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ABSTRACT 
Purpose: Measuring the blood lactate concentration allows for a glimpse at the metabolic 
processes during exercise. To extract characteristics of metabolism the relationship between 
blood lactate concentration and power or velocity is modeled. Current modeling approaches 
allow only limited interpretation, are in conflict with basic principles of scientific mathematical 
modeling, and lack a phenomenological reasoning. 
Methods: We developed a simple analytical expression to model lactate concentration data from 
graded incremental exercise tests. We compared our new approach to a traditional one in a 
dataset of N = 24 exercise tests performed by elite junior triathletes. 
Results: The new procedure leads to three independent fitting parameters characterizing the 
baseline lactate concentration, the intensity (power, velocity) at the onset as well as the rate of 
increase of the lactate concentration. These parameters have a clear meaning and can directly 
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be used for diagnostics. They can be interpreted with more confidence compared to the 
characteristics extracted in the traditional approach. 
Conclusion: The performance indicators, naturally appearing in our modeling, should supersede 
the single points obtained from the traditional evaluation of graded incremental exercise tests 
(“lactate thresholds”), which can hardly be justified based on the principles of scientific 
mathematical modeling. 
 
Keywords: lactate testing, anaerobic threshold, endurance performance, performance 
diagnostics, cycling 
 
 
 
 
 
 
Abbreviations 
 

𝑎 fitting parameter of the traditional modeling approach (in mmol/l) 
𝑏 fitting parameter of the traditional modeling approach (in mmol/l) 
𝑐 fitting parameter of the traditional modeling approach (in W) 

𝑐La blood lactate concentration (in mmol/l) 

𝑐La(𝑃) measured blood lactate concentration as a function of power (in 
mmol/l) 

𝑐La
rest lactate rest concentration (in mmol/l), as a fitting parameter of the 

novel modeling approach 
𝑁 number of participants 
𝑃 power (in W) 

𝑃1 
low power scale characterizing the first onset of the increase of the 
lactate concentration (in W), as a fitting parameter of the novel 
modeling approach 

𝑃2 
high power scale characterizing the exponential growth of the 
lactate concentration (in W), as a fitting parameter of the novel 
modeling approach 

𝑃4 power corresponding to a lactate concentration of 4 mmol/l (in W) 
𝑆𝑆𝐸 sum of squared differences 
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INTRODUCTION 
Measuring the blood lactate concentration allows for a glimpse at the processes usually hidden 
inside a human’s body. Various tissues accumulate, transport, and eliminate lactate; all these 
processes contribute to the measured blood lactate concentration (van Hall 2010). Researchers 
and practitioners have investigated blood lactate concentrations for the past decades in the 
fields of biology, medicine, and sports. 
 

When individuals master a workload of increasing intensity (e.g., in graded incremental 
exercise tests), the amplified substrate-level phosphorylation leads to a rising blood lactate 
concentration. The evaluation of the resulting lactate-power or lactate-velocity relationship 
allows for an estimation of the physical fitness, as it reflects the net metabolic processes during 
exercise. To be efficient, we from now use the word power only, when referring to a work 
intensity, instead of both power and velocity.  
 

Usually, researchers and practitioners only locate single characteristic points of the 
dependence of the lactate concentration on power 𝑐La(𝑃). Sports scientists call these points 
“lactate thresholds” (Faude et al. 2009). Often the workload at a fixed blood lactate concentration 
(e.g., 𝑐La(𝑃) = 4 mmol/l) during a graded incremental exercise test is interpreted as an 
approximation of the power that corresponds to a critical condition in metabolism (the maximal 
lactate steady-state, MLSS). But the exact definitions of these “thresholds” seem to lack 
physiological reasoning. Furthermore, the lactate-power relationship provides more information 
than obtained by extracting single points.  
 

To extract general characteristics of lactate curves, we need to model the lactate-power 
relationship (Beaver et al. 1985, Hughson et al. 1987, Morton 1989, Lundberg et al. 1986, Morton 
et al. 1994, Newell et al. 2006, Bentley et al. 2007). A proper model translates the assumed and 
observed behavior of lactate curves into mathematics. Current applied modeling approaches in 
exercise science do not capture all trends of the lactate-power relationship. The parameters of 
the model should be meaningful and easy to interpret. For lactate curves from incremental 
exercise tests, three main characteristics exist: the baseline concentration, the onset of the rise, 
and the rate of increase of the curve. Adequate modeling should allow us to separately quantify 
these parameters. The comparison of the parameters between athletes and in the longitudinal 
direction may help to provide information on differences and changes in the physiological 
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processes involving lactate. These insights may improve our understanding of the mechanisms 
of individual training response and of the exercise performance development. 
 

In this paper we develop a new approach to model the behavior of the lactate 
concentration in graded incremental exercise tests. We demonstrate that our modeling is 
accurate and allows to separately quantify the baseline, the onset, and the rate of increase of 
the lactate curve. The fitted parameters have standard deviations that are significantly smaller 
than the ones obtained in alternative approaches. In this sense our model is more “reasonable” 
and “stable”. Crucially, our approach obeys the basic principles of scientific mathematical 
modeling.  

MODELLING 

Data Set 

We analyzed a data set of N = 24 graded incremental exercise tests performed by junior 
triathletes of national level (13 males, 11 females, age: 14 to 19). The data were collected by the 
German Research Centre of Elite Sport as part of the momentum project of the German Sport 
University Cologne. Athletes performed the test on a stationary cycling ergometer (SRM, 
Schoberer Radmesstechnik, Jülich, Germany). The initial load was 40-100 W (based on age, sex, 
and bodyweight) and increased by 30 W every 3 minutes until exhaustion. If athletes did not fully 
complete their last power step, we linearly interpolated the power according to the fraction of 
time they persevered. Capillary blood samples were taken from the earlobe at the end of each 
exercise step and analyzed using an enzymatic-amperometric sensor chip system (Biosen C-
Line, EKF-diagnostic GmbH, Barleben, Germany). 

The traditional fitting procedure 

For lactate data from graded incremental exercise tests, various forms of fitting procedures exist 
in the literature (Beaver et al. 1985, Hughson et al. 1987, Morton 1989, Lundberg et al. 1986, 
Morton et al. 1994, Newell et al. 2006, Bentley et al. 2007). We here utilized a reference function, 
that stands as an often used example for these traditional models (Hughson et al. 1987), namely 

𝑓ref(𝑃) = 𝑎 + 𝑏 exp(𝑃/𝑐) (1) 

with the three fitting parameters 𝑎, 𝑏, both of dimension concentration, and 𝑐 of dimension 
power. The two basic assumptions leading to this function are the idea of a rest lactate level 𝑎 +

𝑏 (at 𝑃 = 0) and an exponential growth with rate 1/𝑐 with increasing exercise intensity which 
starts at 𝑃 = 0. Further down we comment on other fitting forms assumed in the past. With 
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𝑓ref(𝑃) determined, it is possible to compute the power 𝑃4 at exactly 4 mmol/l of blood lactate 
concentration (Mader et al. 1976, Sjödin and Jacobs 1981). Basic algebra leads to  

𝑃4 = 𝑐 ln (
4 − 𝑎

𝑏
) (2) 

with 𝑎 and 𝑏 given in mmol/l. This type of interpolation is frequently used in the software 
packages of diagnostic laboratories. 

The new fitting procedure 

We used a new mathematical model to fit the lactate-power relationship. Our model is based on 
the following commonly accepted observations and phenomenological ideas on how the lactate 
concentration measured in graded incremental exercise tests depends on power: 

(i) For an extended interval at the lower end of powers the lactate concentration barely 
rises above its rest value 𝑐La

rest. In fact, the lactate concentration often decreases first, and 
starts to increase only for larger power (Newell et al. 2006). In any case, all changes in 
blood lactate concentration observed in the low-power regime are much smaller than 
the ones observed at larger power (see Fig. 1). 

(ii) From a first characteristic power scale 𝑃1 on, 𝑐La rises exponentially with 𝑃. The phrase 
“exponential growth” is often used synonymously with “a strong dependence on the 
variable”. It, however, means much more. In the language of the present context, the 
characterizing property of exponential growth is, that the change of the lactate 
concentration with power (the derivative) is proportional to the current lactate 
concentration (at power 𝑃).  

(iii) The exponential growth for 𝑃 > 𝑃1 naturally sets a second characteristic power scale 𝑃2. 
The argument of the exponential function has to be dimensionless, and one has to divide 
𝑃 by a scale 𝑃2 of dimension power before inserting it as the argument. The appearing 
term is thus of the form exp(𝑃/𝑃2). The larger 𝑃2 the slower the exponential function 
grows with increasing 𝑃; in fact, 1/𝑃2 is a measure for the growth rate.  

 
In the mathematical modeling on this phenomenological level, we treat both power 

scales as independent. From a practical point of view “independence” means that both can be 
addressed separately in properly designed training schemes. We finally assume that the fitting 
function is continuous (no jumps for varying 𝑃) which appears to be natural. Then (i) to (iii) lead 
to the simple and transparent new fitting function  
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𝑓new(𝑃)  = {
𝑐La

rest                                   , for 𝑃 ≤  𝑃1

𝑐La
rest exp[(𝑃 − 𝑃1)/𝑃2] , for 𝑃 >  𝑃1

 (3) 

with the two power scales 𝑃1 and 𝑃2 as well as the rest lactate concentration 𝑐La
rest as fitting 

parameters. We emphasize that all three have a clear meaning (see Fig. 2). The first derivative 
(the slope) of the (continuous) fitting function jumps at 𝑃1. This should not be misinterpreted. 
We do not believe that the underlying physiological processes comprise this discontinuity of the 
first derivative (Morton 1989). It is merely a consequence of the goal to incorporate the 
commonly accepted phenomenological ideas (i) to (iii) into a simple and robust mathematical 
model. 

Comparison of models 

We fitted both the traditional and our new approach to the 𝑐La(𝑃) data of each graded 
incremental exercise test in our data set. We used a least-square optimization routine to find 
the individual fit parameters for each test. We computed the residual for each lactate data point, 
i.e., the difference between the concentration measured and the concentration obtained by the 
fit. As a measure for the fit quality, we computed 𝑆𝑆𝐸 as the sum of squared residuals and the 
relative standard deviation of the fitting parameters. For simplicity the unavoidable error of the 
lactate concentration, which can only be measured up to a certain precision, as well as the 
uncertainty of the power were neglected. Concerning the former this implies that the standard 
deviation of 𝑐La in the computation of 𝑆𝑆𝐸 to be minimized in the least square fit was set to one. 
On the one hand, 𝑆𝑆𝐸 provides an estimate how well the desired model fits to the data points. 
On the other hand, the relative standard deviation of the fitting parameters reveals how robust 
the parameters are towards changes. A large relative standard deviation thus indicates that the 
corresponding parameter is not very reliable given the model and the measured data. Large 
relative standard deviations can appear despite a reasonable 𝑆𝑆𝐸 and provide another measure 
for how reasonable a fitted line shape is. We also refer to this as the stability of the fit. A small 
relative standard deviation, in particular, indicates that we can be confident when interpreting 
the fitting parameters. We compared both measures for the fitting quality between the two 
models. We used Python version 3.9.0 and R version 4.1.1 for data analysis and visualization. All 
raw data and scripts are available at https://osf.io/av6gm/.  
 

https://osf.io/av6gm/
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Figure 1. Application of two different fitting procedures on data from six graded incremental exercise 
cycling tests. Black crosses in the upper panels: Measured data for the lactate concentration 𝑐La as a 
function of the power 𝑃 for six elite junior triathletes; three females (P01, P05, P13) and three males (P07, 
P08, P17). The green lines show a fit of the newly suggested Eq. (3) to the data and the red ones of the 
traditional Eq. (1). The fitting parameters are given in the legends. 𝑐La

rest, 𝑎, and 𝑏 are given in unit mmol/l 
and 𝑃1, 𝑃2, and 𝑐 in unit W. Lower panels: The corresponding residuals Δ𝑐La of the data and the fits are 
shown as the symbols. Note the color coding. 
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RESULTS 
Both models reflect the general trend of a rising lactate concentration with higher power, but 
the traditional fitting form cannot capture the characteristic of a constant or even declining 
concentration during the first power steps (see Fig. 1). The new model results in more stable 
fitting parameters, i.e., smaller relative standard deviations, while maintaining a similar accuracy 
of fit, i.e., a similar 𝑆𝑆𝐸, compared to the traditional model (see Fig. 3). 
 

 

 
Figure 2. Sketch of the dimensionless new fitting function 𝑓new/𝑐La

rest as a function of the power 𝑃 (in W) for 
two different sets of characteristic power scales (𝑃1, 𝑃2). 𝑃1 characterizes the onset of the exponential rise. 
A higher 𝑃1 corresponds to a later onset.  𝑃2 quantifies the rate of the exponential rise. A lower 𝑃2 
corresponds to a steeper increase. 
 

DISCUSSION 
The new modeling approach allows us to quantify the characteristics of lactate concentration 
curves from graded incremental exercise tests. It better captures the observed trends in lactate 
kinetics and leads to more stable fitting parameters than traditional approaches. 

The traditional fitting procedure 

The traditional modeling of 𝑐La(𝑃) yields a continuously increasing function (see red lines in Fig. 
1). Most importantly, it assumes 𝑐La(𝑃) to be exponential even for low power, which is clearly 
not the case in reality. In contrast, the measured data shows, that 𝑐La only rises exponentially for 
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higher powers. To still fit the function to the data, it is mathematically necessary that the 
parameter 𝑏 is exceedingly small. This leads to an unstable fit, which is demonstrated by the 
large relative standard deviation of the fitting parameters (see Fig. 3b).  
 

The parameter 𝑐 is the only characteristic power scale of the traditional modeling 
function; it is the only parameter of the dimension power. This contrasts with the common belief, 
that lactate curves from graded incremental exercise tests contain two independent power 
scales. Even the single power scale 𝑐 does not provide valuable insights. For example, in Fig. 1 
P08 has a higher 𝑐 than P17, despite a slightly lower maximal power achieved during the test. 
On the contrary P07 has a higher 𝑐 with a higher maximal power output. Thus, the traditional fit 
does not capture the trends of 𝑐La(𝑃); and its parameters are unstable and cannot be 
interpreted directly. 

The new fitting procedure 

The new fitting approach yields a constant value of 𝑐La(𝑃) until a first power scale, from which 
on 𝑐La(𝑃) rises exponentially (see green lines in Fig. 1). This matches the observations of the 
lactate concentration being constant within the measurement accuracy or even moderately 
declining during the first steps of the test. The minor variations that occur during this phase do 
not influence the characteristic value 𝑃2. All fitting parameters can be interpreted with 
confidence, as their relative standard deviation is comparably small (see Fig. 3). The modeling 
function has the two independent power scales 𝑃1 and 𝑃2. According to the basic principles of 
scientific mathematical modeling, the definition of these scales should be based on a reasoning 
relying on dimensional quantities. It should not rely on fixed dimension-full values, such as, e.g., 
an intensity at a lactate concentration of 4 mmol/l, but stand in reference to another naturally 
occurring value, e.g., the rest lactate concentration. For an illustration of this issue think of the 
concept of half-life in a decay process, which is useful in virtually any science. The half-life is 
defined as the time at which only half the initial amount remains and thus requires the reference 
to the initial amount. One first divides the current amount by the initial one, leading to a 
dimensionless expression, and then asks which value of the variable renders this ratio to be 1/2. 
In our new approach of modeling lactate curves, we define the characteristic power scales by 
referencing the data to the rest lactate concentration; we can divide the new fitting equation by 
𝑐La

rest to make it dimensionless (see Fig. 2). The first characteristic scale 𝑃1 is set by the smallest 

power at which 𝑓new(𝑃)

𝑐La
rest > 1, while 𝑃2 is defined by 𝑓new(𝑃1+𝑃2)

𝑐La
rest = exp(1), i.e., the power at which the  
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Figure 3. The new approach is more stable than the traditional one by maintaining a similar accuracy.  
(a) Comparison of 𝑆𝑆𝐸 (sum of squared errors) for the 24 tests of our data set. A low ratio 
𝑆𝑆𝐸new / 𝑆𝑆𝐸ref  means that the new fit is more accurate than the traditional, and vice versa. The ratio is 
displayed on a log10 scale. Data is vertically jittered to improve visibility of the single data points.  
(b) Comparison of the relative standard deviation for the three fitting parameters of the traditional (red) 
and the new model (green). Lower values indicate a higher certainty when interpreting these parameters. 
The vertical lines represent the mean values for each parameter. 
 
 
lactate concentration rises an universal factor exp(1)=2.718… (Euler’s number) above the rest 
lactate concentration. 
 

Our mathematically concise modeling leads to two independent power scales, which are 
easy to interpret: 𝑃1 stands for the onset of the exponential rise, and 𝑃2 characterizes the rate 
of this rise. A lower 𝑃2 means a stronger exponential rise; a higher 𝑃2 leads to a “flatter” curve. 
Combining both power scales allows us to fully describe and quantify the characteristics of the 
lactate curve (see Fig. 1). As an example, P05 and P13 both show similar 𝑃1, but for P05 𝑃2 is 
higher. This means, that despite a similar power at the onset of the exponential rise, P05 can 
perform at a higher maximal power, as his exponential rise is less steep. P01 and P13, in contrast, 
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share a similar 𝑃2 but differ in 𝑃1: Their exponential rise is equally steep, but it starts earlier for 
P01 in comparison to P13. Accordingly, different combinations of 𝑃1 and 𝑃2 can lead to similar 
performance levels in athletes. For example, P08 and P17 show an almost similar peak 
performance originating from different characteristics of 𝑐La(𝑃): for P08 𝑃1 is low and 𝑃2 high; 
for P17 the opposite holds. The higher performance level of P07 as compared to P08 and P17 
can be mostly explained by a later onset of the exponential rise, which is quantified in the higher 
value of 𝑃1. 
 

The proposed fitting function allows for new theoretical insights from lactate 
concentration measured during constant load tests. As we are now able to separately quantify 
𝑃1 and 𝑃2, we can speculate about their physiological origins. We assume the low power scale 
𝑃1, on the one hand, to be mainly associated with the oxidative phosphorylation. Workloads 
smaller or equal 𝑃1 lead to metabolic states in which the rate of substrate-level phosphorylation 
and the rate of lactate removal are in equilibrium, which leads to a constant blood lactate 
concentration. An increased power of oxidative phosphorylation can both cause a late onset of 
the rate of substrate-level phosphorylation and a high rate of lactate removal. We assume 𝑃2, on 
the other hand, to be more strongly associated with the substrate-level phosphorylation itself. 
A high activation of the substrate-level phosphorylation may lead to a steep rise of the lactate 
concentration once the offset has been reached; and thus, a low 𝑃2. 
 

 The new model also has practical implications for performance diagnostics. Our 
approach may reveal different physiological profiles of athletes. Based on the determined 𝑃1 and 
𝑃2 it might be meaningful to target these parameters with specified training. For example, P13 
in Fig. 1 might want to increase his 𝑃2, while the main goal of P01 is to increase his 𝑃1. Which 
physiological stimuli lead to changes in the characteristic power scales remains a subject of 
further longitudinal research. Based on the two power scales 𝑃1 and 𝑃2 one can also define 
training zones. How the zone boundaries should be computed from these two parameters 
depends on the number of zones one is aiming at. For four zones a simple scheme would be to, 
e.g., consider the intervals  𝑍1 = [𝑃1/2, 𝑃1], 𝑍2 = [𝑃1, 𝑃1 + 𝑃2], 𝑍3 = [𝑃1 + 𝑃2, 𝑃1 + 2𝑃2], and 𝑍4 =

[𝑃1 + 2𝑃2, 𝑃1 + 3𝑃2]. We intentionally avoid denoting them by often used names such as, e.g., 
active recovery, maximal fat oxdiation, lactate threshold, …. However, taking the sum of other 
fractions or multiples of 𝑃1 and 𝑃2 to define the zone boundaries is conceivable and might be 
more appropriate. This fine tuning of training zones built on both characteristic power scales 
should be a subject of future research, while bearing in mind, that such training zones are 
influenced by many athlete-specific factors, which cannot be fully assessed by a diagnostician.  
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Comparison of both approaches 

The fitting parameters of our new model can be directly interpreted, which is not possible with 
the traditional model. The traditional model’s power scale 𝑐 allows only minimal insights when 
comparing it between athletes. But we can easily interpret the parameters of the new model: A 
higher 𝑃1 means a later onset of the curve; and a higher 𝑃2 means a less steep rise (see Fig. 2). 
 

The overall quality of the fitting of Eq. (1) and Eq. (3), measured by the 𝑆𝑆𝐸 is on average 
the same (see Fig. 3a). A closer look at the lower panels of Fig. 1 reveals that the regime of 
exponential growth of the blood lactate concentration with power is, however, generically 
described better by the new fit. In these panels the green plus signs are mostly closer to the 
dashed zero line than the red crosses. This is not surprising as this fitting form only assumes an 
exponential growth where it usually really occurs. In accordance with this, the relative standard 
deviation of the high-power scale 𝑃2 is on average smaller than that of the power scale 𝑐 (see 
Fig. 3b); 𝑃2 is thus a more robust measure of the endurance capacity than 𝑐.  
 

Taking the line shape of the measured data into account, it is not surprising that 𝑃1 is 
prone to fluctuations, that is, the relative standard deviation of this fitting parameter of Eq. (3) is 
larger than that of 𝑃2. Where exactly one has to switch from a constant value to the exponential 
growth is not very well defined. 𝑃1 still renders to be much more robust than the parameter 𝑏 
(see Fig. 3b). The relative standard deviation of 𝑐La

rest can reach up to 20% but is significantly 
smaller than that of 𝑎. We compare these two as the rest lactate concentration 𝑎 + 𝑏 in Eq. (1) is 
dominated by 𝑎 ≫ 𝑏. All parameters indicate a more stable fit of the measured data with the 
new modeling function.  

Other fitting forms and mathematical procedures 

We next comment on other mathematical procedures performed and fitting forms assumed to 
evaluate graded incremental exercise tests. In some, instead of the power, the rate of oxygen 
uptake �̇�O2 (gas exchange) is used as the variable. To a good approximation �̇�O2 and the power 
𝑃 show a linear relationship in the regime of interest to us (Mader and Heck 1991). For the 
present purpose one can therefore identify the two.  
 

Beaver et al. (1985) suggested to plot the data on a log-log scale to better identify the 
variable at which 𝑐La switches from “… very slow increase …” to “… rapid increase …“. The definition 
of the crossover scale at which the behavior changes and which might roughly correspond to 𝑃1, 
remains vague and relies on visual inspection. Furthermore, the authors argue in favor of power-
law behavior beyond this scale, instead of an exponential one, as in Eq. (3) and the reference 
fitting form Eq. (1) (Hughson et al. 1987). This ignores that power laws can only be inferred 
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empirically if data spanning several orders of magnitude exist, which is obviously not the case; 
compare, e.g., Fig. 1. Power laws have furthermore the property that they are scale-free. If the 
data would indeed follow a power law, it would not be possible to extract a second characteristic 
high-power scale. To overcome the problem of visual inspection, Lundberg et al. (1986) 
proposed to use a computerized approach to identify the crossover point. 

 
The differences between the often used reference fitting form Eq. (1) (Hughson et al. 

1987) and the analysis of Beaver et al. (1985), led to a dispute between the two groups in form 
of a Letter to the Editor and a Reply (Beaver et al. 1988, Hughson and Swanson 1988). 
Interestingly, this quarrel was exposed as a sham debate by Morton (1989) shortly after. He 
revealed the mathematical and logical weaknesses of both papers. Unfortunately, his concise 
analysis, which we fully subscribe to, went mainly unnoticed; while the publications of Beaver et 
al. (1985) and Hughson et al. (1987) combined were cited roughly 500 times up to today, Richard 
Hugh Morton's paper was only referred to 17 times (both according to the Web of Science). 

 
Morton et al. (1994) later on suggested a fitting form with three segments, the first being 

a constant, the second and third each being second order polynomials. The two characteristic 
(power) scales then correspond to the “breakpoints” at which the three curves are glued 
together. This leads to a model with five fitting parameters, which, given the typically 5 to 15 data 
points, appears to be a lot. In any case, this goes beyond the minimal mathematical model we 
are aiming at and indeed requires justifications which exceed the phenomenological level 
(Morton et al. 1994). 

 
Newell et al. (2006) put forward the purely statistical approach called functional data 

analysis to fit and analyze the data. Compared to our new approach this is clearly more complex 
and, in addition, ignores to a large extend the underlying commonly accepted phenomenological 
ideas (i) to (iii). The statistical approach is unbiased, which, in turn, makes it difficult to provide 
answers to the straightforward questions posed by athletes and coaches. In other words, our 
new approach is guided by mathematical modeling as used in natural sciences, which is always 
based on model ideas, while that of Newell et al. is purely guided by statistics. 

 

Besides extracting points of as fixed lactate concentration, a number of further 
procedures to define “lactate thresholds” or to extract them from data measured in graded 
incremental exercise tests were suggested (Bentley et al. 2007, Stegmann et al. 1981, Orr et al. 
1982, Davis et al. 1983, Cheng et al. 1992, Baldari and Guidetti 2000). Some are based on visual 
inspection of the data; other are computerized. But all of them rely on ad hoc assumptions and 
their modeling suffers from the shortcomings discussed in this article. The data or the analytical 
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expressions obtained by fitting the data are not brought into dimensionless form prior to the 
definition of characteristic scales. 

Limitations 

The modification of test parameters (step duration, load increase,…) influences the lactate 
kinetics – and thus the lactate-power relationship – of graded incremental exercise tests (Bentley 
et al. 2007). This affects not only our new fitting form, but all modeling approaches of such tests. 
To compare lactate concentrations between and within athletes it is crucial to employ identical 
protocols or protocols that lead to similar lactate responses. Based on its underlying ideas of a 
specific lactate behavior, our approach is optimal for, yet limited to, test protocols with an 
increasing load. Other tests require different modeling approaches to reflect the basic ideas of 
the metabolism’s response to the load. As our new procedure mathematically incorporates the 
idea of a constant lactate concentration during the first power steps, it requires a low starting 
power of the test (in relation to an athlete’s performance level). This is common for most graded 
incremental exercise tests in sports science and commercial diagnostics of trained athletes. 
 

SUMMARY AND OUTLOOK 
In this paper we suggested a minimal model function to fit the measured blood lactate 
concentration data of graded incremental exercise tests. The novel approach strictly follows the 
principles of mathematical modeling in sciences, such as, a proper treatment of dimensions, an 
appropriate number of fitting parameters, and characteristic scales of the variable which appear 
naturally on the right-hand side of the equation defining the functional relation. The commonly 
accepted phenomenological ideas are properly reflected in the fitting function which only has 
three parameters: the rest lactate concentration, the onset of rise of the blood lactate 
concentration as well as its rate. All three can directly be used for diagnostics and the two power 
scales to define training regimes. This leads to a highly transparent and simple evaluation of 
graded incremental exercise tests. 
 

We are of course aware, that many commercial diagnostic laboratories do not only rely 
on the measured 𝑐La(𝑃) and a fitting procedure such as Eq. (1) to provide athletes and coaches 
with indicators for the ability to perform in competitions as well as with training regimes. They 
use in addition data from gas exchange (if available), simulation tools (Mader and Heck 1986, 
Hauser et al. 2014), and the insights gained from collecting thousands of 𝑐La(𝑃) data sets over 
the years (big data approaches). However, a faithful mathematical modeling, as we suggested it, 
is a basic ingredient of even these more elaborate approaches. 
 



 

 

   

                    14 

 

We here focused on cycling tests. Preliminary attempts to analyze running tests in the 
same way indicate that our novel approach can be equally useful for such.  
 

Finally, we would like to comment on the question if the performance metric (𝑐La
rest, 𝑃1, 𝑃2) 

obtained from the above analysis reflects the insights gained from improved measures such as, 
e.g., the power in the MLSS. To investigate this, one would have to study the correlations 
between measured values for the power in the MLSS and our characteristic power scales. This 
was done in the past for the traditional “lactate thresholds” (Heck et al. 1985, Lajoie et al. 2000, 
van Schuylenbergh et al. 2004, Beneke 1995, Jones and Doust 1998, Hauser et al. 2014) and 
requires as many data sets as possible. The bottleneck is the time-consuming precise 
determination of the power in the MLSS, which can only be obtained in a series of (at least) 30 
minutes constant load tests. Based on these studies it is commonly believed that the relation 
between the lactate concentration and the power measured in graded incremental exercise 
tests can be used to predict the power in the MLSS. Provided this is correct, a unique 
mathematical function of our three fitting parameters must exit, which provides a reliable 
estimate for the power in the MLSS. Determining this function remains to be a challenge for the 
future. 
 

We presented a new modeling approach for the measured blood lactate concentration 
during graded incremental exercise tests. The physiological background of our modeling 
parameters and their modification with appropriate training stimuli should be subject of further 
research. While most of the physiological processes remain in hiding, our approach may sharpen 
the limited view we have on what happens inside the human’s body. 
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