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ABSTRACT 
Bayesian data analysis (BDA) is method of statistical inference that make use of the probability 
for quantify uncertainty in inferences based on statistical data analysis. Along the manuscript 
different concepts are addressed to those sport scientists that want to start to use BDA: the 
Bayes ‘rule, hierarchical modeling, Markov Chain Monte Carlo techniques, predictive modeling, 
hypothesis testing and Bayesian workflow. Finally, an applied example is performed to help to 
apply of the previous concepts form a practical point of view and to report results. 
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INTRODUCTION 
Bayesian data analysis (BDA) is already a well-established method of statistical inference 

in many different disciplines like psychology, ecology, economy or health science [1–4]. Briefly, 
BDA make use of the probability for quantify uncertainty in inferences based on statistical data 
analysis [5]. This approach has some advantages over the traditional methods (also known as 
frequentist statistics) like the incorporation of prior knowledge to the statistical model via prior 
distribution, the result obtained is only based on the specific data under consideration, 
regardless of model complexity the final estimation is always a posterior probability distribution 
not depend on the stopping or testing intentions of the analyst and the straightforward 
interpretation of results [6–8].  

Although the use of BDA in sport analytics has increased substantially in the last years 
[9], it has been argued recently that the current statistical practices in sport science are based 
on the null hypothesis significant testing under the frequentist approach and that this approach 
is flawless so sport scientists should shift towards alternative statistical methods like Bayesian 
statistics [10]. Nevertheless, the major drawback is that most current sport scientists are not 
trained in BDA. 

Precisely, one of these studies aimed to introduce to sport scientists the Bayesian 
inference as a method of estimation in small sample size and small effects studies [11]. However, 
an introduction to BDA should have focused more in all the steps of a proper Bayesian workflow: 
First, the construction of informative priors when dealing with small sample size; Second, 
mathematical formulation of the model connecting it with the computer code; Third, model 
checking (i.e. prior and posterior predictive checking); and fourth, readers would have more 
benefits if every step of the analysis is presented with the computer code that executed it. 
Many different software packages have been developed in recent years for Bayesian modeling 
[12]. Of all of them, the R package brms gather some characteristics that make it an ideal starting 
point to learn BDA: is user-friendly; models are specified using lme4-like formula syntax; It can 
be used to fit from single-level linear regression to multivariate or non-linear multilevel models; 
It uses the probabilistic programming language Stan to fit the models; and it has a large and 
growing user community [13,14]. 

Therefore, the main aim of this paper is to provide a practical introduction for those sport 
scientists who want to start to apply BDA and especially to those who usually have to deal with 
small sample size. This paper will be structured in two main sections: 1) a brief introduction to 
BDA fundamentals and 2) a detailed description of the Bayesian workflow using a working 
example. Throughout this paper it is only assumed that the reader is familiar with the R 
programming language for data analysis. 
Fundamentals of BDA 
 
Bayes ‘rule and probability distributions 
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BDA consists in formulate a full probability model to make conclusions about a vector of 
parameters (θ) conditionally on the outcome variable (y), predictors (x) and the information we 
know a priori about these parameters (pθ). These conclusions are expressed in terms of 
probability statements and they are calculated via the Bayes’ rule. For regression models the 
Bayes’ rule is expressed as: 
 

p(θ|y, x) ∝ p(y| θ, x) p(θ|x), 
 
where p(y| θ, x) is the likelihood function as it described the generative process of the outcome 
y given the parameters θ and the predictors x. Usually, researchers choose one of the member 
of the exponential family to describe the likelihood of the outcome. Sport scientists may be 
familiar with some of the members of this family like the normal distribution to describe a 
continuous outcome in linear regression, the binomial distribution for a binary outcome or the 
Poisson distribution for count outcome in generalized linear regression.  

p(θ|x) represents the prior distribution and it contains all the information we have about 
the parameters θ from previous studies. Generally, three different classes of prior distributions 
can be distinguished related the amount of (un)certainty they incorporate to the model. Non-
informative priors (also known as vague prior) have been used commonly on parameters where 
the researcher has no knowledge about its possible values. This class of prior can be found easily 
in the literature when performing BDA with software like BUGS or JAGS [15]. However, they 
should be replaced by a more informative prior to improves inferences due to theorical and 
computational reasons. Weakly informative priors encoded information to restrict the plausible 
range of values of a specific parameter but still leave a wide range of values to be cover [16]. 
This class of prior distribution has been recently proposed as default prior when there is no 
information about a parameter of the model. Lastly, a prior is considered to be informative when 
a researcher includes all the available information in a prior distribution restricting considerably 
the parameter space. Prior distributions play a key role in BDA when dealing with small sample 
size due to we can increase the precision of the estimated model parameters by excluding values 
that are not plausible through the use of informative priors [17]. 

p(θ|y, x) is the posterior probability distribution and it contains all the information about 
the model parameters after multiplying the likelihood function and the prior distribution. It is 
important to note that the posterior distribution is a compromise between the data we have at 
hand and the prior information. This means that with a small sample size the result obtained in 
the posterior distribution will be mainly determined by the prior distribution. 

One of the key aspects of BDA is to think that we are creating a generative model from 
which we can simulate new data. This generative model can let us to make predictive inference 
about data that we haven´t observed yet. The probability distribution obtained simulating new 
observations of the outcome from our model using only the prior distribution on the parameters 
is called the prior predictive distribution. Once the observed data have been included in the 
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model, we can simulate again new data from the posterior predictive distribution. Both 
predictive distributions are fundamental in model checking. 
 
Bayesian hierarchical modeling 

BDA involve the formulation of a full probability model starting from the likelihood 
function of the data to the prior distribution of the parameters. This mathematical formulation 
of the model where the values of some parameters depend on the values of other parameters 
is known as hierarchical modeling and represent the parametization of the model. Consider the 
following example with one outcome (y) and two predictor variables (X1 and X2): 

 
 

                                   yi ~ Normal(ui, s)                        [likelihood] 
                                   ui = a + b1 X1 + b2 X2                                      [linear model] 

                                  a ~ Normal(ua, sa)                        [a prior] 
                                 b1 ~ Normal(ub1, sb1)                        [b1 prior] 
                                 b2 ~ Normal(ub2, sb2)                        [b2 prior] 
                                 s ~ Uniform(Ls, Us)                        [s prior] 

 
This formulation is the classical linear model where every observation of the outcome 

variable y is assumed to be distributed according to a Gaussian probability distribution with 
mean u and standard deviation s. Additionally, the mean u is assumed to be equals a linear 
combination of the parameters a (i.e., the intercept), the effects of X1 (b1) and X2 (b2). The novel 
part is that prior probability distribution has been set on the model parameters a, b1, b2 and s. 
In fact, these priori distributions also have parameters (also known as hyperparameters) that 
are also estimated from the data. 
 
Markov Chain Monte Carlo methods 

Different numerical techniques could be used to compute the posterior distribution of 
the model parameters like grid or quadratic approximation [18]. However, the most popular 
method to fit complex multiparameter models is Markov Chain Monte Carlo (MCMC). This 
method is the combination of two different techniques, Markov Chains and Monte Carlo 
simulation [19]. The former is a stochastic process (i.e., set of random quantities) where the 
probability of change to a new state at time t + 1 is dependent only of the current state of the 
process at time t and conditionally independent of the previous values. The latter is a powerful 
computational method used to generate independent random samples from a sampling 
distribution, this empirical samples could be used to summarize the distribution without using 
analytical calculations. Therefore, a MCMC is a process where random samples are drawn 
sequentially from the approximate posterior distribution of each model parameter 
simultaneously. At each step of the sequence, the algorithm corrects the draws using the 
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Markov property of the chain to better approximate the posterior distribution. The key point is 
that if we run the chain long enough it will converge to a stationary posterior distribution [5]. 
Metropolis and Gibbs sampling are probably the most widely known methods implemented 
both in BUGS and JAGS [15]. Recently, a probabilistic programming language called Stan have 
been developed [20]. This software make use of the No-U-Turn sampler, a variant of 
Hamiltonian Monte Carlo to compute the posterior distribution [21]. Hamiltonian Monte Carlo 
sampling have been showed to outperforms Metropolis and Gibbs sampling for complex 
multiparameter models [22]. 

MCMC methods are implemented by default in the Bayesian software so researchers 
do not have to worry about manually code it. However, it is essential to assess the 
representativeness of the posterior distribution and that the estimates of central tendency and 
limits are accurate and stable using numerical and graphical convergence diagnostics [23]. The 
potential scale reduction factor (𝑅#) and the effective sample size (ESS) are probably the 
numerical converge diagnostics most used in the Bayesian software. 𝑅# is a measure of how 
much variance there is between the chains relative to how much variance there is within chains 
and its value is 1.0 the chains are fully converged or greater if they are not converged to a 
common distribution. ESS is a measure of how much independent information there is in 
autocorrelated chains. Recently, an improved version of these numerical diagnostics has been 
developed and implemented in the probabilistic programming language Stan [24]. Stan output 
reports for every parameter estimated the maximum of rank normalized split-𝑅# and rank 
normalized folded-split-𝑅# which work for thick tailed distributions and is sensitive also to 
differences in scale. Moreover, the bulk effective sample size (bulk-ESS) and tail effective sample 
size (tail-ESS) are reported. The former informs about the sampling efficiency in the bulk of the 
distribution (related to efficiency of mean and median estimates) whereas the latter is a 
measure for sampling efficiency in the tails of the distribution (related to efficiency of variance 
and tail quantile estimate). It is recommended from a practical point of view to run at least four 
chains by default to estimate the posterior distribution of model parameters using MCMC and 
use 1.01 (or lower) and 400 (or greater) as thresholds for 𝑅# and ESS respectively to trust in the 
posterior distribution estimated.    
 
Model comparison and predictive accuracy 

Once the model is fitted sport researchers assess how well the model fit to the sample. 
Probably, the most common measure used is R2 described as “variance explained” or “goodness-
of-fit”. This measure has the problem that it increases when more predictors are added to the 
model even when the variables you add are random numbers [18]. Moreover, while models with 
many parameters fit the data better, they tend to overfit more than simple models. Overfitting 
occurs when the model learns too much from the sample which leads to poor out-of-sample 
predictions. In contrasts, when a model has too few parameters, they are inaccurate both within 
and out-of-sample producing a statistical error called underfitting. To deal with the 
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overfitting/underfitting dichotomy we can use two different approaches: cross-validation and 
information criteria.  

The first approach consists basically on leave out a small part of our sample to test the 
model´s predictive accuracy. Therefore, the sample is divided into chunks (i.e., folds) which the 
statistical model is asked to predict one by one using the remaining chunks of the sample. Then, 
an average score of the out-of-sample accuracy if obtained. For Bayesian models we are going 
to use a special cross-validation method called the Pareto smoothed importance sampling 
cross-validation (PSIS-LOO) to estimate the model´s out of sample accuracy [25]. Leaving aside 
the mathematical aspects, this method computes the expected log pointwise predictive density 
which it is a useful measure to compare models and the Pareto k diagnostics which informs us 
about the reliability of the estimate by pointing to influential observations. Specifically, those data 
points associated with a k value higher than 0.7 are supposed to have a negative on PSIS-LOO 
score. A difference less than 4 in the expected log pointwise predictive density is considered 
small from a practical point of view when comparing models with a number of observations 
larger than 100. 

The second approach is to compute an information criterion which report an estimate 
of the relative out-of-sample divergence. The widely applicable information criterion (WAIC) is an 
information criterion that is invariant to parametrization and it uses entire posterior distribution 
[26]. WAIC can be used together with PSIS-LOO for model comparison. 
 
Hypothesis testing 

Sport scientists maybe know the model of the section 2.2 as ANCOVA where the interest 
resides in estimate mean difference among groups by using some kind of planned contrasts or 
post-hoc analysis while adjusting the model with a continuous variable. In this way, the decision 
of whether or not there is a statistically significant difference among training groups is based on 
the computation of a p-value and if it is less than an established threshold (traditionally if p<0.05). 
However, several publications have alarmed about the misuse and misinterpretation of p-values 
as an index of significance [27–30]. As an alternative, Bayesian inference offers two different 
approaches to analyze the presence or absence of an effect: estimation approach based on the 
description of the posterior distribution and Bayes factor (BF) approach [31].  

The first approach uses an interval called a credible interval (CrI) which define a 
percentage of values that are found in the central portion of the posterior distribution. Although 
its aim is similar, CrI should not be confused with confidence intervals since its computation and 
meaning are different. A special CrI is the highest-density interval (HDI) which summarizes the 
uncertainty of the parameter estimated in such way that any parameter value inside a 95%HDI 
are the 95% most credible values. Then, it is calculated what percentage of the HDI falls inside a 
region of practical equivalence (ROPE) that represent a range of parameter values that 
equivalent to the null value for practical purposes [32]. Thus, if for example the 95%HDI falls 
completely inside the ROPE means that the most credible values of the parameter a practically 
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equivalent to the null value. Obviously, the ROPE has had to be established by the researcher 
based on previous studies. 

The second approach is based on the comparison of two probability distributions: one 
(prior distribution) where all the probability is allocated over the null value (or ROPE), and one 
(posterior distribution) where the probability mass has shifted away from the null value once the 
observed data have been taken into account. Therefore, a BF indicates the degree to which the 
posterior distribution has move further away or closer to the null value and it is represented as 
BF. 

It is important to note some advantages of using these approaches to perform post-hoc 
analysis like there is no need to correct for multiple tests due to type I error rate inflation due to 
BDA does not rely on sampling distributions; Conversely to frequentists confidence intervals, the 
interpretation of a HDI is intuitive; and BF assess both evidence in favor or against an effect (in 
contrasts to p-values) [33]. 
 
Bayesian workflow 

It has been highlighted recently the need to establish a Bayesian workflow due to 
different reasons as computation of complex statistical models, model extensions and 
comparing multiples models fit to the same data [34]. This workflow currently includes the steps 
of model building, checking and inference. Several authors have already proposed steps for BDA 
specifically and regression-type analysis in general [35–39]. Here, we are going to summarize the 
key steps of BDA: 

 
Gather prior information 
BDA starts even before analyzing the database. Researchers can use the results reported 

in previous studies to get an idea of the possible values that parameters of interest may have. 
These values can be incorporated to our analysis via prior distributions and thus exclude values 
that are not possible to reach. Therefore, to include informative prior in our model is going to 
provide us the possibility of increase the precision of the result even if the sample size is small. 
If previous information is not available maybe researchers are able to specify the limit of the 
parameter space. Practical guidelines to construct informative priors are (ref): 1) research in high 
quality scientific literature and ask experts on the subject matter; 2) to use a good method to 
gather information systematically; 3) to specify where you got the information and 4) always 
visualize the prior distribution. 

 
Exploratory data analysis 
To summarize the data collected by using graphs like histograms or boxplots and 

summary statistics of central and dispersion tendency is an essential step to investigate about 
the distribution of the variables and the relationship established among them. To explore the 
nature of the data will allow researchers to define a proper likelihood function for the outcome 
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(e.g., observations of the outcome variable are generated following a normal distribution or 
Student-t distribution). 

 
Define the statistical model: prior distributions and likelihood function 
Once the prior distributions on model parameters and the likelihood function have been 

defined, researchers must represent using mathematical notation the dependencies among the 
variables in the model as we have seen in section 2.2. It is important to ensure that the results 
are replicable by specifying the outcome, the predictor variables, the parameters and 
hyperparameters and their probability distributions along with a text clarifying the mathematical 
description of the model. 

 
Prior predictive checking 
We must ensure that the statistical model that we just defined is consistent with domain 

knowledge. Thus, one solution can be to simulate data from the model using only the 
information incorporated via prior distribution and then check if the data generated fall in the 
range we expected or there are a high number of extreme observations. This method is essential 
to evaluate the validity of the model denied in the previous step. 

 
Parameter estimation and model checking 
The posterior distribution of the parameters can be obtained by fitting the model using 

a statistical software. Then, we must check if the results obtained are reliable using graphical 
and numerical MCMC diagnostics (i.e., 𝑹% , ESS and traceplots; section 2.3) and performing 
posterior predictive checking. 

 
Posterior predictive checking 
We want to highlight this method since it is a very simple and powerful tool to evaluate 

the model fitted. The idea is the same seen for prior predictive checking but now the data have 
been added to the model: if the model is good then the new data simulated from the model 
must resemble the data observed. This method makes use of the data twice: once to fit the 
model and another one to perform the checking so it is recommended to choose statistics that 
are orthogonal to the model parameters [40]. 

 
Model selection 
Several models can be fitted to answer to the same research question. Therefore, we 

need to know which model is the best and should be used to perform inference. Recall from 
section 2.4 that we must worry with the overfitting-underfitting dichotomy and we can use PSIS-
LOO and WAIC to deal with it. 

 
Further analysis and report results 
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When the final model is fitted and all the checks have been successfully passed, sport 
researchers are very often interested in testing hypothesis to report “a significant statistical 
result”. These hypothesis in the context of regression analysis are related to the effect of the 
parameters estimated or to perform additional pairwise-comparisons between the levels of a 
categorical variable. Final results reported must include a point estimate (i.e., mean or median) 
and a credible interval that summarize the posterior samples obtained. 
 
Applied Bayesian workflow example 

In this section we are going to consider the case study of Mergensen et al. [11] who in turn 
used a study of Humberstone-Gough et al. [41] to illustrate the workflow analysis. Briefly, they 
compared the effects of three different training regimens “Live High Training Low” altitude 
training (LHTL, n = 7), “Intermittent Hypoxic Exposure” (IHE, n = 7), and “Placebo” (n = 7) on 
different variables using a pre-post design. For the sake of simplicity, the difference in the 
concentration of hemoglobin mass (Hbmass, units of grams) is going to be the outcome of our 
example while the percentage change in weekly training load (ChangeWtr, %) and training group 
membership (Group, three levels: LHTL, IHE and Placebo) are the predictor variables. Our 
interest as researchers lies in analyzing differences among the training groups. A box plot of the 
Hbmass by group show us that the outcome follows a Gaussian distribution in each group, the 
presence of an outlier in the IHE group and a possible effect of group membership (figure 1). 
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Figure 1. Box-plot of the distribution of hemoglobin mass across training groups. 
 

Note that there are only 7 participants in each group so prior information about the 
parameters can help us to get a reliable estimate. In this case, an informative prior about the 
effect of LHTL was placed based on a meta-analysis about training regimens on Hbmass [42]. 

 
Model definition 
We assumed that the Hbmass is distributed according a Gaussian distribution while the 

intercept (a) and standard deviation (s) follow a Student´s T distribution. Therefore, the statistical 
model can be described as follow: 
 

                                 Hbmassi ~ Normal(ui, s)                     [likelihood] 
                               ui = a + b1 ChangeWtr + b2 Group                           [linear model] 

                                a ~ StudentT(12, 7, 3)                       [a prior] 
                                   b1 ~ Normal(0, 2)                        [b1 prior] 

                                   b2IHE ~ Normal(0, 2)                       [bIHE prior] 
                                  b2LHTL ~ Normal(22.6, 1)                    [bLHTL prior] 

                                 s ~ StudentT(0, 15, 3)                        [s prior] 
 

Recall that the variable Group is categorical so the effect of this variable (b2) is interpreted 
as deviation from the reference group (the control group in our model). It is a good practice to 
plot prior distribution to check the range of plausible values for each parameter (Figure 2). 
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Figure 2. Prior distributions on model parameters. 
 

Prior predictive checking 
Once the model is defined, the prior predictive distribution can be computed to check 

whether the model and prior distributions are consistent with domain expertise removing 
extreme but not impossible parameters values [38]. Hence, adding information via prior 
distribution allows the Bayesian computation and interpretation of the parameters estimated. 
Prior predictive distribution can be computed via brms by using the function brm and setting the 
argument sample_prior = “only”. The function brm can be considered the main function 
of the package since is the one used to fit the models. Consider special attention to the argument 
related to the MCMC, warmup to set the number of iterations used by the MCMC algorithm to 
figure out how to explore the posterior distribution efficiently; chains to specify the number of 
Markov chains and iter to set the number of iterations per chain. In our example, we create an 
object called bmod1Prior which will store all the information about the model. Additional 
arguments like data to select a data frame that contains all the variables in the model; family 
to set the likelihood function of the outcome (see section 2.1) and prior to use the prior 
distribution on parameters previously defined are necessary. Note that our model assume that 
the outcome follows a Gaussian distribution with an identity link function (family = 
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gaussian(link = “identity”)). The link function is used to establish a relationship between 
predictor variables and the mean of the outcome distribution and in the case of linear regression 
models the link function used is the identity. 

Prior predictive distribution is showed in figure 3. In this figure y represent the distribution 
of Hbmass and yrep the distribution of simulated sets using only information from prior 
distributions. Note that most of the distribution area is over the value 0 and values ± 100 g for 
Hbmass are very unlikely. 

 

 
 

Figure 3. Prior predictive distribution. 
 

Model fitting 
Next, we fit the model by updating the object bmod1Prior by changing the argument 

sample_prior = “no”. Once brms fits the model we should check that the parameters have been 
estimated correctly (see section 2.2). The function summary(bmod1) shows us the parameter 
values estimated and additional information about the reliability of these results (table 1). Here, 
all the parameters have a 𝑅# (Rhat in the table) of 1 and both ESS > 400 so we can trust that these 
results have been obtained with accuracy.  
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Table 1. Parameter estimation results. 
1. Population-Level Effects: 
2.  3. Estimate 4. Est.Error 5. l-95% CI 6. u-95% 

CI 
7. Rhat 8. Bulk_ESS 9. Tail_ESS 

10. Intercept 11. 0.02 12. 1.97 13. -3.77 14. 3.87 15. 1.00 16. 5084 17. 3642 
18. ChangeWtr 19. 0.20 20. 0.10 21. -0.01 22. 0.40 23. 1.00 24. 4156 25. 2962 
26. GroupIHE 27. -0.20 28. 1.97 29. -3.94 30. 3.65 31. 1.00 32. 5406 33. 3246 
34. GroupLHTL 35. 22.66 36. 1.01 37. 20.68 38. 24.62 39. 1.00 40. 4647 41. 2702 
42.  
43. Family Specific Parameters: 
44.  45. Estimate 46. Est.Error 47. l-95% CI 48. u-95% 

CI 
49. Rhat 50. Bulk_ESS 51. Tail_ESS 

52. sigma 53. 25.705 54. 4.3.92 55. 18.86 56. 34.04 57. 1.00 58. 4364 59. 2967 
l-95% CI indicates lower-bound of 95% credible interval; u-95% CI, upper-bound of 95% credible 
interval; Rhat, potential scale reduction factor; Bulk_ESS bulk effective sample size; Tail_ESS tail 
effective sample size. 
 
Additional checks can be done by checking the traceplot of each Markov chain used in the MCMC 
estimation (figure 4). This traceplot should be concentrated around the estimated value for each 
parameter. 
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Figure 4. Posterior parameter distribution on the left column. Traceplots for each parameter 
estimated on the right column. 

Posterior predictive checking 
We are going to simulate data sets (yrep) to compare with the distribution of the observed 

data (y) like in section 3.2 but in this case, it is used the posterior distribution. This method is 
used to asses model adequacy. Figure 5 shows the posterior predictive distribution of our 
model. Look like the fit is reasonable but there is a high variation that it is not capture by model´s 
prediction. 

 

Figure 5. Posterior predictive distribution. 

 
Model updating and selection 
Figure 1 showed us the presence of an outlier in IHE group so perhaps we could improve 

the model if we use a likelihood function that allows the presence of extreme values. This kind 
of method is commonly known as robust regression and makes use of the Student-t distribution. 
Like the Gaussian distribution, the Student-t distribution is defined by the mean µ and the scale 
s parameters, but it has also the shape parameter u that controls the thick of the tails of the 
distribution. This Bayesian robust regression have been described previously and can be used 
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in practice by sport researchers. Robust regression can be easily performed using brms by 
changing the argument family (family = student(link = identity)).  
Once the model is fitted, we can compare the predictive accuracy of both model (section 2.4). 
First, the PSIS-LOO is estimated for each model via loo function setting the argument save_psis 
= T and then function loo_compare is used. This function computes pairwise comparisons 
between the model with the largest expected predictive density (first row, better accuracy). In 
our case, the difference can be considered insignificant due to the small numbers computed 
(table 2). Interestingly, the Gaussian model has better accuracy so we are going to use that model 
to perform contrasts. 
 

60. Table 2. Loo_compare function results comparing the predictive accuracy of bmod1 and bmod2 
61.  62. elpd_diff 63. se_diff 

64. bmod1 65. 0.0 66. 0.0 

67. bmod2 68. -0.5 69. 0.3 

Elpd_diff means difference in the expected log predictive density; se_diff, standard error of 
the difference in the expected log predictive density. 

Post-hoc hypothesis contrasts 
Recall that our interest resides in compute contrasts among the levels off the group variable. 
The function hypothesis allows to perform multiple non-linear hypothesis test for model 
parameters. The specific contrasts (i.e. pairwise differences) should be encoded as a character 
string by using the name of the model parameters. In our example, to test the differences 
between placebo vs IHE, placebo vs LHTL and IHE vs LHTL respectively we should use the 
following string: c(“Intercept = Intercept + GroupIHE”, “Intercept = Intercept + 
GroupLHTL”, “Intercept + GroupIHE + Intercept + GroupLHTL”) in the argument called 
hypothesis. 

 
Table 3. Pairwise comparisons among the training groups.  

Hypothesis Estimate Est. 
Error 

CI. 
Lower 

CI.Upper Evid. 
Ratio 

Post. 
Prob 

Star 

1 0.20 1.97 -3.65 3.94 0.97 0.49  

2 -22.66 1.01 -24.62 -20.68 0.00 0.00 * 

3 -22.85 2.24 -27.26 -18.52 0.00 0.00 * 
Hypothesis 1 = (Intercept) – (Intercept + GroupIHE) = 0; Hypothesis 2 = (Intercept) – (Intercept + 
GroupLHTL) = 0; Hypothesis 3 = (Intercept + IHE) – (Intercept + GroupLHTL) = 0. Est. Error means 
standard error; CI. Lower, lower-bound of the credible interval; CI. Upper, upper-bound of the 
credible interval; Evid. Ratio, evidence ratio; Post.Prob, posterior probability. 
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This function computes a Bayes factor between the hypothesis and its alternative and is 
expressed as BF01. This result is showed in the column called “evidence ratio” and more 
specifically it refers to the evidence of H0 (i.e., null hypothesis = no significant difference) over 
H1 (i.e., alternative hypothesis = significant difference). We prefer to show from practical point 
of view BF10 that means the evidence H1 over H0. To calculate it divide 1 by the result of the 
evidence ratio so for hypothesis 1, 2 and 3 the BF10 is 1,03, >100 and >100 respectively. This 
evidence can be classified as anecdotical for hypothesis 1 and extreme for hypothesis 2 and 3 
[1]. Therefore, it can be reported that there is a significant effect of LHTL training regimen over 
placebo (Difference (95% Credible interval; BF10) = 22.66 g (20.68, 24.62; BF10 = >100) and IHE 
training regimen (22.85 g (18.52, 27.26; BF10 = >100). 
 

CONCLUSION 
BDA offers a very interesting alternative for sport scientists who want to overcome the limitation 
of traditional statistics, especially those who need to analyze databases with low sample size. 
Obviously, there are lot of concepts and methods that have not been treated in the text. 
However, through this manuscript the basic concepts, benefits, workflow and a practical 
example are presented as a starting point for those who are interested in learn how to perform 
Bayesian inference. 
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