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ABSTRACT 

Exercise physiology and sport science have traditionally made use of the null hypothesis of no 

difference to make decisions about experimental interventions. This article aims to review 

current statistical approaches typically used by exercise physiologists and sport scientists for 

the design and analysis of experimental interventions and to highlight the importance of 

including equivalence and non-inferiority studies, which address different research questions 

than deciding whether two interventions work differently. Firstly, we briefly describe the most 

common approaches, along with their rationale, to investigate the effects of different 

interventions. We then discuss the main steps involved in the design and analysis of 

equivalence and non-inferiority studies, commonly performed in other research fields, with 

worked examples from exercise physiology and sport science scenarios. Finally, we provide 

recommendations to exercise physiologists and sport scientists who would like to apply the 

different approaches in future research. We hope this work will promote the correct use of 

equivalence and non-inferiority designs in exercise physiology and sport science whenever the 

research context, conditions, applications, researchers’ interests, or reasonable beliefs, justify 

these approaches. 

 

INTRODUCTION 

An often-overlooked aspect when designing and analysing interventional studies in 

exercise physiology and sport science concerns the type and direction of the research 

hypothesis(es) (Caldwell & Cheuvront, 2019). Most studies use the null hypothesis of no effect 

when making decisions about experimental interventions. That is, researchers usually examine 

whether there is a statistical difference between the experimental and the control group on 

one or more primary outcomes. However, other hypothesis tests may be more appropriate 

when researchers are interested in whether two interventions are similar in efficacy but 

substantially differ with respect to factors such as cost56 effectiveness, invasiveness, or 

administrative procedures (Hecksteden et al., 2018). The correct approach to designing and 

analysing interventional studies in exercise physiology and sport science continues to be 

extensively discussed in the literature (Caldwell & Cheuvront, 2019; Hecksteden et al., 2018; 

Hopkins et al., 1999; Mansournia & Altman, 2018). Recently, several researchers have 

recommended complementing the traditional null hypothesis with tests of equivalence and 

non-inferiority, which evaluate whether two interventions or conditions are similar or do not 

differ by more than a given amount (Aisbett et al., 2020; Caldwell & Cheuvront, 2019, Dixon et 
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al., 2018). In this article, we will review and expand the statistical toolset that can be used by 

sport and exercise scientists when designing and analysing interventional studies. We will refer 

to the best practices as developed in biomedical, social, and behavioural research since we 

recognise sufficient similarities with exercise physiology and sport science regarding the design 

of interventional studies. To increase understanding by exercise physiologists and sport 

scientists, we will also provide two worked examples from exercise physiology and sport 

science research that highlight how typical research designs and analyses conducted using 

traditional null hypothesis tests could be re-imagined using equivalence or non-inferiority tests. 

Moreover, we will provide theoretical and practical recommendations to exercise physiologists 

and sport scientists who would like to apply the different hypothesis tests in future research. 

 

INVESTIGATING STATISTICAL DIFFERENCES (SUPERIORITY) 

Unless otherwise specified, most interventional studies in exercise physiology and sport 

science have the implicit aim of determining if the efficacy of a given intervention is superior, or 

possibly inferior, to a control or reference intervention. In the most common study design, 

researchers randomise participants to either an experimental or a control group. The 

observed difference in group means after the intervention period (i.e., the effect size) is used 

to perform a hypothesis test examining a difference in population means. Following traditional 

null hypothesis testing, a difference between interventions can be concluded, while controlling 

the Type I error rate, whenever the p-value calculated from a particular test statistic indicates 

the observed or more extreme data are surprising (i.e., the p-value is less than or equal to the 

significance level, or α), assuming there is no difference between the interventions and all other 

modelling assumptions are met. Alternatively, researchers can choose a confidence interval (CI) 

approach. These two approaches lead to identical decisions in a hypothesis test, as p is less 

than or equal to .05 when a 95% CI excludes the value that is tested against (i.e., zero) (Figure 

1a – upper example). 

Regardless of the inferential approach employed, investigating differences between 

interventions without taking into consideration any meaningful value does not permit informed 

decisions regarding the practical significance of the outcome(s). From an exercise physiology 

and sport science perspective, testing the superiority of the experimental intervention against 

an effect size that is exactly zero may increase the risk of endorsing interventions, such as 

exercise training protocols or nutritional strategies, that are expensive, demanding, or time-

consuming, but have no practical benefit – that is, they do not provide a noticeable advantage 
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over an existing benchmark. A more informative criterion for assessing superiority consists of 

determining whether the mean difference, after having considered its uncertainty, is larger 

than the smallest effect size of interest (SESOI), which should be defined a priori and justified 

on sound grounds (Lakens, 2021) (Figure 1a – middle example). This approach leads to the 

same conclusions as testing the shifted (non-zero) null hypothesis (Victor, 1987) or a ‘minimum-

effect test’, whose null hypothesis assumes that the mean difference between the 

interventions falls within a range of practically irrelevant values (Murphy et al., 2014). 

Although the definition of SESOI is self-explanatory, exercise physiologists and sport 

scientists should be aware that several different methods exist to determine this value, 

depending on data and applications (Cook et al., 2018; Lakens, 2021). The ‘anchor-based’ 

method, which uses the researcher’s judgment or participant’s experience to define the SESOI, 

provides a common approach to interpret study outcomes in clinical research. The expert 

panel approach, also known as the Delphi method, is an alternative (although not necessarily 

straightforward) way to define the SESOI based on expert consensus. Previous studies may 

give an indication of the expected effect sizes. However, researchers should be aware that due 

to publication bias published effect sizes often overestimate the true effect of interventions, 

and that the distribution of effect sizes observed in literature does not necessarily inform 

about the SESOI, whose determination needs careful consideration and justification. Cohen’s 

classical benchmarks (Cohen, 1988), developed for the social and behavioural sciences, are not 

recommended as guidance on identifying the SESOI in exercise physiology and sport science 

since an effect size of interest is context-dependent and should be decided based on a 

substantive research question (Caldwell & Vigotsky, 2020). Although some authors (Hopkins et 

al., 1999; Rhea, 2004) have developed scales for assessing the magnitude of effect sizes in 

some specific areas of exercise physiology and sport science, researchers should be aware 

that determining the SESOI is not a straightforward process, and it may be challenging in many 

sporting and physiological contexts. 

Interpreting inconclusive evidence for superiority, or interpreting failure to reject the 

null hypothesis, as evidence for the equality of two interventions, is a common misconception 

(Altman & Bland, 1995). A statistically non-significant result (e.g., p > .05) cannot be interpreted 

as the absence of an effect. To be able to conclude an effect is absent, one needs to specify 

the alternative hypothesis explicitly, and perform a test that statistically rejects the alternative 

hypothesis. The traditional null hypothesis testing only rejects the null hypothesis, and, 

especially in small studies, a statistically non-significant result is not informative about whether 

the alternative hypothesis can be rejected. Exercise physiologists and sport scientists must 
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keep in mind that no correct conclusions other than superiority or inferiority can be drawn 

using traditional hypothesis tests. Because a well-designed study is informative about both the 

presence and absence of an effect of interest, researchers should consider complementing 

traditional null hypothesis tests with equivalence and non-inferiority tests. 

 

INVESTIGATING EQUIVALENCE AND NON-INFERIORITY 

Proving that two interventions or conditions are perfectly equal in efficacy is impossible  

from a statistical standpoint. What is possible in a statistical test is to reject the presence of a 

difference that is large enough to be practically relevant, defined by the upper (∆U) and lower 

(∆L) equivalence margins (Hodges & Lehmann, 1954; Lakens, 2017). Although various 

approaches exist to perform an equivalence test (Meyners, 2012), equivalence is typically 

investigated via the ‘two one-sided tests’ (TOST) procedure, which is a simple variation of a 

traditional hypothesis test (Schuirmann, 1987). In this procedure, the null and alternative 

hypotheses within each set are reversed and data are tested against ∆U and ∆L in two one-

sided tests, each carried out at the α level (conventionally set to .05). Equivalence can be 

concluded at the α level only if both tests statistically reject the presence of effects equal to or 

larger than the equivalence margins. It is common to report only the greater p-value of the two 

one-sided tests when testing for equivalence since this p-value is also the one for the overall 

equivalence test (Berger & Hsu, 1996). The TOST procedure is operationally identical to 

concluding equivalence whenever the two-sided 100(1 − 2α)% CI for the mean difference 

between the interventions lies entirely within the equivalence margins (Schuirmann, 1987; 

Westlake, 1981) (Figure 1b – middle example). 

Equivalence studies are very common in clinical research, in which new drug 

formulations or generic versions of the product are often compared to brand-name 

pharmaceuticals to prove bioequivalence (Senn, 2007). Moreover, this design has attracted 

growing interest in the social and behavioural sciences for its utility in evaluating replication 

results and corroborating risky predictions (Lakens, 2017; Lakens et al., 2018a). The latter 

application of equivalence hypotheses may also make them valuable for exercise physiology 

and sport science, which suffers from a shortage of replication experiments (Halperin et al., 

2018). Nevertheless, until recently, investigating equivalence did not appear to be a common 

practice among exercise physiologists and sport scientists, who have so far restricted the use 

of equivalence tests mostly to measurement agreement research as an alternative or 

complementary approach to the Bland–Altman method (Dixon et al., 2018). 
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If there is an interest, along with a solid rationale, to investigate whether a given 

intervention is not unacceptably worse than a standard one with no restriction for its maximal 

efficacy, researchers can opt for a non-inferiority study. This is usually the case when the new 

intervention has better cost-effectiveness, is safer, is easier to implement, or is less demanding 

than the standard intervention. Non-inferiority studies can also be useful to evaluate 

modifications to well-established interventions and extend applicability to special populations. 

These research questions may also apply to exercise physiology and sport science. In non-

inferiority testing, the non-zero null hypothesis is shifted towards the negative side of the nil 

(zero) effect, favouring the standard. It follows that, when applying the CI approach, non-

inferiority is conventionally concluded when the lower margin of the two-sided 95% CI for the 

mean difference between the interventions lies above the non-inferiority margin (∆NI) (Senn, 

2007) (Figure 1c – middle and lower examples). 

 

**** Figure 1 near here **** 

 

Compared with classical parallel-group studies, the design and analysis of non-

inferiority studies face several additional methodological challenges, which include the 

suitability of the reference intervention, the determination of the ∆NI, and sample size 

estimation. We will briefly review and discuss the main aspects of each of these challenges in 

the following sections. Since some of these issues also apply to equivalence studies, we will 

expand those parts where relevant. 

 

 Suitability of the reference intervention 

From a clinical perspective, the non-inferiority of an experimental intervention can be 

firmly concluded only when compared to a reference intervention of well-established efficacy 

(Committee for Medicinal Products for Human Use, 2005; Committee for Proprietary Medicinal 

Products, 2000; International Conference on Harmonisation of Technical Requirements for 

Registration of Pharmaceuticals for Human Use, 1998, 2001). The design characteristics of the 

reference intervention (population selection, intervention protocol, primary outcome 

measures, etc.) should be replicated as closely as possible to reduce the risk of violating the 

‘constancy assumption’, which requires consistency between the effect of the reference group 

in the new study and the historical effect estimated from the literature. Violating this 

assumption may increase the chances of incorrectly concluding non-inferiority for inefficacious 

or even harmful interventions. When considering the extreme paucity of replication 
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experiments (Halperin et al., 2018), along with the small sample sizes characterising exercise 

physiology and sport science research (Speed & Andersen, 2000), it becomes self-evident that 

satisfying the prerequisite for the choice of the comparator arm represents the first critical 

issue to be addressed by exercise physiologists and sport scientists interested in conducting 

non-inferiority studies. Even when a discrete amount of evidence is available, the large 

sampling variability related to studies with small sample sizes (e.g., 8−16 participants per 

group) makes it difficult to identify an intervention whose efficacy had been consistently 

demonstrated across the literature. Moreover, questionable practices such as publication bias 

and p-hacking (i.e., the manipulation of data collection and analysis to obtain statistically 

significant results) tend to overestimate the intervention effect in meta-analyses and thus 

impact the ‘assay sensitivity’ of the new investigation, which is the ability of a study to 

distinguish between an efficacious and less efficacious intervention. Several graphical and 

statistical approaches seeking to quantify or adjust for publication bias in meta-analyses have 

been developed (Carter et al., 2019; Simonsohn et al., 2014). However, most of these methods 

lack large-scale empirical validation, do not work well when there are few studies or large 

heterogeneity in effect sizes, and their performance and efficiency are often highly sensitive to 

deviations from the model assumptions. Note that the problem of publication bias and p-

hacking would be dramatically reduced if pre-registration or Registered Reports Protocols 

became common practice in exercise physiology and sport science (Caldwell et al., 2020; 

Lakens & Evers, 2014). These aspects highlight the importance of gaining reliable knowledge 

about effect sizes reported in the literature before deciding whether to adopt a non-inferiority 

design. This also emphasises the need for more collaborations across exercise physiology and 

sport science departments to design and conduct studies with high accuracy, and the need for 

more transparent research practices, as stressed by several scientists in a recent call (Caldwell 

et al., 2020). 

 

Determination of non-inferiority and equivalence margin(s) 

Once the reference intervention has been chosen, the next step in designing non-

inferiority studies concerns the choice for the margin. An appropriate ∆NI should be based on a 

combination of statistical reasoning and domain expertise (Committee for Medicinal Products 

for Human Use, 2005; Committee for Proprietary Medicinal Products, 2000; International 

Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals 

for Human Use, 1998, 2001). The general principle states that the ∆NI should not be larger than 



 

   

                    7 

 

the smallest effect the reference intervention would be reliably expected to have compared 

with a placebo. Despite more sophisticated approaches being proposed (Snapinn & Jiang, 

2008a; Yu et al., 2019), the ‘point-estimate method’ and the ‘fixed-margin method’ are the most 

widely used for specifying the margin in clinical research (Althunian et al., 2017). In the point-

estimate method, the ∆NI is based upon the pooled effect estimate of the active comparator 

from a meta-analysis without considering the uncertainty in the estimate (∆NI−P). In the fixed 

margin method, the two-sided 95% CI of the meta-analytic effect size estimate that is closest to 

the null effect is used to determine the non-inferiority ∆ (∆NI−C) (Figure 2). This makes the latter 

approach more conservative than the former, especially when − as is often the case in exercise 

physiology and sport science − the precision of the individual study estimates is generally low, 

and the total number of studies is small. A third common approach to analyse non-inferiority 

trials applies the same criteria as the fixed-margin method to determine ∆NI but also adjusts 

the CI derived from the non-inferiority trial to account for the sampling variability in the effect 

of the active comparator against placebo (Althunian et al., 2017; Holmgren, 1999). This 

‘synthesis method’ is slightly more efficient than the fixed-margin method but it is also more 

sensitive to a violation in the assumptions of assay sensitivity and constancy (Schumi & Wittes, 

2011). 

Regardless of the method used to determine the ∆NI, several factors such as the 

importance of the outcome measure, clinical or practical considerations in terms of cost-

effectiveness of the active comparator, model misspecification, or violation of the constancy 

assumption can make putative superiority over placebo alone an insufficient criterion to 

establish non-inferiority and additional assurance may be needed. In this respect, pre-

specifying a percentage of the historical effect of the reference intervention that must be 

retained by the new one (usually 50%), the so-called ‘preserved fraction’ (λ), has become 

common practice in non-inferiority clinical trials (Figure 2) (Snapinn, 2004; Snapinn & Jiang, 

2008b). Despite its widespread use in clinical research, it is important to note that there is no 

consensus as to whether setting the ∆NI by including a preserved fraction represents an 

effective discounting approach (Snapinn, 2004; Snapinn & Jiang, 2008b). 

 

**** Figure 2 near here **** 

 

Whether or not the stringency in the criteria to determine non-inferiority should be 

further adjusted according to the degree of magnitude of the historical effect of the 

comparator is a matter of debate among clinical researchers (Schumi & Wittes, 2011). Although 



 

   

                    8 

 

the choice of the preserved fraction would have negligible implications on the study 

conclusions for small to moderate effects, considerable discrepancies may take place for 

largely efficacious standard interventions. In these cases, determining the fraction without any 

adjustment for the historical effect of the comparator may rule out a large part of the effect, 

eventually leading to the paradoxical situation in which non-inferiority is established although 

the experimental intervention is inferior compared with the standard (Althunian et al., 2018; 

Schumi & Wittes, 2011). A maximum margin criterion that prevents clinically important 

differences between the standard and the new intervention may be applied in these situations 

(Schumi & Wittes, 2011). 

Whereas (bio)equivalence margins in clinical trials are often set by regulatory authorities 

(Committee for Medicinal Products for Human Use, 2010), several approaches to justify the 

equivalence range have been proposed in the social and behavioural sciences (Lakens, 2017, 

2021; Lakens et al., 2018a). Among them, it is worth mentioning a method based on the 

maximum sample size researchers are willing to collect given the available resources. This 

approach may be used for those situations, also common in exercise physiology and sport 

science, in which there are time, money, or population size constraints that limit the effect size 

that can be properly investigated, especially in novel lines of research. Under such conditions, 

determining ∆U and ∆L based on feasibility may be justified, and may represent a starting point 

for future studies aiming for a more precise assessment, if researchers see no way to specify 

the SESOI based on theoretical predictions or practical concerns. 

 

Sample size planning for non-inferiority and equivalence studies 

In superiority studies, sample size estimation conventionally aims to achieve the desired 

level of statistical power (typically 80% or 90%) against an alternative hypothesis, expressed in 

terms of a target difference between interventions in the primary outcome(s), at a given α 

(Cook et al., 2018). Since superiority and non-inferiority are logically opposite tests, sample size 

estimation for non-inferiority studies follows the same principles as for superiority studies. 

However, because the ∆NI is usually smaller than the superiority difference, a larger sample size 

is often needed. Due to the nature of the TOST procedure, in which each one-sided test must 

statistically reject effects as small as the equivalence margins to prove efficacy, the power of an 

equivalence test equals the power to detect the smallest margin. In the light of the above, 

researchers should be aware that the adequate sample size for equivalence and non-

inferiority tests may be prohibitively large for very small effects. For this reason, researchers 

should carefully consider the target or expected effect size, along with the margin(s), when 
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planning equivalence and non-inferiority studies. Whenever there is substantial uncertainty 

about the mean difference between the interventions, or when it is plausible that the true 

effect is larger or smaller than the margin the test was powered to detect, researchers may opt 

for sequential analysis (Lakens et al., 2021). This efficient approach allows terminating data 

collection while controlling the Type I error rate as soon as there is convincing evidence to 

decide on the presence, or absence, of an effect. 

Julious (2004) provided detailed overviews for superiority, equivalence, and non-

inferiority designs. Moreover, there are several spreadsheets (Lakens, 2017), statistical 

packages (Castelloe & Watts, 2015; Lakens, 2017), and web-based applications (Magnusson, 

2016) that exercise physiologists and sport scientists can use to estimate sample sizes for 

equivalence and non-inferiority tests. 

 

RE-IMAGING INTERVENTIONAL STUDIES USING EQUIVALENCE AND 

NON-INFERIORITY TESTS 

We provide two worked examples from exercise physiology and sport science research 

comparing sprint interval training (SIT) against moderate-intensity continuous training (MICT) to 

show how the statistical approaches discussed above can be applied to real-world data. We 

have included all the formulas used in these examples in an accompanying spreadsheet 

(openly available − along with the SAS and R code used for validation − at 

https://osf.io/ndqhe/), which can also be used to perform calculations based on summary 

statistics or complete datasets. 

Example 1 - use of equivalence hypothesis: In a comprehensive study investigating the 

effects of four weeks of SIT (60 min per week) or MICT (300 min per week) on cardiorespiratory, 

musculoskeletal, and metabolic characteristics in obese men, Cocks et al. (2016) concluded 

that SIT and MICT have equal benefits on aerobic capacity, as no statistical difference was 

observed between the two groups with respect to the changes in maximal oxygen uptake 

(VO2max). As previously stated, the absence of an effect cannot be concluded based on p > .05 

from the traditional null-hypothesis test. However, we wanted to determine whether the 

authors’ conclusions concerning the absence of an effect between the groups can indeed be 

inferred from the observed data. Unfortunately, the authors did not report the nominal p-value 

for the time ‧ group interaction in the 2 ‧ 2 mixed analysis of variance (ANOVA) model, or any 

other necessary information about the differences in the changes in VO2max between the 

groups. Since the authors did not make the raw data available along with the manuscript, we 
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cannot perform a proper covariate-adjusted analysis; nonetheless, we can still appraise the 

between-group differences by extracting summary data from the paper. Specifically, we can 

estimate the standard deviation (SD) of the change score within each group by imputing 

different plausible correlation coefficients (r) between pre‐ and post‐training scores, construct 

the two-sided 90% CI for the mean difference between the groups using the different SD 

estimates, and then perform a sensitivity analysis on the results (Higgins et al., 2019). For r = .5, 

the SIT – MICT 90% CI around the observed mean difference of −2.3 mL · kg–1 · min–1 ranges 

from −7.1 to 2.5 mL · kg–1 · min–1. The SDs of the change scores decrease at greater values of r, 

and the 90% CI narrows by ~ 17% (ranging from −6.3 to 1.7 mL · kg–1 · min–1) when r = .7. 

However, even in the optimistic scenario in which r = .9, the 90% CI for the between-group 

difference ranges from −5.2 to 0.6 mL · kg–1 · min–1, which indicates a large imprecision of the 

parameter estimate. Since a difference in VO2max as small as 3.5 mL · kg–1 · min–1 has been 

associated with a 10–25% risk reduction in mortality (Ross et al., 2016), the mean difference 

between SIT and MICT that was observed by Cocks and colleagues of −2.3 mL · kg–1· min–1 is 

hardly trivial after having considered its uncertainty. 

If we wish, we can also formally test for equivalence against symmetric margins ∆U and 

∆L of 3.5 mL · kg–1 · min–1 by using the TOST procedure, which is very similar to the Student’s t-

test when assuming equal population variances. This equivalence test examines the question 

of whether we can reject the presence of an effect as large, or larger than 3.5 mL · kg–1· min–1, 

which we know is large enough to have practical benefits. 

For ∆U 

 

where tU is the test statistic for the one-sided t-test on ∆U, M1, and M2 are the means of the SIT 

and MICT group respectively, n1 and n2 are the sample size in each group, and SDP is the 

pooled SD: 

 

where SD1 and SD2 are the SD of the SIT and MICT group, respectively. 

In this example, 

 

𝑡𝑈 =
𝑀1 − 𝑀2 −  ∆𝑈

𝑆𝐷𝑃   
1
𝑛1

+
1
𝑛2

 

 1 

𝑆𝐷𝑃 =  
 𝑛1 − 1  𝑆𝐷1

2 +  𝑛2 − 1  𝑆𝐷2
2

𝑛1 +  𝑛2  − 2
 1 
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Therefore 

 

which correspond to a p-value lower than 0.1 from the t-distribution with 14 degrees of 

freedom (df) for a left-sided test. 

For ∆L 

 

being tL the test statistic for the one-sided t-test on ∆L. 

In this example, 

 

which corresponds to a p-value of .24 from the t-distribution with 14 df for a right-sided test. 

Since the one-sided test with the greater p-value is not statistically significant [t(14) = 

0.7, p = .24] based on an α = .05, we cannot reject differences larger than 3.5 mL · kg–1 · min–1. 

Therefore, we cannot conclude that the difference between the two interventions is too small 

to matter (given a SESOI of 3.5 mL · kg–1 · min–1) with respect to the changes in VO2max. 

It is important to note that, unlike in traditional hypothesis tests where effects that are 

substantially greater than expected can compensate small sample sizes, underpowered tests 

inevitably increase the risk of inconclusive results in equivalence studies. If we want to estimate 

how many individuals Cocks and colleagues should have recruited and tested to reach an 

adequate level of power (e.g., 80%) for the TOST procedure at the desired α level (e.g., .05), the 

most informative approach is to perform an a priori power analysis. For the sake of simplicity in 

calculations, we can define equivalence margins that are symmetric around a zero difference in 

population means (μ1 – μ2). Moreover, we assume that the estimated pooled SD represents the 

true SD for the two populations (σ). We can then rely on the normal approximation of the 

𝑆𝐷𝑃 =  
 8 − 1  2.12 +  8 − 1  4.22

8 +  8 − 2
= 3.3 1 

𝑡𝑈 =
2.4 − 4.7 − 3.5

3.3  
1
8

+
1
8

 

=  −3.5 1 

𝑡𝐿 =
𝑀1 − 𝑀2 −  ∆𝐿

𝑆𝐷𝑃   
1
𝑛1

+
1
𝑛2

 

 1 

𝑡𝐿 =
2.4 − 4.7 − (−3.5)

3.3  
1
8 +

1
8 

 = 0.7 1 
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power equation for equivalence tests and estimate the sample size (n) required in each group 

to achieve the desired power against ∆U and ∆L as (Julious, 2004): 

 

and 

 

where r is the allocation ratio (n1 / n2), and zα and zβ/2 are the standardized normal deviates 

corresponding to the levels of α and β / 2 respectively (with 1 – β that represents the desired 

power). With an equal allocation (1:1 ratio), the equations 5 and 6 are reduced to: 

 

In this example, 

 

which indicates that the minimum sample size that Cocks and colleagues should have recruited 

to have a properly powered test for equivalence was double the n = 8 per group that was 

collected in that study. Note that this also represents an optimistic estimation: any situation in 

which some inequality between interventions can be expected (i.e., the expected difference is 

not 0), would increase the required sample size, all else being equal. 

Example 2 - use of non-inferiority hypothesis: Gillen et al. (2016) investigated whether 30 

min per week of SIT was a time-efficient exercise strategy to improve indices of 

cardiometabolic health in healthy men to the same extent as 150 min per week of MICT. 

Although the time ‧ group interaction in the 3 ‧ 2 mixed ANOVA model was significant for 

VO2max, the authors were unable to reject a nil effect and conclude statistical differences 

between the groups after 12 weeks of training intervention. The exact p-value and the 95% CI 

for the between-group comparison were not reported; however, since the authors reported 

the 95% CI for the change scores of the two groups, as well as their sample sizes, we can 

obtain the information we need using statistical first principles (Higgins et al., 2019). The 

calculations reveal a p-value of .94 and a 95% CI ranging from −2.9 to 2.7 mL · kg–1 · min–1 

constructed around a mean difference between the interventions of −0.1 mL · kg–1 · min–1. 

𝑛𝑈  =   
 𝑟 + 1  𝜎2 (𝑧𝛼 +  𝑧𝛽/2)2

𝑟 |∆𝑈|2
 1 

𝑛𝐿  =   
 𝑟 + 1  𝜎2 (𝑧𝛼 +  𝑧𝛽/2)2

𝑟 |∆𝐿|2
 1 

𝑛𝑈 =  𝑛𝐿  =  
2 𝜎2 (𝑧𝛼 +  𝑧𝛽/2)2

|∆𝑈 = ∆𝐿|2
 1 

𝑛 =  
2 × 3.32 (1.6 + 1.3)2

3.52
=  16 1 
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From a superiority standpoint, the study is inconclusive for what concerns the ability of SIT to 

improve the VO2max compared with MICT. Given the rationale supporting the study, a more 

informative research question might be whether the improvements in the VO2max induced by 

SIT are not substantially lower than those induced by a standard MICT program. To answer 

such a question, first, we must define the ∆NI that we will use to test our hypothesis. The net 

effect of MICT against no-exercise control on VO2max has been estimated to be 4.9 mL · kg–1 · 

min–1 with a 95% CI ranging from 3.5 to 6.3 mL · kg–1 · min–1 (Milanović et al., 2015). If we 

assume the MICT protocol prescribed by Gillen and colleagues is sufficiently representative of 

the ‘typical’ MICT from which the average intervention effect has been estimated and we prefer 

a conservative approach to the margin determination without further need for a preserved 

fraction, we can rely on the fixed-margin method and test the SIT – MICT difference against a 

∆NI of −3.5 mL · kg–1 · min–1. The calculation of the t-statistic for the non-inferiority test is 

identical to those for the one-sided test against the ∆L in the TOST procedure. 

 

being tNI the test statistic for the non-inferiority test. 

In this example, 

 

which corresponds to a p-value of .02 from the t-distribution with 17 df for a two-sided test. If 

all the assumptions underlying the statistical model are correct, the non-inferiority test is 

significant [t(17) = 2.6, p = .02] for an α = .05. We can then reject a loss in the efficacy of SIT 

compared with MICT larger than 3.5 mL · kg–1 · min–1 and conclude that SIT is non-inferior to 

MICT for what concerns increase in VO2max. Unsurprisingly, given the close relationship 

between p-values and CIs, the CI approach leads to the same conclusion as the formal non-

inferiority test since the lower 95% confidence limit of the SIT – MICT difference (i.e., −2.9 mL · 

kg–1 · min–1) is larger than the ∆NI (i.e., −3.5 mL · kg–1 · min–1), which indicates that the entire set 

of plausible values for the population parameter contained in the 95% CI is consistent with the 

non-inferiority of SIT against MICT. 

𝑡𝑁𝐼 =
𝑀1 − 𝑀2 −  ∆𝑁𝐼

𝑆𝐷𝑃   
1
𝑛1

+
1
𝑛2

 

 1 

𝑡𝑁𝐼 =
5.9 − 6 − (−3.5)

2.9  
1
9 +

1
10 

= 2.6 1 
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SWITCHING BETWEEN HYPOTHESES 

Switching the objective of a clinical trial from non-inferiority to superiority or vice versa 

may be possible at the analysis stage of the study; however, the change is not always 

straightforward, and several points need to be considered (Committee for Proprietary 

Medicinal Products, 2000; Schumi & Wittes, 2011). From a statistical perspective, testing first 

for non-inferiority and then for superiority, does not require a statistical penalty for multiple 

testing, since the closed testing procedure properly controls the overall Type I error rate of the 

two tests. When the ∆NI has been prespecified, and the trial design and conduct have been 

strict, it is also possible to test for non-inferiority after a superiority test that does not show any 

statistical benefit. Despite being statistically appropriate, researchers should be warned that 

this testing order could result in paradoxical outcomes (i.e., a new intervention that is both 

non-inferior and inferior to the standard), especially for largely efficacious standard 

interventions. As stated previously, considering the SESOI as a criterion for the largest 

acceptable ∆NI may help to minimise this risk. 

Departing from the initial aim of establishing equivalence does not appear to be a 

common practice in clinical research (Senn, 2007). Moreover, the greater value of α usually 

adopted in such investigations would lead to an inflated Type I error rate if the researcher 

attempted to draw straightforward conclusions on superiority or non-inferiority. Nonetheless, 

various comprehensive methods to investigate equivalence along with superiority have been 

recently presented in the social and behavioural sciences literature (Lakens, 2017; Lakens et 

al., 2018a) (Figure 3). Exercise physiologists and exercise scientists interested in conducting 

equivalence and non-inferiority studies may benefit from exploring these approaches. 

It is also worth mentioning the possibility to test against both the nil effect and the 

SESOI in all those situations in which the researcher, after having concluded that the effect is 

non-zero, is interested in rejecting effects too small to be relevant. 

 

**** Figure 3 near here **** 

 

LIMITATIONS AND ADDITIONAL CONSIDERATIONS 

In the present review, we have detailed how to expand the statistical toolset used to 

design and analyse interventional studies in exercise physiology and sport science. To achieve 

clarity and brevity, we focused on parallel-group studies with means and variances determined 

from pairs of independent random samples of normally distributed observations. Readers 

must be aware that the analytical approach to other research designs or variables with 

different probability distributions may slightly differ from the one presented herein. 
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When discussing the acceptable standard of evidence, we maintained consistency with 

the defaults commonly used in biomedical, social, and behavioural research. Nonetheless, the 

optimal error rates should be decided based on a cost-benefit analysis, depending on the 

context, goals, and resources (Lakens et al., 2018b). 

It is worth keeping in mind that frequentist estimation (i.e., CI) and hypothesis testing do 

not represent the only way to draw inferences from data. Among the alternative or 

complementary methods, Bayesian statistics or Likelihood approaches can also be used to 

answer the questions that might be of interest to researchers (Lakens et al., 2020; van 

Ravenzwaaij et al., 2019; Wang & Blume, 2011). These approaches have the main advantage of 

allowing researchers to make probabilistic statements about the (random) parameter of 

interest. Whenever prior data are available from other studies, Bayesian statistics also allows 

incorporating such information in the analysis to update the (posterior) probability of the 

parameter and provide the relative weight of evidence for the alternative hypothesis compared 

with the null. Although presenting such methods to design and analyse superiority, 

equivalence, and non-inferiority studies were beyond the scope of this manuscript, exercise 

physiologists and sport scientists should consider their use within the context of statistical 

inference when deciding which method(s) is the most appropriate for their research 

purpose(s). 

 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

Exercise physiology and sport science have largely relied on the traditional null 

hypothesis test to make informed decisions in interventional studies. This approach, combined 

with underpowered tests, has often led to the misinterpretation of a non-significant test result 

as support for the equivalence between interventions. While it should be clear at this point 

that this is a statistical misconception, exercise physiologists and exercise scientists should 

also understand that research should not be limited to investigating whether one intervention 

is superior or inferior to another. Equivalence and non-inferiority designs may be adopted 

whenever the research context, conditions, applications, researchers’ interests, or reasonable 

beliefs justify them. Although these research hypotheses require additional methodological 

considerations than superiority hypotheses to be properly investigated, they may also better 

answer the empirical question researchers are interested in. Equivalence and non-inferiority 

studies may help exercise physiologists and exercise scientists to answer questions that the 

traditional null hypothesis cannot address. Figure 4 provides a flowchart to facilitate the 

decision-making process about the most informative study design. 

 

**** Figure 4 near here **** 
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Figures 
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Figure 1 Testing for superiority, equivalence, and non-inferiority within a typical parallel-group 

design. The error bars indicate the 95% confidence interval (CI) in relation to the traditional 

null-hypothesis test (Figure 1a) and non-inferiority test (Figure 1c) and the 90% CI in relation to 

the two one-sided test procedure (Figure 1b). The shaded areas indicate the rejection region 

for each hypothesis test. Figure 1a The superiority of the experimental group (EXP) compared 

with the control (CON) can be concluded in both the upper and middle scenarios. However, it 

is possible to reject effects that are smaller than the smallest effect of interest (SESOI) only in 

the middle scenario. Superiority cannot be concluded in the lower scenario, since the 95% CI 

extends beyond zero. Figure 1b It is possible to conclude equivalence between the 

interventions only in the middle example since in the upper and lower example the 90% CI 

spans beyond the lower (∆L) or the upper (∆U) equivalence margin. Figure 1c The observed data 

are identical to Figure 1b. Despite the wider CI, the absence of an upper margin allows 

concluding non-inferiority in both the middle and lower scenario. 
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Figure 2 The two-step process commonly employed to determine the non-inferiority margin 

(∆NI) in clinical research. A pooled effect estimate is calculated from a meta-analysis of 

hypothetical studies and the margin is determined using either the point estimate (point-

estimate method; ∆NI−P) or the lower 95% confidence limit (fixed-margin method; ∆NI−C) of the 

effect size. The chosen margin (∆NI−C in the example) is then multiplied by a pre-specified factor 

(λ; usually 50%) to preserve a fraction of the active-control effect (shaded area). 
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Figure 3 Testing for both equivalence and superiority. The thin error bars indicate the 95% 

confidence interval (CI) in relation to the traditional null-hypothesis test, whereas the thick 

error bars indicate the 90% CI in relation to the two one-sided tests procedure. The solid 

vertical lines indicate the traditional null hypothesis, whereas the shaded area indicates the 

equivalence region. Conclusions for hypothesis tests are reported next to each example. 
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Figure 4 Processes of decision making for selecting the different hypothesis tests based on the 

research question that is being asked. 
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