 450 

random practice schedule would be associated with stronger correlations (i.e., more orderly/systematic 451 

responding) from trial to trial. However, we did not find support for our second hypothesis that random 452 

practice schedules would be associated with more adaptive corrections from trial to trial. In contrast, 453 

random practice was associated with positive correlations between errors, such that if a participant 454 

overshot on the previous trial, they were more likely to overshoot on the next trial (as shown in Figure 455 

5A). Moreover, although random practice participants did tend to reduce their error from trial to trial, 456 

participants with a blocked schedule were better at making adaptive corrections (i.e., a smaller absolute 457 

error on trial n+1 given the same constant error on trial n, see Figure 5B).  458 

Thus, several interesting patterns emerge when we consider the sequential constant error and 459 

sequential absolute error effect together: (1) random practice schedules do lead to adaptive corrections 460 

(i.e., absolute error is more likely to be smaller on the next trial), but the type of error will be similar to 461 

error that came before (i.e., positive correlations between constant errors); (2) blocked practice schedules 462 

lead to more adaptive corrections (i.e., even smaller absolute errors on the subsequent trial), but the nature 463 

of the previous error as little to do with the nature of the subsequent error (i.e., null-correlations between 464 

constant errors); and (3) trial-to-trial corrections for the blocked practice participants, in either phase 465 

space, resembled corrections for the random practice participants in trial space, not target space.  466 
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The third suggests that in trial space, random practice participants have little use for the error 467 

from the previous trial to inform their response on the next trial, because that trial is of a different target. 468 

In target space, in contrast, that error is actually useful for updating the internal representation of the 469 

target time to improve performance the next time that target is seen. For blocked participants, however, 470 

regardless of the space the subsequent trial is (almost) always the same target as the previous trial. Why 471 

then do blocked participants behave like random participants in trial space (when internal updating has no 472 

benefit between trials) rather than random participants in target space (when internal updating has a 473 

practical benefit between trials)?  474 

We speculate that blocked practice leads participants to respond more to the feedback itself rather 475 

than to use that feedback to update an internal representation of the target time. This finding is most 476 

consistent with the forgetting-reconstruction hypothesis of the CI effect, which states that a previously 477 

constructed action plan is more likely to be available in working memory during blocked practice, 478 

whereas in random practice, the individual is forced to forget the action plan because they must move on 479 

to a different trial, thus, needing to reconstruct the action plan the next time around (Lee & Magill, 1983; 480 

1985). That is, randomly scheduled participants appear to be using both the memory of their last response 481 

(reflected in positive correlations), plus the feedback they received (reflected in reduced absolute error), 482 

in order to make their correction on the next trial. In contrast, block scheduled participants appear to be 483 

only using the feedback to guide their response. This creates a sort of “response inertia” in the random 484 

practice participants, who move closer to the target time, but are slow to adapt; in other words,  485 

overshoots are likely followed by smaller overshoots, undershoots by smaller undershoots.  486 

The finding that slower adapters show better long-term retention has been demonstrated in other 487 

motor learning and adaptation tasks (Smith et al., 2006; Coltman, Cashaback & Gribble, 2019). Motor 488 

learning is not a singular process, with many computational models suggesting that adaptation is the 489 

result of multiple learning processes each with their own, distinct timescales (Smith et al., 2006; Lee and 490 

Schweighofer, 2009; Haith & Krakauer, 2013). For instance, trial-to-trial variation in motor adaptation 491 
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tasks is well characterized by a model with two processes that each have a “retention” parameter (how 492 

much learning is preserved from one trial to the next) and a “learning rate” parameter (how much a 493 

learner changes the movement in response to an error). The “fast” learning process learns quickly but has 494 

low retention whereas the slow process learns slowly by has higher retention. Some researchers have 495 

posited that this “slow” learning process is responsible for chronic changes in behavior over longer 496 

periods (e.g., improvement in average performance from Day 1 to Day 2), whereas the “fast” learning 497 

process is responsible for acute changes in behavior (e.g., faster acquisition or “savings” in practice on 498 

Day 2 compared to Day 1; Albert & Shadmehr, 2018; McDougle et al., 2015), although some data 499 

suggest the slow process contributes to both (Coltman et al., 2019). 500 

These multi-process learning models have been applied to contextual interference effects before 501 

(Schweighofer, Lee, Goh, et al., 2011; Kim, Oh & Schweighofer, 2015). Schweighofer, Lee, Goh, et al. 502 

(2011) replicated the traditional contextual interference effect in able-bodied adults and in a sample of 503 

adults with stroke (>3 months post-stroke). In the sample of adults with stroke, individual differences in 504 

visuospatial working memory modulated long-term learning with a blocked schedule, but not a random 505 

schedule. Specifically, in the blocked practice group, individuals with worse working memory actually 506 

showed better retention, whereas individual differences in working memory did not explain retention 507 

following randomly scheduled practice. This paradoxical result was accounted for by a computational 508 

model that contained a fast process and multiple slow processes. In an “unimpaired” model where the fast 509 

process was intact, the fast process learns quickly to improve performance, however, this reduces the 510 

error-driven updating of the slow processes and thus led to worse long-term retention. When a 511 

visuospatial working memory deficit is simulated by “impairing” the fast process, this leads to more 512 

persistent errors, giving the slow process the information it needs to adapt and improve retention.  513 

Although we did not employ a multi-process computational model in our analysis, the results of 514 

our statistical models provide conceptually similar results while also yielding some complementary new 515 

insights. Specifically, we our data reinforce that being slow to adjust performance is associated with 516 
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improved long-term learning at a group-level. (Although our regressions did not find evidence that 517 

individual differences in the determinant related to individual differences in learning, as discussed in the 518 

limitations below.) Our analyses extend this past-work, however, by showing the different relationships 519 

between consecutive errors in both trail space and target space, whereas past work (including 520 

computational models) have focused on trial space (e.g., Kim, Oh & Schweighofer, 2015; Pauwels, 521 

Swinnen & Beets, 2014). This phase space difference for the random practice group suggests that the 522 

response to errors is not simply governed by passive memory processes with different timescales, but 523 

active psychological processes in which errors from a particular target are encoded and retrieved the next 524 

time they see a stimulus of the same target (Lee & Magill, 1983; 1985).  525 

Limitations  526 

 Although our novel secondary analysis provides some potential insights into the contextual 527 

interference effect, it is important to emphasize that these findings are primarily “hypothesis generating” 528 

in nature and need to be confirmed in independent samples (see Tukey, 1980; Wagenmakers et al., 2012). 529 

Similarly, although the primary study was powered to detect a contextual interference effect defined as 530 

the difference between blocked- and random-practice groups on the delayed retention/transfer tests 531 

(Thomas et al., 2021), there was no a priori power calculation for the myriad statistical tests we 532 

conducted in this secondary analysis. As such, statistically significant results (like the difference in 533 

determinants between groups during practice) need to be replicated and non-significant results need to be 534 

treated with caution. For instance, at the group level, random practice was associated with better long-535 

term retention and transfer, and with greater correlations between sequential errors during practice in the 536 

short term. However, in our regression analyses, there was not a statistically significant relationship 537 

between individual differences in the determinant and individual differences in learning after controlling 538 

for practice group, as shown in Figure 6A/B. Given the absence of an informed power analysis, we cannot 539 

say whether this lack of statistically significant effects is due to a lack of statistical power or to a genuine 540 

lack of an effect. Similarly, we face a major validity issue if we think about the determinant of the 541 
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correlation matrix in target space as “the” way to capture interference captured by practice scheduling. 542 

Although we saw group-level differences in learning and the determinant, part of the reason we saw no  543 

significant associations between learning and the determinant at the individual-level may be that the 544 

determinant is not the best way to operationalize the construct that we are really interested in. That is, the 545 

determinant tells us how errors are correlated during practice, but may not be the best way to capture how 546 

participants are actually perceiving errors and/or making updates to any sort internal model.  547 

Conclusions 548 

 In conclusion, we found that randomly scheduled practice was associated with stronger 549 

correlations between errors during practice, but we did not find evidence that random practice was 550 

associated with better corrections from trial-to-trial. Thus, practicing with a random-schedule led to errors 551 

on the next trial that were generally smaller but similar to errors on the previous trial, whereas practice 552 

with a blocked schedule led to much smaller errors on the next trial that were not reliably correlated with 553 

the error from the previous trial. This “response inertia” on the part of randomly scheduled participants is 554 

consistent with the forgetting and reconstruction account of the contextual interference effect.  555 

 556 

 557 

 558 

 559 

 560 

 561 

 562 

 563 
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Supplemental Appendix i 678 

Supplemental Table i. The details of the mixed-effect model regressing constant error (on trial n) to 679 
constant error on the previous trials (n-1 to n-4) in TARGET space.  680 

              AIC      BIC   logLik deviance df.resid  681 
 -4183.8  -3976.4   2118.9  -4237.8    16025  682 
 683 
Scaled residuals:  684 
    Min      1Q  Median      3Q     Max  685 
-4.7626 -0.5828 -0.0166  0.5431  4.8947  686 
 687 
Random effects: 688 
 Groups      Name                        Variance  Std.Dev. Corr                    689 
 participant (Intercept)                 5.444e-04 0.023332                         690 
             target_lag_constant_error   8.112e-03 0.090069  0.08                   691 
             target_lag_2_constant_error 6.328e-04 0.025155  0.17 -0.06             692 
             target_lag_3_constant_error 1.666e-03 0.040820 -0.17  0.51  0.32       693 
             target_lag_4_constant_error 2.016e-03 0.044905  0.03  0.34  0.64  0.75 694 
 block       (Intercept)                 5.808e-05 0.007621                         695 
 Residual                                4.429e-02 0.210458                         696 
Number of obs: 16052, groups:  participant, 84; block, 3 697 
 698 
Fixed effects: 699 
                                          Estimate Std. Error         df t value Pr(>|t|)     700 
(Intercept)                             -1.863e-04  6.207e-03  8.457e+00  -0.030 0.976756     701 
groupRandom                              1.801e-02  6.146e-03  7.784e+01   2.930 0.004453 **  702 
target_lag_constant_error                3.866e-02  1.929e-02  1.012e+02   2.004 0.047756 *   703 
target_lag_2_constant_error              4.544e-02  1.279e-02  9.195e+01   3.552 0.000606 *** 704 
target_lag_3_constant_error              5.263e-02  1.377e-02  9.439e+01   3.821 0.000238 *** 705 
target_lag_4_constant_error              4.226e-02  1.392e-02  9.415e+01   3.037 0.003094 **  706 
groupRandom:target_lag_constant_error    7.505e-02  2.609e-02  9.255e+01   2.876 0.004992 **  707 
groupRandom:target_lag_2_constant_error  1.989e-02  1.695e-02  8.047e+01   1.173 0.244297     708 
groupRandom:target_lag_3_constant_error  8.921e-03  1.835e-02  8.378e+01   0.486 0.628121     709 
groupRandom:target_lag_4_constant_error  2.379e-02  1.857e-02  8.352e+01   1.281 0.203644   710 
  711 
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Supplemental Table ii. The details of the mixed-effect model regressing constant error (on trial n) to 712 
constant error on the previous trials (n-1 to n-4) in TRIAL space.  713 

         AIC      BIC   logLik deviance df.resid  714 
 -3637.9  -3429.4   1846.0  -3691.9    16667  715 
 716 
Scaled residuals:  717 
    Min      1Q  Median      3Q     Max  718 
-4.7347 -0.5817 -0.0178  0.5390  5.2021  719 
 720 
Random effects: 721 
 Groups      Name                       Variance  Std.Dev. Corr                    722 
 participant (Intercept)                0.0007328 0.027070                         723 
             trial_lag_constant_error   0.0054379 0.073742  0.00                   724 
             trial_lag_2_constant_error 0.0016769 0.040950  0.11  0.18             725 
             trial_lag_3_constant_error 0.0031155 0.055816 -0.03  0.18 -0.03       726 
             trial_lag_4_constant_error 0.0029850 0.054635 -0.08  0.36 -0.13  0.13 727 
 block       (Intercept)                0.0000438 0.006618                         728 
 Residual                               0.0461369 0.214795                         729 
Number of obs: 16694, groups:  participant, 84; block, 3 730 
 731 
Fixed effects: 732 
                                         Estimate Std. Error         df t value Pr(>|t|)     733 
(Intercept)                             -0.001718   0.006193  12.762623  -0.277 0.785948     734 
groupRandom                              0.024816   0.006840  78.668848   3.628 0.000506 *** 735 
trial_lag_constant_error                 0.037837   0.017204 100.844536   2.199 0.030139 *   736 
trial_lag_2_constant_error               0.048082   0.013833  95.761160   3.476 0.000767 *** 737 
trial_lag_3_constant_error               0.048786   0.015180 106.682187   3.214 0.001733 **  738 
trial_lag_4_constant_error               0.038497   0.014926 108.943604   2.579 0.011236 *   739 
groupRandom:trial_lag_constant_error    -0.001376   0.023121  90.504484  -0.060 0.952682     740 
groupRandom:trial_lag_2_constant_error   0.021270   0.018350  83.326439   1.159 0.249731     741 
groupRandom:trial_lag_3_constant_error  -0.009601   0.020281  94.759363  -0.473 0.637021     742 
groupRandom:trial_lag_4_constant_error   0.002094   0.019955  96.726839   0.105 0.916654 743 
  744 
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Supplemental Table iii. The details of the mixed-effect model regressing absolute error (on trial n) to 745 
constant error on the previous trial (n-1) in TARGET space.  746 

          AIC      BIC   logLik deviance df.resid  747 
-18821.1 -18704.9   9425.6 -18851.1    17094  748 
 749 
Scaled residuals:  750 
    Min      1Q  Median      3Q     Max  751 
-2.9510 -0.6639 -0.1948  0.4438  6.3231  752 
 753 
Random effects: 754 
 Groups      Name                           Variance  Std.Dev. Corr        755 
 participant (Intercept)                    2.148e-03 0.046351             756 
             target_lag_constant_error      5.141e-04 0.022674  0.09       757 
             I(target_lag_constant_error^2) 1.294e-02 0.113737 -0.42  0.05 758 
 block       (Intercept)                    7.303e-05 0.008546             759 
 Target      (Intercept)                    8.354e-05 0.009140             760 
 Residual                                   1.906e-02 0.138067             761 
Number of obs: 17109, groups:  participant, 84; block, 3; Target, 3 762 
 763 
Fixed effects: 764 
                                            Estimate Std. Error        df t value Pr(>|t|)     765 
(Intercept)                                 0.142482   0.010370 17.911193  13.740 5.95e-11 *** 766 
groupRandom                                 0.032299   0.010407 83.227325   3.103  0.00261 **  767 
target_lag_constant_error                   0.007441   0.008447 88.774258   0.881  0.38077     768 
I(target_lag_constant_error^2)              0.225397   0.027528 73.655317   8.188 5.89e-12 *** 769 
groupRandom:target_lag_constant_error       0.018580   0.011272 80.058541   1.648  0.10319     770 
groupRandom:I(target_lag_constant_error^2) -0.084151   0.036798 68.725145  -2.287  0.02529 *   771 
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Supplemental Table iv. The details of the mixed-effect model regressing absolute error (on trial n) to 772 
constant error on the previous trial (n-1) in TRIAL space.  773 

     AIC      BIC   logLik deviance df.resid  774 
-18621.3 -18504.9   9325.6 -18651.3    17256  775 
 776 
Scaled residuals:  777 
    Min      1Q  Median      3Q     Max  778 
-2.5028 -0.6633 -0.1972  0.4395  6.2349  779 
 780 
Random effects: 781 
 Groups      Name                          Variance  Std.Dev. Corr        782 
 participant (Intercept)                   2.093e-03 0.045748             783 
             trial_lag_constant_error      8.279e-04 0.028774  0.15       784 
             I(trial_lag_constant_error^2) 1.022e-02 0.101081 -0.30 -0.15 785 
 block       (Intercept)                   8.121e-05 0.009011             786 
 Target      (Intercept)                   9.494e-05 0.009744             787 
 Residual                                  1.949e-02 0.139596             788 
Number of obs: 17271, groups:  participant, 84; block, 3; Target, 3 789 
 790 
Fixed effects: 791 
                                            Estimate Std. Error         df t value Pr(>|t|)     792 
(Intercept)                                0.1437246  0.0106181 15.9366985  13.536 3.72e-10 *** 793 
groupRandom                                0.0337704  0.0102837 83.1466501   3.284  0.00150 **  794 
trial_lag_constant_error                   0.0076990  0.0090065 91.7551952   0.855  0.39487     795 
I(trial_lag_constant_error^2)              0.2171921  0.0262886 71.9049775   8.262 5.02e-12 *** 796 
groupRandom:trial_lag_constant_error      -0.0005079  0.0120604 83.0754443  -0.042  0.96651     797 
groupRandom:I(trial_lag_constant_error^2) -0.1076113  0.0350303 67.1134214  -3.072  0.00307 ** 798 
  799 
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Supplemental Table v. The details of the ordinary least-squares regression model predicting average 800 
absolute error at retention as a function of practice schedule and the determinant in target space.  801 

lm(formula = ave_ae_Retention ~ rand.c + det_Target.c, data = MERGED) 802 
 803 
Residuals: 804 
     Min       1Q   Median       3Q      Max  805 
-0.24519 -0.09090 -0.02349  0.07920  0.33953  806 
 807 
Coefficients: 808 
             Estimate Std. Error t value Pr(>|t|)     809 
(Intercept)   0.28631    0.01382  20.711  < 2e-16 *** 810 
rand.c       -0.07722    0.02845  -2.714  0.00811 **  811 
det_Target.c -0.04392    0.10331  -0.425  0.67188     812 
--- 813 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 814 
 815 

Supplemental Table vi. The details of the ordinary least-squares regression model predicting average 816 
absolute error at transfer as a function of practice schedule and the determinant in target space.  817 

lm(formula = ave_ae_Transfer ~ rand.c + det_Target.c, data = MERGED) 818 
 819 
Residuals: 820 
     Min       1Q   Median       3Q      Max  821 
-0.20994 -0.07518 -0.01438  0.07885  0.36314  822 
 823 
Coefficients: 824 
             Estimate Std. Error t value Pr(>|t|)     825 
(Intercept)   0.28693    0.01251  22.928  < 2e-16 *** 826 
rand.c       -0.06859    0.02575  -2.663  0.00934 **  827 
det_Target.c -0.01227    0.09352  -0.131  0.89597     828 
--- 829 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 830 
 831 
 832 

Supplemental Table vii. The details of the ordinary least-squares regression model predicting average 833 
error estimation mismatch as a function of practice schedule and the determinant in target space.  834 

lm(formula = EEM ~ rand.c + det_Target.c, data = MERGED) 835 
 836 
Residuals: 837 
    Min      1Q  Median      3Q     Max  838 
-89.571 -43.007  -2.689  32.887 196.624  839 
 840 
Coefficients: 841 
             Estimate Std. Error t value Pr(>|t|)     842 
(Intercept)   164.228      9.579  17.144   <2e-16 *** 843 
rand.c         21.080     20.033   1.052    0.299     844 
det_Target.c  -48.560     67.438  -0.720    0.476 845 
 846 
 847 
  848 
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Supplemental Table viii. The details of the ordinary least-squares regression model predicting average 849 
ratings of mental effort as a function of practice schedule and the determinant in target space.  850 

lm(formula = ME_AVE ~ rand.c + det_Target.c, data = MERGED) 851 
 852 
Residuals: 853 
    Min      1Q  Median      3Q     Max  854 
-50.003 -18.078   0.626  18.760  47.240  855 
 856 
Coefficients: 857 
             Estimate Std. Error t value Pr(>|t|)     858 
(Intercept)    58.755      2.519  23.321   <2e-16 *** 859 
rand.c         -7.421      5.185  -1.431   0.1562     860 
det_Target.c  -37.990     18.828  -2.018   0.0469 *   861 
--- 862 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 863 
 864 
 865 


