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Abstract 34 

Contextual interference is an established phenomenon in learning research; random practice 35 

schedules are associated with poorer performance, but superior learning compared to blocked practice 36 

schedules. We present a secondary analysis of N=84 healthy young adults, replicating the contextual 37 

interference effect in a time estimation task. We used the determinant of a correlation matrix to measure 38 

the amount of order in participant responses. We calculated this determinant in different phase spaces: 39 

Trial Space, the determinant of the previous 5 trials (lagged constant error 0-4); and Target Space, the 40 

determinant of the previous 5 trials of the same target. In Trial Space, there was no significant difference 41 

between groups (p=0.98) and no Group x Lag interaction (p=0.54), although there was an effect of Lag 42 

(p<0.01). In Target Space, there were effects of Group (p=0.02), Lag (p<0.01), and a Group x Lag 43 

interaction (p=0.03). Ultimately, randomly scheduled practice was associated with adaptive corrections 44 

but positive correlations between errors from trial to trial (e.g., overshoots followed by smaller 45 

overshoots). Blocked practice was associated with more adaptive corrections but uncorrelated responses. 46 

Our findings suggest that random practice leads to the retrieval and updating of the target from memory, 47 

facilitating long term retention and transfer. 48 

  49 
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In their seminal study, Shea and Morgan (1979) demonstrated that randomized practice 50 

schedules, in which you change the order of different tasks from trial to trial, promoted long-term learning 51 

at the cost of short-term performance when compared to blocked practice conditions. This effect, termed 52 

contextual interference (CI), explains superior learning as a function of the level of interference that 53 

occurs during practice. Random practice schedules create interference because one must switch between 54 

different tasks (e.g., ACB-BCA-CAB) during practice, whereas blocked practice leads to less interference 55 

because the same task is practiced from trial to trial (e.g., AAA-BBB-CCC). Numerous published reports 56 

suggest that the interference produced by random practice schedules during the acquisition phase is 57 

beneficial for the long-term retention of motor skills. In contrast, blocked practice has been shown to be 58 

beneficial for short-term performance during the acquisition phase (because it produces less interference), 59 

but these schedules lead to poorer performance on delayed retention and transfer tests (Merbah & 60 

Meulemans, 2011; Broadbent, et al., 2017; Cross et al., 2007). 61 

Although the CI effect is one of the most robust and replicable effects in motor learning, the exact 62 

nature of “interference” or precisely why it is beneficial for long-term learning remains unclear (Lee & 63 

Simon, 2004; Wymbs & Grafton, 2009). There are dominant explanations for the effect. First, the 64 

elaboration hypotheses (Shea & Zimny, 1983; 1988), which broadly argues that switching between 65 

different tasks (or different parameters of the same task) with a random schedule makes the difference 66 

between tasks more pronounced/salient to the learner. Second, the reconstruction hypotheses (Lee & 67 

Magill, 1983; 1985), which broadly argues that actively forgetting and then retrieving a motor program 68 

(or variations of that program) facilitates later recall. These hypotheses are not mutually exclusive, as 69 

demonstrated by Li and Wright (2000) who showed that random-practice schedules interfered with the 70 

performance of a secondary task both prior to response initiation (when the motor program is theoretically 71 

being retrieved from memory) and during the inter-stimulus interval (when prior actions can theoretically 72 

be contrasted against each other). 73 

One potentially informative approach to understanding why interference is beneficial for learning 74 
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is to study how participants adjust performance from trial to trial during practice. Although it is well 75 

documented that random-practice schedules lead to larger errors during practice on average, less research 76 

exists exploring how participants respond to, and correct errors, as a function of their practice schedules. 77 

It is possible that random practice is associated with larger errors during practice but more adaptive 78 

corrections from trial to trial. For instance, the average magnitude of errors with random schedules is 79 

larger, but participants could move closer to the target on the next trial. With blocked schedules, in 80 

contrast, the average magnitude of errors may be smaller, but participants could randomly bounce around 81 

the target from trial to trial (similar to maladaptive corrections as defined in Schmidt, Young, Swinnen, & 82 

Shapiro, 1989).  83 

Although there is not much work related to the specific concept of trial-to-trial adjustments as a 84 

function of practice schedules, but there is quite a bit of information surrounding it, including research on 85 

different types and magnitudes of errors (Lee, et. al., 2016; Albert & Shadmehr, 2016), trial-to-trial 86 

adjustments outside of practice scheduling (e.g., van Beers et al., 2015), and how errors during practice 87 

relate to exploration of the movement space (e.g., Wu et al., 2014). Moreover, the relationship between 88 

errors during practice and long-term learning has a detailed and complex history. Thorndike (1927) 89 

emphasized the role of “correct” feedback to reinforce the preceding motor response and argued that 90 

repetition of the correct movement was essential for consolidation into long-term memory (see also 91 

Adams, 1968). An alternative view places a greater focus on errors themselves. Bernstein, (1966) argued 92 

that successful movement is about solving motor problems in new situations, not merely engraining the 93 

correct (but potentially rigid) movement pattern through repetition. This viewpoint underscores the need 94 

to recall information from memory and is supported by work showing that providing less feedback can 95 

actually be beneficial for learning (e.g., see Lee & Carnahan, 1990; Winstein & Schmidt, 1990) and that 96 

recall practice is generally beneficial for long-term retention (in verbal and cognitive learning more 97 

generally; e.g., see Bjork, 1988; Roediger & Butler, 2011). These views need not be exclusive, however, 98 

as successes and errors can both provide valuable signals for updating internal representations that are 99 



5 

retrieved from – and then encoded back into – long-term memory (e.g., reinforcement- and supervised-100 

learning mechanisms working together under the umbrella of motor learning; Haith & Krakauer, 2013; 101 

Lohse, Miller, Bacelar, & Krigolson, 2019).  102 

Past-work on the frequency of feedback is very informative in this regard. In naturalistic settings, 103 

learners will often get  some feedback during or after every motor attempt (as intrinsic vision, 104 

proprioception, etc., are available to detect errors). In the laboratory, however, researchers can manipulate 105 

the presence and relative frequency of feedback. Published reports show that withholding knowledge of 106 

results (KR1) can have a beneficial effect for learning (e.g., Winstein & Schmidt, 1990). Lee and 107 

Carnahan (1990) manipulated the frequency of feedback by providing bandwidth KR. If participants were 108 

inside the margin of error on a trial, no KR was provided (implying success); if participants were outside 109 

the margin of error, then KR was given as the signed magnitude of the error. Thus, the wider the 110 

bandwidth (margin of error), the less KR participants received during practice. Lee and Carnahan (1990) 111 

yoked half of their participants in each bandwidth condition to the feedback schedule of another 112 

participant in that condition, dissociating the bandwidth effect from the relative frequency of feedback. 113 

Learning with bandwidth KR led to more accurate and stable performance, above and beyond the reduced 114 

frequency effect. The authors also demonstrated a novel method for capturing the adaptive behavior of 115 

their participants following KR and no-KR trials by measuring the absolute change in participants 116 

responses from one trial to the next. Following “correct” no-KR trials, participants should attempt to 117 

reproduce the same response, yielding a mean change close to 0. Following incorrect trials with KR, 118 

participants should change their response, yielding a mean change >0 (and ideally moving closer to the 119 

target). An exploratory analysis presented in their discussion section precisely showed this adaptive 120 

behavior; participants made smaller absolute changes following no-KR trials compared to trials with KR. 121 

In the current study, we explored the relationship between practice schedules, adjustments from 122 

 
1 Knowledge of results (KR) is defined as information about the outcome of a movement and contrasted against 

knowledge of performance (KP) which is defined information about the quality of the movement. E.g., in dart 

throwing, KR would be the final landing place of the dart; KP would be the mechanics of the throw itself.  
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trial to trial, and long-term learning using an existing dataset. Thomas and colleagues (2021) 123 

demonstrated a contextual interference effect in a time estimation task (see Figure 1). Participants were 124 

required to hold a button down for three different target durations, 1500ms, 1700ms, and 1900ms, over 125 

210 practice trials (70 trials at each target). Participants assigned to the blocked schedule performed all 126 

trials at a single target before moving onto the next target, with the order of targets counterbalanced 127 

across participants. Participants assigned to the random schedule performed all trials in a pseudo-128 

randomized order, with the restriction that targets could not repeat more than once (e.g., AAB, but not 129 

AAA). Approximately one day later, participants returned for a delayed retention and transfer test. The 130 

retention test consisted of the same targets that participants practiced during acquisition, whereas transfer 131 

consisted of two new target times (1600 and 1800 ms). Thomas et al. (2021) replicated the traditional 132 

contextual interference effect, with randomly-scheduled practice leading to worse performance during 133 

acquisition but superior performance on the retention and transfer-tests (see Figure 1). 134 

  135 
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 136 

 137 

Figure 1. (A) Acquisition data and (B) post-test data from Thomas et al. (2021), showing absolute error 138 
as a function practice schedule (blocked versus random) and time in practice (during acquisition) or target 139 
(during the post-test). Points show the mean and bars show the 95% confidence interval at each point. 140 
Note that 1500, 1700, and 1900ms targets were practiced during acquisition and made up the retention 141 
test, 1600 and 1800ms target were not practiced during acquisition and made up the transfer test. 142 

 143 

In the present study, we explore how differences in practice scheduling affect the way that 144 

participants respond to errors using a secondary analysis of the data reported by Thomas et al. (2021). To 145 

capture these trial-to-trial corrections, we calculated lagged-variables in two different phase spaces: trial 146 

space; and target space. Borrowing a term from dynamical systems theory, “phase space” refers to a 147 

multidimensional space where each dimension represents a degree of freedom of the system. In trial 148 

space, we calculated correlation matrices for the constant error on the current trial (𝑛) and lagged constant 149 

error from the previous trial (𝑛 − 1) sequentially back to the fourth previous trial (𝑛 − 4). In target space, 150 

we calculated correlation matrices for the constant error on the current trial (𝑛𝑘) and lagged constant error 151 

for previous trials of the same target (𝑛𝑘 − 1 to 𝑛𝑘 − 4). The importance of these two phase-spaces and 152 

specific calculations are provided in the Statistical Analysis section.  153 
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Similar to Lee and Carnahan (1990), we also calculated the absolute change in performance from 154 

trial to trial, but we specifically did so in target space, |𝐶𝐸
𝑛𝑘

− 𝐶𝐸𝑛𝑘−1|.2 Note that Lee and Carnahan 155 

used a KR manipulation with a single task practiced across trials, so the trial space/target space distinction 156 

is irrelevant in that study. For the present study, however, it is important to make this distinction. We are 157 

interested in the response change the next time participants see a stimulus of the same target, thus target 158 

space is more important than trial space for these analyses. Thomas et al. (2021) included an error 159 

bandwidth of +/50 ms around each target, allowing us to see how participants changed their responses on 160 

“correct” no-KR trials and on incorrect trials in which signed KR feedback was given. On no-KR trials, 161 

an adaptive response would be making no change, yielding an absolute change ~0. On trials with KR, an 162 

adaptive response would be to make a change proportional to the previous error, yielding a slope ~1 when 163 

absolute change is regressed onto previous absolute error. (For instance, a |150| ms error on trial 𝑛 − 1 164 

should be changed by ~|150| ms on trial 𝑛).3  165 

Using these autocorrelations and absolute changes in performance from trial to trial, we can test 166 

important hypotheses related to reconstruction (Lee & Magill, 1983; 1985) and elaboration explanations 167 

of the CI effect (Shea & Zimny, 1983; 1988). From a reconstruction perspective, we would predict 168 

positive autocorrelations between successive trials for random-practice participants because an internal 169 

representation of the task is retrieved from memory, potentially modified based on feedback, and then 170 

updated prior to the next trial. Assuming that this updating is neither perfect (e.g., +150 ms does not get 171 

corrected by -150 ms precisely) nor overly aggressive (e.g., +150 ms does not get corrected by -500 ms), 172 

successive errors should be positively correlated as participants gradually update their internal 173 

 
2 Absolute performance change was calculated as constant error on the current trial minus constant error on the last 

trial of the same target, |𝐶𝐸𝑛𝑘
− 𝐶𝐸𝑛𝑘−1|. Note that this is mathematically equivalent to simply taking the difference 

between overall response times, R, after the target, T, is taken into account: 

𝐶𝐸𝑛𝑘
− 𝐶𝐸𝑛𝑘−1 =  (𝑅𝑛𝑘

− 𝑇𝑘) − (𝑅𝑛𝑘−1 − 𝑇𝑘)  

=  (𝑅𝑛𝑘
−𝑅𝑛𝑘−1) + (𝑇𝑘 − 𝑇𝑘) 

=  (𝑅𝑛𝑘
−𝑅𝑛𝑘−1) + (0) 

3 These hypotheses could also hypothetically be tested using signed values rather than absolute values, but previous  

absolute error makes the analysis simpler (e.g., previous constant error would require nonlinear models to account 

for -/+ errors). For simplicity, we thus focus on absolute error in these exploratory analyses. 
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representation of the target (e.g., +150 ms is followed by +120 ms). From an elaboration perspective, we 174 

would expect more adaptive corrections for random-practice participants, particularly late in practice 175 

when internal representations of the task have theoretically been “sharpened” by the random practice 176 

schedule. For instance, a random practice participant might still make larger errors overall, but changes in 177 

their responses should be more proportional than changes for blocked participants. This effect follows 178 

because if participants have better internal representations of the target times (e.g., ‘what is 1,500 ms?’) 179 

then they should be better equipped to make specific responses to feedback (e.g., ‘what is 150 ms?’).  180 

METHODS 181 

Participants 182 

Altogether, 84 healthy young adults (age < 35 years) with no self-reported neurological or 183 

musculoskeletal impairments were recruited from the local university population via bulletin posts and 184 

word of mouth. Participants were randomly assigned into four training groups differentiated by their 185 

training schedule (blocked versus random) and whether they engaged in error estimation during practice 186 

or not. The different groups were: (1) blocked with error estimations (Mage = 22.62, SD = 2.44); (2) 187 

blocked without no estimation (Mage = 21.43, SD = 2.23); (3) random with error estimations (Mage = 23.28, 188 

SD = 4.04); and (4) random no estimation (Mage = 21.09, SD = 2.53). Although error-estimation was a 189 

factor of interest in the primary study (Thomas et al., 2021), there were no statistically significant effects 190 

of error estimation in this secondary analysis. Due to this lack of substantial differences, we collapsed 191 

across the error estimation factor. Thus, in the results below we consider only two groups, those who had 192 

a blocked practice schedule (n=41) and those who had a random practice schedule (n=43). The 193 

experiment was approved by the university’s Institutional Review Board (IRB), and written informed 194 

consent was obtained from each participant. All participants were naïve to the hypotheses of the 195 

experiment. Additionally, the sample size was determined based on past-estimates of contextual 196 

interference effects on learning (Brady, 2004), yielding 80% statistical power to show the contextual 197 
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interference effect in Thomas et al (2021). However, there was no a priori power calculation for any of 198 

the exploratory analyses presented here.   199 

Task and Stimuli 200 

The task is described in Thomas et al. (2021), so we present only on the most critical aspects of 201 

the methods. Participants completed a time-estimation task using their dominant hand while seated at a 202 

computer. The time-estimation task required participants to hold down a mouse button with their index 203 

finger for the duration of a target time that was shown on the screen at the beginning of each trial. The 204 

target times were 1500, 1700, and 1900 ms. This 200-ms difference was selected based on pilot data, 205 

which showed that this subtle distinction was difficult but learnable for the participants, thereby reducing 206 

the risk of floor/ceiling effects. 207 

All participants completed 210 trials during the practice phase, with 3 Sets of 70 trials. For 208 

participants practicing with a blocked schedule, all 70 trials for the same target were completed together, 209 

with the order of the targets counterbalanced across participants. For participants with a random practice 210 

schedule, the 70 trials for each target were pseudo-randomly interspersed across the 210 practice trials. 211 

This distribution was pseudo-random because targets were constrained such that a single target time could 212 

not be repeated more than twice in sequence. In both groups, participants received signed error feedback 213 

following each trial (e.g., “-125 ms” indicating that a response was slightly too short; “+820 ms” 214 

indicating that a response was substantially too long). If participants were within +/-50 ms of the intended 215 

target, feedback of “+00” was displayed on the screen indicating that the participants were accurate. This 216 

50-ms bandwidth around the target was chosen to reduce “maladaptive corrections” (Schmidt, Young, 217 

Swinnen, & Shapiro, 1989, p. 358) on the part of the participants (e.g., <50 ms is too small an interval for 218 

human nervous system to reliably correct).  219 

Approximately 24 hours after practice, participants returned to the laboratory to complete 220 

retention and transfer testing. The test consisted of 40 trials with no KR, with a set of 20 trials completed 221 



11 

in a blocked order and 20 trials completed in a random order. The order of these sets was counterbalanced 222 

across participants. In each set, participants completed 4 trials at each of 5 targets; the three original 223 

targets (1500, 1700, and 1900 ms) which were considered the retention test and two new targets (1600 224 

and 1800 ms) which are considered the transfer test. Importantly, set order did not have any statistically 225 

significant effects in our primary study (Thomas et al., 2021), so we averaged across set order and the 226 

individual target times in the present analyses, creating only one experimental factor for the post-tests, 227 

namely, retention versus transfer tests. 228 

Trial Phase Space and Target Phase Space during Practice 229 

To explore sequential effects during practice, we considered the effect that the practice schedule 230 

had on neighboring trials. As shown in Figure 2, there are (at least) two different ways that we can 231 

consider the structure of practice. Trial space where a trial (𝑛) is compared to the trial before it (𝑛 − 1) or 232 

after it (𝑛 + 1), regardless of what targets are being practiced on those trials; and target space, where a 233 

trial of a specific target (𝑛𝑘) is compared to the previous trial of the same target (𝑛𝑘 − 1) or the next trial 234 

of the same target (𝑛𝑘 + 1), regardless of the absolute trial number.  235 

 236 

Figure 2. A representation of the conceptual relationship between the current and previous trial in trial 237 
phase space (A) and in target phase space (B). Note that when auto-correlations are calculated in trial 238 
phase space, 𝑟𝑛,𝑛−1, the initial trial needs to be dropped from the analysis as there is no previous trial. 239 

When the auto-correlation is calculated in target phase space, 𝑟𝑛𝑘,𝑛𝑘−1, the first trial of each target needs 240 
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to be dropped as there is no previous trial of that target. The shuffling of the errors is also shown for one 241 
randomly scheduled participant's actual data, with constant error across all 210 trials is shown in (C) the 242 
original trial space and (D) transformed target space as a function of target type (light fill = 1500, medium 243 
= 1700, and dark =1900 ms). 244 

 245 

The distinction between phase spaces is important, because in trial space, the blocked practice 246 

group almost never has a trial of one target proceeded or followed by a different target (Figure 2A); this 247 

only happens at the boundaries between blocks of trials. In contrast, the random practice group almost 248 

never has a trial of one target proceeded or followed by the same target. The median number of trials 249 

between the same target was 3 and maximum was 9 for the random practice group. These differences 250 

mean that when the trials are re-shuffled into target space (Figure 2B), there is very little change in the 251 

trial-to-trial relationships for the blocked practice group, but there is a substantial change in the trial-to-252 

trial relationships for the random practice group.  253 

Using both phase spaces, we systematically tested whether the relationship between trial-to-trial 254 

corrections was different between groups. To capture the correlation between trials, we chose to use the 255 

determinant of the constant error (CE) auto-correlation matrix going back four trials in both trial space 256 

(𝐶𝐸𝑛 to 𝐶𝐸𝑛−4) and target space (𝐶𝐸𝑛𝑘
 to 𝐶𝐸𝑛𝑘−4). It is important to first explain why we chose to focus 257 

on constant error. Second, it is important to explain why the determinant of the correlation matrix is a 258 

useful statistic.  259 

First, we chose constant error as our primary outcome because it already takes the target into 260 

account, whereas a variable like the response time on each trial does not (i.e., CEnk = Rnk – Tk); and 261 

because it retains the signed value of the error, whereas a variable like absolute error (AE) does not (i.e., 262 

AEnk = | Rnk – Tk |).4 These features are desirable because accounting for the target makes subsequent 263 

 
4 Note that we are referring to CE and AE for a single trial, hence the “n” subscript. This is slightly different from 

influential definitions given in Schmidt & Lee (2011) where “CE” and “AE” are actually average measurements 

aggregated across trials (see p. 30).  Schmidt and Lee also describe an aggregate measure called “absolute constant 

error”, which they denote 𝐴𝐶𝐸 or |𝐶𝐸|, based on their formulation of CE. Again, however, this is an aggregate 

measure and distinct from the single trial CE, AE, and absolute change measures in the current study. 
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statistical modeling simpler (i.e., variation due to target is already removed) and retaining the sign makes 264 

the correlation between trials more interpretable (i.e., the direction errors, and thus their similarity, cannot 265 

be determined from absolute errors alone). Second, we chose the determinant of the constant error 266 

correlation matrix because it allows us to capture the structure between errors of multiple, different lags. 267 

That is, if we were solely focused on the relationship between the current trial and the previous trial, we 268 

could take the correlation coefficient from the lag-1 autocorrelation (𝑟𝑛,𝑛−1). However, we wanted to 269 

explore the possible relationship between more distant trials, for which we operationally chose a 270 

maximum lag of four (𝑛 − 4). Accounting for the relationship between five different trials (i.e., 𝑛 to 𝑛 −271 

4), means that our main outcome is not a single correlation, but a correlation matrix. The determinant of 272 

the correlation matrix thus allows us to reduce any square 𝑛 × 𝑛 matrix into a single scalar value that can 273 

be analyzed statistically. As explained below, the determinant is conceptually similar to the unexplained 274 

variance, with smaller determinants indicating stronger correlations in the matrix.  275 

The relationship of the determinant to unexplained variance is easiest to show in the case of 2 × 2 276 

correlation matrix. The determinant of a 2 × 2 matrix (𝑨) is equal to the product of the diagonal elements 277 

minus the product of the off-diagonal elements: 278 

(eq1) det(𝑨) = det ([
𝑎 𝑏
𝑐 𝑑

]) = 𝑎𝑑 − 𝑏𝑐 . 279 

Thus, in a 2 × 2 correlation matrix (R) the determinant is: 280 

(eq2) det(𝑹) = det ([
1 𝑟2,1

𝑟1,2 1
]) = 1 − 𝑟2 281 

making the determinant of a 2 × 2 correlation matrix mathematically equivalent to the unexplained 282 

variance.  283 

As shown in Figure 3, the determinant has a geometric interpretation that we think is useful for 284 

generalizing to higher dimensional spaces. Consider the joint distribution of two uncorrelated normally 285 

distributed variables, these uncorrelated data can be captured by a circle (e.g., a 95% confidence ellipse is 286 
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shown in Figure 3A). Next, consider a distribution of two strongly correlated normally distributed 287 

variables. These correlated data would be captured by an ellipse and the axes of the ellipse are determined 288 

by the strength of the correlation (e.g., a 95% confidence ellipse is shown in Figure 3B). The ratio of 289 

squared volumes of these two distributions can be shown to equal the determinant of the empirical 290 

correlation matrix (Figure 3C). Specific determinants for two different participants (one with a blocked 291 

schedule and one with a random schedule) are shown in Figure 3D-E.  In 3D, constant error is plotted as a 292 

time series for each participant. In 3E, the lag-1 autocorrelation is shown in target space, r(nk, nk-1), for 293 

each participant. The participant who had a blocked schedule showed almost no correlation between 294 

current and previous error, making the explained variance very small, r2 < 0.01, and thus the determinant 295 

very large, d > 0.99.  In contrast, the participant who had a random schedule showed a modest correlation 296 

between current and previous error, yielding an r2 = 0.15, and thus the determinant d = 0.85.297 
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 298 

Figure 3. The geometric interpretation of the determinant for a 2 × 2 correlation matrix. (A) The circular 95% confidence region for n=1,000 299 

uncorrelated data points. (B) The elliptical 95% confidence region for n=1,000 correlated data points where 𝑟=0.7. (C) The ratio of the squared 300 

area of these regions (0.51) is equivalent to the determinant of the correlation matrix, [1 0.7; 07 1], which is 0.51. For reference, arrows show the 301 
major and minor axes of the circle (red) and ellipse (white). (D) Example time series for one block-schedule participant and one random-schedule 302 
participant. (E) Scatter plots showing the lag-1 autocorrelation for the same block- and random-schedule participants with a 95% confidence 303 
ellipse and the Pearson’s r value calculated in target space. Lines in the scatterplot show “paths” connecting successive trials.304 
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In sum, the determinant tells us how the volume of a unit square is transformed by a given matrix 305 

(Margalit & Rabinoff, 2017). When applied to a correlation matrix, the determinant can tell us how much 306 

this volume shrinks based on the strength of the correlation (see also Lohse, Jones, Healy, & Sherwood, 307 

2014). Although this is typically shown with squares and parallelograms in linear algebra, it also holds for 308 

circles and ellipses when applied to normally distributed random variables. In two dimensions, the 309 

determinant reflects an ellipse whose area is dictated by the strength of a correlation (𝑟1,2) relative to a 310 

circle (the alternative distribution which assumes 𝑟1,2 = 0). In three dimensions, the determinant would 311 

reflect an ellipsoid whose volume is dictated by all three correlations (𝑟1,2, 𝑟1,3, 𝑟2,3) relative to a sphere 312 

(the alternative distribution which assumes all 𝑟′𝑠 = 0). With more than three dimensions, the geometric 313 

interpretation is difficult (nigh impossible) to visualize, but the interpretation still holds: the determinant 314 

reflects the ratio of the volume taken up by the observed distribution relative to what it would be if the 315 

variables were all independent. Thus, the determinant is bounded between 0 and 1, with a smaller 316 

determinant meaning that more variance has been explained.  317 

Statistical Analysis 318 

All data processing, analysis, and visualization were done in R 4.0.4 and R Studio (RStudio 319 

Team, 2020; Wickham et al., 2019). Code and de-identified data for these analyses are available from: 320 

https://github.com/keithlohse/taylor_2022_CI_sequential_effects. To analyze the correlations between 321 

errors, we calculated determinants using different numbers of lagged trials from one trial back to four 322 

trials back, in both trial space and target space for each participant. These determinants were then 323 

analyzed using a mixed-factorial repeated measures ANOVA with a between-participants factor of Group 324 

(blocked versus random practice schedules) and within-participant factors of Phase Space (target versus 325 

trial) and Lag (including 1, 2, 3, or 4 of the previous trials in the correlation matrix). Mauchly’s test was 326 

used to assess violations of sphericity, and the Greenhouse-Geisser correction was applied when 327 

sphericity was violated (denoted by pgg; Lawrence, 2016). 328 

https://github.com/keithlohse/taylor_2022_CI_sequential_effects
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To determine how participants adapted their performance based on previous errors, we conducted 329 

a series of mixed-effect regressions (Bates, Maechler, Bolker, &Walker, 2015). In the first model, the 330 

goal was to analyze how participants changed their performance following KR versus no-KR trials. We 331 

aggregated data to obtain the mean change following KR and the mean change following no-KR for each 332 

participant. The mean absolute change in performance was then regressed onto factors of Group (Random 333 

versus Blocked practice), Set of trials (1, 2, or 3), whether or not KR was present on the previous trial 334 

(KR versus no KR), and the interactions of these factors. Random-intercepts were included to account for 335 

the within-subject nature of the Set and KR factors (full details are presented in Supplemental Appendix 336 

i).  337 

In the second model, we excluded no-KR trials to focus only on those trials when participants 338 

received feedback about their error. The absolute change in performance on each trial was regressed onto 339 

absolute error from the previous trial, termed Lag AE. Inspecting this relationship within each participant 340 

showed that the best fitting model included linear (Lag AE), quadratic (Lag AE2), and cubic (Lag AE3) 341 

terms. Polynomial effects of Lag AE were then included with fixed effects of Group, Set, and all Group × 342 

Set × Lag AE interactions. Random-intercepts and slopes were included to account for the within-343 

participant nature of the Set factor and inter-participant variability in the Lag AE effects (see full details 344 

in Supplemental Appendix i). Statistical significance of these effects was determined using the Welch-345 

Satterthwaite approximation to the degrees of freedom (Kuznetsova, Brockhoff, Christensen, 2017).5 346 

Finally, we conducted exploratory regressions to see how the determinant of the correlation 347 

matrix and the intercepts/slopes from our mixed-effect regressions related to long-term learning. We 348 

regressed the average absolute error from the retention tests onto either: (1) the determinant of the 349 

correlation matrix in trial space, which tells how errors were correlated from trial to trial; (2) the mean 350 

change following trials without KR, which tells us how stable participants’ responses were following 351 

 
5 Note that additional exploratory analyses were included in our original pre-print 

(https://doi.org/10.51224/SRXIV.143). We have also included these analyses in Supplemental Appendix ii for 

transparency about the total number and type of statistical tests conducted.   

https://doi.org/10.51224/SRXIV.143
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“correct” feedback; and (3) the estimated slope from the mixed-model, which tells us how proportionally 352 

a participant would change their performance given their previous error. All models also controlled for 353 

the between subject factor of group. Statistical significance across all models was set to α = 0.05 using 354 

ANOVA with Type III sums of squares (Fox & Weisberg, 2018).  355 

 356 

RESULTS 357 

Correlations between Trials during Practice 358 

 The Group x Phase Space x Lag mixed-factorial ANOVA for the determinant of the correlation 359 

matrix yielded several statistically significant main effects for Lag, F(1.0, 85.5)=165.03, pgg<0.001, Phase 360 

Space, F(1,82)=10.15, p=0.002, and interactions for Group x Phase Space, F(1,82)=7.04, pgg=0.010, Lag 361 

x Phase Space, F(1.1, 88.4)=9.83, pgg=0.002, and Group x Lag x Space, F(1.1, 88.4)=4.39, pgg=0.036.  362 

To unpack this three-way interaction, we ran post-hoc Group x Lag mixed-factorial ANOVAs in 363 

trial space and target space separately. As shown in Figure 4, in trial space there was a non-significant 364 

effect for Group, F(1,82)=<0.01, p=0.981, a significant main effect for Lag, F(1.1, 87.7)=152.31, 365 

pgg<0.001, and a non-significant Group x Lag interaction, F(1.1, 87.7)=0.40, pgg=0.541. Thus, in trial 366 

space, there was greater order in responses when more previous trials were included, but this increase in 367 

order did not significantly differ as a function of practice schedule. In target space, however, there was a 368 

significant main effect for Group, F(1,82)=5.09, p=0.027, a main-effect for Lag, F(1.0, 85.3)=120.17, 369 

pgg<0.001, and a Group x Lag interaction, F(1.0, 85.3)=4.29, pgg=0.039. Thus, in target space, although 370 

both groups tended to have increasingly correlated responses when more previous trials were considered, 371 

this effect was stronger for the random practice group.  372 

 373 
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 374 

Figure 4. The determinants of the correlation matrix as a function of Group, Phase Space, and Lag (the 375 
number of previous trials included in the correlation matrix). 376 

 377 

 Correlation Matrices. Although the determinant reflects the amount of unexplained variance in a 378 

correlation matrix, it does not tell us the specific directions or magnitudes of the correlations involved. 379 

Thus, although we know that the random-practice schedule was associated with more correlated errors 380 

from trial-to-trial, it does not tell us specifically how an error on the previous trial relates to an error on 381 

the next trial. To understand the trial-to-trial adjustments better, we present three different analyses. First, 382 

as shown in Table 1, we present the average correlations between trials as a function of practice schedule 383 

and phase space as descriptive statistics. These correlations tended to be small (r’s < 0.20), but the largest 384 

correlations were found for the random practice group in target space (r’s between 0.10 and 0.15) and 385 

were generally double to triple the correlations found in other groups/phase spaces.  386 

  387 
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Table 1.  The correlation matrices for constant error in the five previous trials as a function of phase 388 
space and group.  389 

Random Group in Target Space  Random Group in Trial Space 

 Nk Nk-1 Nk-2 Nk-3 Nk-4   N N-1 N-2 N-3 N-4 

Nk 1 0.137 0.108 0.094 0.096  N 1 0.041 0.079 0.057 0.055 

Nk-1 0.137 1 0.137 0.106 0.093  N-1 0.041 1 0.045 0.081 0.055 

Nk-2 0.108 0.137 1 0.140 0.105  N-2 0.079 0.045 1 0.047 0.083 

Nk-3 0.094 0.106 0.140 1 0.136  N-3 0.057 0.081 0.047 1 0.048 

Nk-4 0.096 0.093 0.105 0.136 1  N-4 0.055 0.055 0.083 0.048 1 

             

Blocked Group in Target Space  Blocked Group in Trial Space 

 Nk Nk-1 Nk-2 Nk-3 Nk-4   N N-1 N-2 N-3 N-4 

Nk 1 0.043 0.052 0.050 0.051  N 1 0.040 0.053 0.050 0.045 

Nk-1 0.043 1 0.051 0.050 0.060  N-1 0.040 1 0.047 0.050 0.056 

Nk-2 0.052 0.051 1 0.052 0.061  N-2 0.053 0.047 1 0.047 0.059 

Nk-3 0.050 0.050 0.052 1 0.056  N-3 0.050 0.050 0.047 1 0.053 

Nk-4 0.051 0.060 0.061 0.056 1  N-4 0.045 0.056 0.059 0.053 1 

*Shaded regions denote correlation coefficients r>0.10. All cells show the average Pearson correlation 390 
coefficient across participants. 391 

 392 

Changes in Performance following Errors 393 

 Changes following KR versus No KR. Participants were within the 50-ms target bandwidth on 394 

20.8% of trials (following exclusion of outliers) and therefore received no-KR on those trials. Thus, there 395 

were also 79.2% of trials on which participants did receive KR (following exclusions). By group, 396 

participants with a blocked schedule had 24% “correct” trials with no KR and 76% trials with KR; 397 

participants with a random schedule had 18% “correct” trials with no KR and 82% trials with KR.  398 

As shown Figure 5A, participants tended to respond to KR in an adaptive way, making smaller 399 

adjustments following “correct” no-KR trials and larger adjustments following incorrect trial when they 400 

received KR. Our first mixed-effects regression model yielded statistically significant main-effects for 401 

KR, F(1,82)=356.5, p<0.001, and Set, F(2,164)=10.07, p<0.001. However, these effects were further 402 

superseded by a significant Set × KR interaction, F(2,164)=9.22, p<0.001, such that the difference 403 

between KR and no-KR trials got smaller from Set 1 to Set 2 (p=0.086) and from Set 1 to Set 3 404 

(p=0.027). This difference across sets was because changes tended to get smaller following KR trials 405 
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(means = 258, 229, 217 ms), whereas changes following no KR trials stayed relatively constant (means = 406 

158, 156, 153 ms).  407 

Additionally, there was a statistically significant main-effect for Group, F(1,82)=4.98, p=0.028, 408 

but no statistically significant interactions with Group (p’s>0.54), such that participants with a blocked 409 

schedule generally made smaller changes (mean = 140 ms following no KR; 221 ms following KR) than 410 

participants with a random schedule (mean = 170 ms following no KR; 247 ms following KR). 411 

 412 
Figure 5. (A) Performance change on the subsequent trial as a function of group, block, and knowledge 413 
of results (KR) on the previous trial. (B) Example data and cubic fits are shown for a single participant 414 
with a random practice schedule. Performance change on the subsequent trial is shown as a function of 415 
absolute error on the previous trial. (C) Predictions from the cubic mixed-effects model are shown as 416 
thick black (block scheduled participants) and dashed lines (randomly scheduled participants). Thin grey 417 
lines show the best fitting curves for individual participants. Predicted change is shown as a function of 418 
group, absolute error on the previous trial, and set of trials (1-3). A thin red diagonal line with an intercept 419 
of 0 and slope of 1 shows a proportional corrections of the same magnitude as the previous error. 420 

 421 

Changes in performance following KR. Focusing on only those trials following the receipt of 422 

KR, we modeled the relationship between the change in performance and absolute error on the previous 423 

trial of the same target as shown in Figure 5B. The best fitting model was a cubic polynomial (full details 424 
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are given in Supplemental Appendix i). Traces for each individual participant are shown as thin grey lines 425 

in Figure 5C, with the predictions of the mixed-effect model shown as thick colored lines. Critically, in 426 

the mixed-effect model, there were statistically significant linear, F(1,730.2)=9.96, p=0.002, quadratic, 427 

F(1,2446.7)=17.19, p<0.001, and cubic effects of Lag AE, F(1,1978.4)=6.77, p=0.010. There was also a 428 

statistically significant main-effect for Group, F(1,152)=9.78, p=0.002, showing that the groups differed 429 

in their intercepts. However, these effects were superseded by a Group × Set × Lag AE interaction for the 430 

linear effect, F(2, 11639.9)=3.68, p=0.025. No higher order interactions were significant for the quadratic 431 

(p’s>0.050) or cubic effects (p’s>0.138).  432 

Qualitatively, this interaction is illustrated in Figure 5C; quantitatively, we can understand this 433 

interaction by solving for the predicted change in performance at different magnitudes of Lag AE. For 434 

instance, given a Lag AE = 500 ms, block scheduled participants were estimated to change their response 435 

by 462 ms in Set 1, 470 ms in Set 2, and 443 ms in Set 3. Randomly scheduled participants were 436 

estimated to change their response by 457 ms in Set 1, 460 ms in Set 2, and 404 ms in Set 3. Thus, 437 

following a 500 ms error, block scheduled participants tended to make more proportional changes on the 438 

subsequent trial. Similarly, given a previous absolute error of 0 ms, block scheduled participants were 439 

estimated to change their response by 110 ms in Set 1, 106 ms in Set 2, and 122 ms in Set 3. Randomly 440 

scheduled participants were estimated to change their response by 185 ms in Set 1, 186 ms in Set 2, and 441 

131 ms in Set 3. Thus, randomly scheduled participants were more likely to erroneously change their 442 

performance following a good performance (e.g., Lag AE = 0), and to not proportionally adjust their 443 

performance an error (e.g., Lag AE = 500). 444 

Associations with Long Term Learning 445 

 From the analyses thus far, data suggest that practice schedules have a significant effect on 446 

determinants, how much participants change their responses following no KR, and the relationship 447 

between change and previous errors. Note that the intercept from the mixed model is conceptually the 448 

same as the change following no KR, but we use the empirically-observed change following no KR 449 
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because that reflects a “correct” trial in mind of a participant, whereas the intercept of the mixed model 450 

reflects a hypothetical perfect trial. Beyond these group level differences, however; it is important to 451 

understand how these variables relate to learning on an individual level. These regression results are 452 

summarized in Figure 6 and presented fully in Supplemental Appendix i. There were statistically 453 

significant differences between groups on the retention test, controlling for any of the other variables 454 

(p’s<0.008). There were also statistically significant differences between groups on all three of these 455 

variables, controlling for error on the retention test (p’s<0.030). However, there was not a statistically 456 

significant relationship between the determinant and the retention test (p=0.672). And although the other 457 

two variables showed statistically significant relationships with learning (p’s<0.029), they were in the 458 

opposite direction of the group effect. This incongruence between the group-level pattern and the 459 

individual-level pattern makes these variables cases of Simpson’s paradox (Kievit, Frankenhuis, Waldorp, 460 

& Borsboom, 2013), and suggests that these variables cannot immediately explain the learning effect.  461 

 462 

Figure 6. Scatterplots showing the relationship average absolute error (AE) on the retention test as a 463 
function of: (A) the determinant of the correlation matrix in target space; (B) the mean change following 464 
no-KR trials; and (C) the linear slope from the cubic mixed model. P-values in the margins reflect the 465 
difference between groups, controlling for the other variable (e.g., p=0.030 reflects the group difference 466 
in determinants controlling for retention AE; p=0.008 reflects the group difference in retention AE 467 
controlling for the determinant). P-values embedded in the scatterplot reflect the relationship between the 468 
two variables controlling for group.  469 
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DISCUSSION 470 

 In this study, we thought that examining how participants adjust from trial to trial might yield 471 

insights into the contextual interference effect. A novel contribution of our work is looking at sequential 472 

effects in both trial space (e.g., the previous trial in the absolute order they happened) and target space 473 

(e.g., the last trial of the same target). We expected that random practice schedules would invoke 474 

forgetting and reconstruction processes (e.g., Lee & Magill, 1983; 1985), which would be evident in a 475 

positive correlation between errors in target space. Additionally, we thought that random practice 476 

schedules could lead to elaboration processes (e.g., Shea & Zimny, 1983; 1988), which would be evident 477 

in more adaptive responses to KR, especially later in practice when the different targets are clearly 478 

distinguished from each other.  479 

Our first hypothesis was supported; random practice schedules were associated with positive 480 

correlations between responses in target space, but not in trial space. In contrast, the blocked practice 481 

group showed very little difference in correlations between trial space and target space, and those 482 

correlations were all quite small (to nil). For random practice participants, these correlations were small 483 

but reliably positive (r’s between 0.10 to 0.15), making them notably larger than the correlations in either 484 

phase space and larger than blocked practice participants (r’s between 0.00 to 0.05). 485 

We did not find support for our second hypothesis that random practice schedules would be 486 

associated with more adaptive corrections from trial to trial in target space. First, examining responses 487 

following “correct” no-KR trials and incorrect trials with KR, we found that participants changed their 488 

responses more following KR trials than no-KR trials (replicating Lee & Carnahan, 1990). This is 489 

positive adaptive behavior; the most appropriate action following a correct trial is to do the same thing 490 

again, whereas the most appropriate action following an error is to change one’s behavior (Haith & 491 

Krakauer, 2013; Sutton & Barto, 2018). However, we did not find evidence that the degree of this 492 

difference depended on participants’ practice schedule (i.e., no significant KR × Group interaction). 493 

Second, we focused our analysis on only those trials following KR to see how participants responded to 494 
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error feedback. In that analysis, we did find statistically significant differences in the way the block- and 495 

random-practice groups responded to errors, but in a manner opposite to our predictions. Specifically, we 496 

found that following more ‘correct’ trials, blocked participants made smaller changes on the subsequent 497 

trial, and that following more errorful trials blocked participants made changes that were proportional to 498 

the previous error. Although these mean differences were small (perhaps due to the difficult nature of this 499 

task), these findings are counter to what we predicted from the elaboration and distinctiveness hypotheses.   500 

We speculate that blocked practice leads participants to respond more to the feedback itself rather 501 

than to use that feedback to update an internal representation of the target time. This finding is most 502 

consistent with the forgetting-reconstruction hypothesis of the CI effect, which states that a previously 503 

constructed action plan is more likely to be available in working memory during blocked practice. For 504 

random practice, in contrast, the individual is forced to forget the action plan because they must move on 505 

to a different trial, requiring reconstruction of the action plan the next time that stimulus is observed (Lee 506 

& Magill, 1983; 1985). In the present study, participants who completed random practice schedules 507 

appear to be using both the memory of their last response (reflected in positive correlations), plus the 508 

feedback they received (reflected in adaptive changes from trial to trial), in order to make their correction 509 

on the next trial. In contrast, block scheduled participants appear to be only using the feedback to guide 510 

their response (reflected in trivial correlations) but can use feedback from trial to trial more effectively 511 

(reflected in more adaptive changes). Thus, we see something of a “response inertia” in the random 512 

practice participants, who move closer to the target over time but are slow to adapt (i.e., overshoots are 513 

followed by smaller overshoots, undershoots by smaller undershoots).  514 

The finding that slower adapters show better long-term retention has been demonstrated in other 515 

motor learning and adaptation tasks (Smith et al., 2006; Coltman, Cashaback & Gribble, 2019). Motor 516 

learning is not a singular process, with many computational models suggesting that adaptation is the 517 

result of multiple learning processes each with their own, distinct timescales (Smith et al., 2006; Lee and 518 

Schweighofer, 2009; Haith & Krakauer, 2013). For instance, trial-to-trial variation in motor adaptation 519 
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tasks is well characterized by a model with two processes that each have a “retention” parameter (how 520 

much learning is preserved from one trial to the next) and a “learning rate” parameter (how much a 521 

learner changes the movement in response to an error). The “fast” learning process learns quickly but has 522 

low retention, whereas the slow process learns slowly yet has higher retention. Some researchers have 523 

posited that this “slow” learning process is responsible for chronic changes in behavior over longer 524 

periods (e.g., improvement in average performance from Day 1 to Day 2), whereas the “fast” learning 525 

process is responsible for acute changes in behavior (e.g., faster acquisition or “savings” in practice on 526 

Day 2 compared to Day 1; Albert & Shadmehr, 2018; McDougle et al., 2015), although some data 527 

suggest the slow process contributes to both (Coltman et al., 2019). 528 

These multi-process learning models have been applied to contextual interference effects before 529 

(Schweighofer, Lee, Goh, et al., 2011; Kim, Oh & Schweighofer, 2015). Schweighofer, Lee, Goh, et al. 530 

(2011) replicated the traditional contextual interference effect in able-bodied adults and in a sample of 531 

adults with stroke (>3 months post-stroke). In the sample of adults with stroke, individual differences in 532 

visuospatial working memory moderated long-term learning with a blocked schedule, but not a random 533 

schedule. Specifically, in the blocked practice group, individuals with worse working memory showed 534 

better retention. This paradoxical result was accounted for by a computational model that contained a fast 535 

process and multiple slow processes. In an “unimpaired” model where the fast process was intact, the fast 536 

process learns quickly to improve performance, however, this reduces the error-driven updating of the 537 

slow processes and thus led to worse long-term retention. When a visuospatial working memory deficit is 538 

simulated by “impairing” the fast process, this leads to more persistent errors, giving the slow process  539 

information it needs to adapt and improve retention.  540 

Although we did not employ a multi-process computational model in our analysis, the results of 541 

our statistical models provide conceptually similar results while yielding some complementary new 542 

insights. Specifically, our data reinforce the argument that being slow to adjust performance is associated 543 

with improved long-term learning at a group-level. Although our regressions did not find evidence that 544 
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individual differences in the determinant related to individual differences in learning, as discussed in the 545 

limitations below. Our analyses also extend this past-work, showing the different relationships between 546 

consecutive errors in both trial space and target space, whereas past work (including computational 547 

models) have focused on trial space (e.g., Kim, Oh & Schweighofer, 2015; Pauwels, Swinnen & Beets, 548 

2014). This phase space difference for the random practice group suggests that the response to errors is 549 

not simply governed by passive memory processes with different timescales, but active psychological 550 

processes in which errors from a particular target are encoded and retrieved the next time the learner sees 551 

a stimulus of the same target (Lee & Magill, 1983; 1985).  552 

 Although our novel secondary analysis provides some potential insights into the contextual 553 

interference effect, it is important to emphasize that these findings are primarily “hypothesis generating” 554 

in nature and need to be confirmed in independent samples (see Tukey, 1980; Wagenmakers et al., 2012). 555 

Similarly, although the primary study was powered to detect a contextual interference effect defined as 556 

the difference between blocked- and random-practice groups on the delayed retention/transfer tests 557 

(Thomas et al., 2021), there were no a priori power calculations for the myriad statistical tests we 558 

conducted in this secondary analysis.  559 

Additionally, although we saw large group differences in the determinant, change following no-560 

KR trials, and the slope of the mixed models in target space, we did not find the same pattern at an 561 

individual level (summarized in Figure 6). For the determinant, we simply did find evidence of a 562 

relationship between the determinant and long-term learning at the individual level. For change following 563 

no-KR trials and slope of the mixed-model, we found that the pattern reversed (Kievit et al., 2013). 564 

Focusing on change following no KR, at the group-level random practice was associated with larger 565 

changes following correct performance and better retention test performance (Figure 6B). At the 566 

individual-level, however, individuals who had smaller changes following correct feedback tended to 567 

have better retention test performance. Thus, random practice schedules do lead to better learning, but it 568 

does not seem that practice schedules lead to better learning because they lead to more adaptive changes. 569 
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More work is required to unpack these relationships, but our findings suggest that a simple causal model 570 

is not correct (random practice =/= more adaptive change =/= better retention test performance). Within 571 

the same practice schedule, however, it is fair to say that individuals who made smaller changes after 572 

correct trials showed superior retention.  573 

Similarly, we face a major validity issue if we think about the determinant, intercept, or the slope 574 

as “the” way to capture interference captured by practice scheduling. Although we saw group-level 575 

differences in learning and the determinant, part of the reason we saw no significant associations between 576 

learning and the determinant at the individual-level may be that the determinant is not the best way to 577 

operationalize the construct that we are really interested in. That is, the determinant tells us how errors are 578 

correlated during practice but may not be the best way to capture how participants are actually perceiving 579 

errors and/or making updates to any sort of internal model. The current results are promising and suggest 580 

there is some meaningful association between practice schedules, sequential corrections, and learning, but 581 

we do not think the models present here are necessarily the way to operationalize this research question in 582 

future studies.  583 

 In conclusion, we found that randomly scheduled practice was associated with stronger 584 

correlations between errors during practice, but we did not find evidence that random practice was 585 

associated with more adaptive corrections from trial to trial. Thus, practicing with a random schedule led 586 

to errors on the next trial that were generally smaller but similar to errors on the previous trial, whereas 587 

practice with a blocked schedule led to much smaller errors on the next trial that were not reliably 588 

correlated with the error from the previous trial. This “response inertia” on the part of randomly 589 

scheduled participants is consistent with the forgetting and reconstruction account of the contextual 590 

interference effect.  591 

592 
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Supplemental Appendix i 715 
 716 

Output 1. Model of mean change as a function of group, previous KR-type, and block.  717 
 718 
Linear mixed model fit by REML. t-tests use Satterthwaite's method [ 719 
lmerModLmerTest] 720 
Formula: mean_change ~ group * lag_KR * block + (1 | participant) + (1 |   721 
    block:participant) + (1 | lag_KR:participant) 722 
   Data: ACQ_by_KR 723 
Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 5e+05)) 724 
 725 
REML criterion at convergence: -1447.9 726 
 727 
Scaled residuals:  728 
     Min       1Q   Median       3Q      Max  729 
-2.43725 -0.50361 -0.03948  0.37904  3.06978  730 
 731 
Random effects: 732 
 Groups             Name        Variance  Std.Dev. 733 
 block:participant  (Intercept) 0.0004213 0.02053  734 
 lag_KR:participant (Intercept) 0.0002305 0.01518  735 
 participant        (Intercept) 0.0026947 0.05191  736 
 Residual                       0.0014861 0.03855  737 
Number of obs: 504, groups:   738 
block:participant, 252; lag_KR:participant, 168; participant, 84 739 
 740 
Type III Analysis of Variance Table with Satterthwaite's method 741 
                    Sum Sq Mean Sq NumDF DenDF  F value    Pr(>F)     742 
group              0.00741 0.00741     1    82   4.9837 0.0283135 *   743 
lag_KR             0.52979 0.52979     1    82 356.5003 < 2.2e-16 *** 744 
block              0.02994 0.01497     2   164  10.0740 7.473e-05 *** 745 
group:lag_KR       0.00056 0.00056     1    82   0.3738 0.5426163     746 
group:block        0.00052 0.00026     2   164   0.1750 0.8396046     747 
lag_KR:block       0.02741 0.01371     2   164   9.2225 0.0001601 *** 748 
group:lag_KR:block 0.00137 0.00068     2   164   0.4597 0.6322625     749 
--- 750 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 751 
  752 
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Output 2.  Comparison of linear, quadratic, and cubic random-effects in unconditional models to 753 
determine the best fitting “shape” of the Lag AE variable.  754 

 755 
Models: 756 
RE_mod_CHANGE_linear: target_absolute_change ~ 1 + target_lag_absolute_error + (1 + 757 
target_lag_absolute_error | participant) + (1 | block) 758 
 759 
RE_mod_CHANGE_quad: target_absolute_change ~ 1 + target_lag_absolute_error + 760 
I(target_lag_absolute_error^2) + (1 + target_lag_absolute_error + I(target_lag_absolute_error^2) 761 
| participant) + (1 | block) 762 
 763 
RE_mod_CHANGE_cube: target_absolute_change ~ 1 + target_lag_absolute_error + 764 
I(target_lag_absolute_error^2) + I(target_lag_absolute_error^3) + (1 + target_lag_absolute_error 765 
+ I(target_lag_absolute_error^2) | participant) + (1 | block) 766 
                     npar     AIC     BIC logLik deviance   Chisq Df Pr(>Chisq) 767 
RE_mod_CHANGE_linear    7 -8175.8 -8123.3 4094.9  -8189.8            768 
RE_mod_CHANGE_quad     11 -8251.9 -8169.3 4137.0  -8273.9 84.0540  4 < 2.2e-16 *** 769 
RE_mod_CHANGE_cube     12 -8258.9 -8168.8 4141.5  -8282.9  9.0118  1 0.002682 ** 770 
         771 
* Note that models failed to converge with a random cubic slope, so that term was dropped from the 772 
model. Also, a quartic model (not shown) had a worse AIC than the cubic model (indicating a risk of 773 
overfitting). Therefore, the model with cubic fixed effects and quadratic random effects was carried 774 
forward for all subsequent models.   775 
  776 
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Output 3. Model regressing change in performance onto block, group, previous absolute error (in target 777 
space) and the interactions of those variables. 778 
 779 
linear mixed model fit by REML. t-tests use Satterthwaite's method [ 780 
lmerModLmerTest] 781 
Formula: target_absolute_change ~ block * group * target_lag_absolute_error +   782 
    block * group * I(target_lag_absolute_error^2) + block *   783 
    group * I(target_lag_absolute_error^3) + (1 + target_lag_absolute_error +   784 
    I(target_lag_absolute_error^2) | participant) + (1 | Target) 785 
   Data: ACQ4 786 
Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 5e+05)) 787 
 788 
REML criterion at convergence: -8237.7 789 
 790 
Scaled residuals:  791 
    Min      1Q  Median      3Q     Max  792 
-3.4406 -0.6490 -0.1607  0.5053  5.8848  793 
 794 
Random effects: 795 
 Groups      Name                           Variance  Std.Dev. Corr        796 
 participant (Intercept)                    2.842e-03 0.053307             797 
             target_lag_absolute_error      6.731e-02 0.259445 -0.72       798 
             I(target_lag_absolute_error^2) 1.240e-01 0.352120  0.39 -0.80 799 
 Target      (Intercept)                    3.225e-05 0.005679             800 
 Residual                                   3.099e-02 0.176049             801 
Number of obs: 13542, groups:  participant, 84; Target, 3: 802 
 803 
Type III Analysis of Variance Table with Satterthwaite's method 804 
                                            Sum Sq Mean Sq NumDF   DenDF F value    Pr(>F)     805 
block                                      0.06614 0.03307     2 12945.1  1.0671  0.344043     806 
group                                      0.30324 0.30324     1   152.0  9.7842  0.002110 **  807 
target_lag_absolute_error                  0.30859 0.30859     1   730.2  9.9566  0.001669 **  808 
I(target_lag_absolute_error^2)             0.53264 0.53264     1  2446.7 17.1858 3.505e-05 *** 809 
I(target_lag_absolute_error^3)             0.20692 0.20692     1  1978.4  6.6762  0.009842 **  810 
block:group                                0.19920 0.09960     2 12943.0  3.2136  0.040243 *   811 
block:target_lag_absolute_error            0.06715 0.03357     2 11638.2  1.0832  0.338529     812 
group:target_lag_absolute_error            0.24209 0.24209     1   730.1  7.8110  0.005329 **  813 
block:I(target_lag_absolute_error^2)       0.12693 0.06346     2  9370.2  2.0476  0.129096     814 
group:I(target_lag_absolute_error^2)       0.11623 0.11623     1  2446.4  3.7503  0.052914 .   815 
block:I(target_lag_absolute_error^3)       0.15249 0.07624     2  6612.8  2.4600  0.085513 .   816 
group:I(target_lag_absolute_error^3)       0.07041 0.07041     1  1978.0  2.2718  0.131907     817 
block:group:target_lag_absolute_error      0.22804 0.11402     2 11639.9  3.6788  0.025282 *   818 
block:group:I(target_lag_absolute_error^2) 0.18575 0.09287     2  9374.2  2.9966  0.050004 .   819 
block:group:I(target_lag_absolute_error^3) 0.12271 0.06135     2  6616.8  1.9796  0.138207     820 
--- 821 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 822 
                  823 
  824 
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Output 4. Predicting the determinant in target space as a function of group and average AE on the 825 
retention test.  826 
 827 
l m(formula = det_Target ~ rand.c + ave_ae_Retention, data = MERGED) 828 
 829 
Residuals: 830 
     Min       1Q   Median       3Q      Max  831 
-0.55131 -0.04763  0.04533  0.08842  0.16994  832 
 833 
Coefficients: 834 
                 Estimate Std. Error t value Pr(>|t|)     835 
(Intercept)       0.86723    0.03722  23.298   <2e-16 *** 836 
rand.c           -0.06867    0.03100  -2.215   0.0296 *   837 
ave_ae_Retention -0.05069    0.11923  -0.425   0.6719     838 
--- 839 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 840 
 841 
Residual standard error: 0.1361 on 81 degrees of freedom 842 
Multiple R-squared:  0.05764, Adjusted R-squared:  0.03437  843 
F-statistic: 2.477 on 2 and 81 DF,  p-value: 0.09031 844 
  845 
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Output 5. Predicting average AE on the retention test as a function of group and the determinant in target 846 
space.  847 
 848 
l m(formula = ave_ae_Retention ~ rand.c + det_Target.c, data = MERGED) 849 
 850 
Residuals: 851 
     Min       1Q   Median       3Q      Max  852 
-0.24519 -0.09090 -0.02349  0.07920  0.33953  853 
 854 
Coefficients: 855 
             Estimate Std. Error t value Pr(>|t|)     856 
(Intercept)   0.28631    0.01382  20.711  < 2e-16 *** 857 
rand.c       -0.07722    0.02845  -2.714  0.00811 **  858 
det_Target.c -0.04392    0.10331  -0.425  0.67188     859 
--- 860 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 861 
 862 
Residual standard error: 0.1267 on 81 degrees of freedom 863 
Multiple R-squared:  0.08388, Adjusted R-squared:  0.06126  864 
F-statistic: 3.708 on 2 and 81 DF,  p-value: 0.02877 865 
  866 
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Output 6. Predicting average change following “correct” feedback (within the 50-ms bandwidth) as a 867 
function of group and average AE on the retention test.  868 
 869 
lm(formula = `mean_Change_No KR` ~ rand.c + ave_ae_Retention,  870 
    data = MERGED) 871 
 872 
Residuals: 873 
     Min       1Q   Median       3Q      Max  874 
-0.12616 -0.02769 -0.00352  0.02553  0.18937  875 
 876 
Coefficients: 877 
                 Estimate Std. Error t value Pr(>|t|)     878 
(Intercept)       0.11293    0.01388   8.137 4.04e-12 *** 879 
rand.c            0.04220    0.01156   3.651 0.000461 *** 880 
ave_ae_Retention  0.13410    0.04445   3.017 0.003414 **  881 
--- 882 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 883 
 884 
Residual standard error: 0.05073 on 81 degrees of freedom 885 
Multiple R-squared:  0.1782, Adjusted R-squared:  0.1579  886 
F-statistic: 8.784 on 2 and 81 DF,  p-value: 0.0003527 887 
  888 
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Output 7. Predicting average AE on the retention test as a function of group and the average change 889 
following “correct” feedback (within the 50-ms bandwidth).  890 
 891 
lm(formula = ave_ae_Retention ~ rand.c + `mean_Change_No KR`,  892 
    data = MERGED) 893 
 894 
Residuals: 895 
     Min       1Q   Median       3Q      Max  896 
-0.20515 -0.08808 -0.02392  0.06408  0.34403  897 
 898 
Coefficients: 899 
                    Estimate Std. Error t value Pr(>|t|)     900 
(Intercept)          0.17231    0.03999   4.309 4.58e-05 *** 901 
rand.c              -0.09864    0.02745  -3.594 0.000558 *** 902 
`mean_Change_No KR`  0.75315    0.24967   3.017 0.003414 **  903 
--- 904 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 905 
 906 
Residual standard error: 0.1202 on 81 degrees of freedom 907 
Multiple R-squared:  0.1746, Adjusted R-squared:  0.1542  908 
F-statistic: 8.566 on 2 and 81 DF,  p-value: 0.000422 909 
  910 
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Output 8. Predicting the individual slope from the mixed-model (i.e., the proportionality of correction) as 911 
a function of group and average AE on the retention test.  912 
 913 
 914 
lm(formula = slope.c ~ rand.c + ave_ae_Retention, data = MERGED) 915 
 916 
Residuals: 917 
     Min       1Q   Median       3Q      Max  918 
-0.61986 -0.10627  0.02593  0.10862  0.26761  919 
 920 
Coefficients: 921 
                 Estimate Std. Error t value Pr(>|t|)     922 
(Intercept)       0.09134    0.04415   2.069 0.041758 *   923 
rand.c           -0.13373    0.03677  -3.637 0.000483 *** 924 
ave_ae_Retention -0.31446    0.14142  -2.224 0.028957 *   925 
--- 926 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 927 
 928 
Residual standard error: 0.1614 on 81 degrees of freedom 929 
Multiple R-squared:  0.1541, Adjusted R-squared:  0.1332  930 
F-statistic: 7.377 on 2 and 81 DF,  p-value: 0.00113 931 
  932 



40 

 

Output 9. Predicting average AE on the retention test as a function of group and the individual slope 933 
from the mixed-model (i.e., the proportionality of correction).  934 
 935 
lm(formula = ave_ae_Retention ~ rand.c + slope.c, data = MERGED) 936 
 937 
Residuals: 938 
     Min       1Q   Median       3Q      Max  939 
-0.18873 -0.08205 -0.02115  0.07293  0.33567  940 
 941 
Coefficients: 942 
            Estimate Std. Error t value Pr(>|t|)     943 
(Intercept)  0.28652    0.01344  21.325  < 2e-16 *** 944 
rand.c      -0.09456    0.02836  -3.334  0.00129 **  945 
slope.c     -0.18295    0.08228  -2.224  0.02896 *   946 
--- 947 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 948 
 949 
Residual standard error: 0.1231 on 81 degrees of freedom 950 
Multiple R-squared:  0.1347, Adjusted R-squared:  0.1133  951 
F-statistic: 6.303 on 2 and 81 DF,  p-value: 0.002857 952 
 953 
  954 
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Supplemental Appendix ii. Mixed-effect regressions and correlations with long-term 955 

learning, presented in the original pre-print. 956 

 957 

Constant Error on the Next Trial. Mixed-effect regressions predicting constant error on the next 958 

trial from constant error on the previous four trials showed differential effects in trial space relative to 959 

target space. (Full details of the regression models are available in Supplemental Appendix i.) In trial 960 

space, there were statistically significant main-effects of Group (p<0.001), Lag-1 error (p=0.002), Lag-2 961 

error (p<0.001), Lag-3 error (p<0.001), and Lag-4 error (p<0.001). Critically however, there were no 962 

Group x Lag interactions for either Lag-1 error (p=0.953), Lag-2 error (p=0.250), Lag-3 error (p=0.637), 963 

or Lag-4 error (p=0.917). These results can be seen in the dashed lines of Figure 5A; random practice 964 

participants generally had more positive constant errors than blocked practice participants, but the effect 965 

of the previous trial was comparable across groups (only Lag-1 error is shown).  966 

In target space, there were statistically significant main-effects of Group (p<0.001), Lag-1 error 967 

(p<0.001), Lag-2 error (p<0.001), Lag-3 error (p<0.001), and Lag-4 error (p<0.001). Critically there was 968 

also a statistically significant Group x Lag-1 error interaction (p=0.005), but no other Group x Lag 969 

interactions, Lag-2 error (p=0.244), Lag-3 error (p=0.628), or Lag-4 error (p=0.204). These results can be 970 

seen in the solid lines of Figure 5A; random practice participants not only had more positive constant 971 

errors than blocked practice participants, but random practice participants also tended to have more 972 

similar errors from one trial to the next compared to blocked practice participants (note the more positive 973 

slope of the solid line for the random group compared to the blocked group). 974 
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 975 

Figure 5.  The model predictions for constant error on the next trial (A) or absolute error on the next trial 976 
(B) as a function of the previous constant error. Coefficients for all of the models are provided in the 977 
supplemental appendix. Solid lines indicate predictions from the model in target space, dashed lines 978 
indicate model predictions in trial space. Red lines show model predictions for the random practice group, 979 
Black lines show model predictions for the blocked practice group. 980 

 981 

Absolute Error on the Next Trial. Mixed-effect regressions predicting absolute error on the next 982 

trial from constant error on the previous trial showed slightly different effects in trial space relative to 983 

target space. In trial space, there was a statistically significant main-effect of Group (p<0.001), no linear 984 

effect of Lag-1 error (p=0.221), and a significant quadratic effect of Lag-1 error (p<0.001). Although 985 

there was not a significant Group x Lag-1 interaction (p=0.967), there was a significant interaction with 986 

the quadratic effect, Group x Lag-12 (p<0.001). Participants who practiced with a random schedule tended 987 

to make larger errors on the subsequent trial and, although both groups showed u-shaped distributions to 988 

their corrections, the u-shape for the blocked practice participants was tighter and deeper than the u-shape 989 
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for the random practice participants; see Figure 5B. For reference, about 95% of the errors fell between -990 

500 ms and +500 ms, so the group difference is especially crucial in that range. 991 

In target space, there was a statistically significant main-effect of Group (p=0.003), linear Lag-1 992 

error (p=0.004), and quadratic Lag-12 error (p<0.001). Although there was not a significant Group x Lag-993 

1 interaction (p=0.103), there was a significant interaction with the quadratic effect, Group x Lag-12 994 

(p=0.025). As shown in Figure 5B, participants who practiced with a random schedule tended to make 995 

larger errors on the subsequent trial and, although both groups showed u-shaped distributions to their 996 

corrections, the u-shape for the blocked practice participants was tighter and deeper than the u-shape for 997 

the random practice participants. Interestingly, compared to trial space, there was evidence for a “tilt” in 998 

these distributions (shown by the linear effect of Lag-1 error) such that both groups tended to make 999 

slightly larger absolute errors following positive constant errors compared to negative constant errors.   1000 

Associations (or lack thereof) with Long Term Learning 1001 

 Retention Test. A multivariable regression model in which average absolute error on the retention 1002 

test was regressed onto Group and the Determinant over the previous 5 trials in target space showed that 1003 

there was a statistically significant main-effect of Group, b=-0.08, t(1,81)=-2.71, p=0.008, but not a 1004 

statistically significant main-effect of the Determinant, b=-0.04, t(1,81)=-0.43, p=0.672. Collinearity for 1005 

these predictors was relatively low, with variance inflation factor = 1.06. A scatterplot illustrating these 1006 

effects is shown in Figure 6A. 1007 

 Transfer Test. A multivariable regression model in which average absolute error on the transfer 1008 

test was regressed onto Group and the Determinant over the previous 5 trials in target space demonstrated 1009 

that there was a statistically significant main-effect of Group, b=-0.07, t(1,81)=-2.66, p=0.009, but not a 1010 

statistically significant main-effect of the Determinant, b=-0.01, t(1,81)=-0.13, p=0.896. A scatterplot 1011 

illustrating these effects is shown in Figure 6B. 1012 
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Self-Reported Mental Effort. Average mental effort as self-reported on the Rating Scales of 1013 

Mental Effort was regressed onto Group and the Determinant over the previous 5 trials in target space 1014 

showed that there was not a statistically significant main-effect of Group, b=-7.42, t(1,81)=-1.43, 1015 

p=0.156, and a marginally significant effect of the Determinant, b=-37.99, t(1,81)=-2.02, p=0.047. 1016 

However, given the large p-value and a lack of predictions for this association, we did not interpret this 1017 

effect further. A scatterplot illustrating these effects is shown in Figure 6C. 1018 

Error Estimation Accuracy. For participants who estimated their own errors (N=42), we 1019 

similarly regressed error estimation accuracy onto Group and the Determinant over the previous 5 trials. 1020 

There was no statistically significant main-effect of Group, b=21.08, t(1,39)=1.05, p=0.299, and no 1021 

statistically significant main-effect of the Determinant, b=-48.56, t(1,38)=-0.72, p=0.476. A scatterplot 1022 

illustrating these effects is shown in Figure 6D. 1023 

  1024 
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 1025 

Figure 6. The average absolute error (AE) during retention (A) and transfer tests (B), plus the average 1026 
from the rating scales of mental effort (RMSE; C), and the mis-match between actual error and estimated 1027 
error (D) as a function of the determinant in target space and group. P-values are given in the margins for 1028 
the effect of Group controlling for the other variable (i.e., the difference in retention test performance had 1029 
p=0.03 controlling for the determinant; the difference in the determinant had p<0.01 controlling for 1030 
retention test performance). The p-value in the plot is given for the association between the variable of 1031 
interest (A-D) and the determinant, controlling for Group.   1032 
 1033 

 1034 


