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ABSTRACT 
Most kinematic and kinetic assessments in baseball pitchers have been determined using 
marker-based motion capture systems. No current research exists on the feasibility of 
using single camera markerless motion capture technology for kinematic analysis of 
pitching. The purpose of this study was to compare and validate pitching kinematics (joint 
angles and summary metrics) from a markerless motion capture solution with a gold 
standard, 3D optical marker-based solution. 38 healthy pitchers of high school, college, or 
professional levels of experience threw 1-3 maximum effort pitches while concurrently 
using marker-based optical motion capture and pitchAI smartphone based (markerless) 
motion capture. Each pitch was time normalised from peak leg lift, to ball release. Time 
series pitchAI measures were compared to 3D motion capture using Pearson's R (R), R 
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Squared (r2), and root mean square error (RMSE) for each joint angle. Discrete time points 
were evaluated for all joint kinematics at foot plant (FP), maximal shoulder external rotation 
(MER), and ball release (BR); as well as for descriptive metrics (stride length, arm speed, ball 
visibility, and ball path). For full time-series joint angles the pelvis and trunk had the best 
overall fit with an average r2 of 0.98, and 3.1 ± 1.1° of RMSE. The knee angles had an 
average r2 of 0.97 ± 0.02, and an average RMSE of 4.1 ± 2.0°. The throwing arm had an 
average r2 of 0.97 ± 0.02, with an average RMSE of 6.0 ± 2.2° across all measures.  The glove 
arm performed the worst, with an average r2 of 0.95, and 7.3° of RMSE. Across all discrete 
time points, the most accurate measures were the knees, followed by the trunk and pelvis, 
throwing arm, and finally glove arm. Stride length had an average RMSE of 3.90 ± 4.77%, 
and an r2 of 0.31. Arm speed had an average RMSE of 2.6 ± 3.4 m/s, and an r2 of 0.25. Ball 
visibility had an RMSE of 20.7 ± 24.1 ms, and an r2 of 0.10.  Ball path had an RMSE of 19.79 
± 23.9%, and an r2 of 0.45. When considering the technical ease of video-based solutions 
and an ability to measure in field, most metrics were within an acceptable range to the gold 
standard. pitchAI can be recommended as a markerless alternative to classic marker-based 
motion capture for baseball pitch kinematic analysis.  
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INTRODUCTION 
Technological advancements within the motion capture field have enabled athletes and 
coaches to accurately quantify and easily capture the movement demands of their sport 
(Mündermann et al., 2006; Boddy et al., 2019). The most common methods for accurate 
capture and assessment of three-dimensional human movement require a laboratory 
environment and the attachment of markers, fixtures or sensors to body segments; where 
infrared cameras track reflective markers in 3D space with sub-millimeter accuracy (Fleisig 
et al., 1996; Barrentine et al., 1998; Richards, 1999; Mündermann et al., 2006; Thewlis et al., 
2013). In the sport of baseball, professional organizations, research institutes, and private 
training facilities have been making use of motion capture techniques since the early 
1990’s. Baseball pitchers tend to demonstrate a prototypical delivery to throw the baseball 
which can be divided into phases allowing a better understanding of the biomechanics of 
the body as the pitch is delivered. The pitching phases were originally described as the 
windup, stride, early arm cocking, late arm cocking, arm acceleration, arm deceleration, and 
the follow through (Dillman et al., 1993; Werner et al., 1993). In general, foot plant (FP) 
identifies the end of the stride and early arm cocking phases and beginning of the late 
cocking and arm acceleration phases. Next within the arm acceleration phase, is the late 
cocking phase, which ends at maximum external rotation (MER). Arm acceleration ends at 
ball release (BR), which is then followed by arm deceleration and follow through (Dillman et 
al., 1993; Werner et al., 1993). With foot plant, maximum external rotation, and ball release 
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being markers of the beginning and end of phases, they are common time points to 
investigate and report postures and angular velocities of athletes. Although, using discrete 
time points does not give insight into how an athlete is moving from position to position, 
time series data provides important information that may indicate more efficient deliveries 
(Fleisig et al., 1999). If a single camera motion capture solution could provide valid and 
reliable data with minimal hardware, this would allow coaches and researchers to obtain 
biomechanics data in a wide array of settings for insight into fatigue, player development 
and performance.   

Biomechanical assessments of sport performance often require technical 
knowledge, setup experience, expensive equipment, can be time-intensive, and require 
controlled conditions to maximize reliability (Nicholls et al., 2003; Kanko et al., 2021). While 
standards vary, a typical marker-based motion capture solution for tracking human 
movement during baseball pitching can require greater than 48 markers being placed on 
the body (Fleisig et al., 1996; Nicholls et al., 2003). While this can be time intensive and 
require expertise, controlled laboratory environments provide a high level of accuracy 
(Fleisig et al., 1996; Barrentine et al., 1998; Mündermann et al., 2006). However, camera 
placements, consistent marker placement, marker movement artifacts, and clothing 
restrictions make marker-based motion capture difficult in situ (i.e., in game, on field) 
(Fleisig et al., 1996; Nicholls et al., 2003). Due to the unique environments posed during 
data collection, pitchers may not throw “naturally”, or how they might in a game situation. 
As a result, investigations of pitching kinematics in a lab environment have pitchers 
throwing into a net or a target, and not a live-game setting (Fleisig et al., 1996; Fleisig et al., 
2009; Escamilla et al., 1998; Stodden et al., 2005). Such factors restrict the number of 
assessments that can be performed at a time, and can reduce access and extrapolation of 
the information. Additionally, these technological limitations can make it difficult for 
scientists to recruit elite athletic populations. With the exception of a few elite training and 
research facilities, many studies report on amateur athletic populations. Further, most 
biomechanics assessments represent a snapshot in time with only a few maximal intensity 
pitches recorded (Fleisig et al., 1995, Fleisig et al., 1996, Fleisig et al., 1999, Fleisig et al., 
2009; Stodden et al., 2005). This limits longitudinal inference on pitching performance (such 
as kinematic changes to maintain velocity during fatigue (Birfer et al., 2019)) and injury 
progression. Kinematic changes occur as a result of fatigue (Grantham et al., 2014; Yang et 
al., 2014), but our understanding is limited to pre-post investigations with little insight into 
the progression of changes. Improved access would enable pitching coach’s greater insight 
for individualized coaching and feedback; and would shine light onto the understudied 
effects of fatigue or performance related mechanical changes. Despite the aforementioned 
drawbacks that accompany gold standard marker-based motion capture, it is still the most 
accurate and reliable method for tracking 3D human movement to date.  

Advances in video-based (markerless) motion capture for pose estimation 
(Desmarais et al., 2021; Kanko et al., 2021; Vafadar et al., 2021) could offer solutions for 
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many of the challenges identified with marker-based solutions. Being able to capture and 
analyze kinematics using a video camera can simplify the technical aspects of motion 
capture. Further, increased access to video-based kinematic analysis could lead to more 
research on higher skilled populations, in-game situations, and the tracking of fatigue 
during competition. Lately, automatic human pose estimation using deep learning 
strategies have garnered interest amongst computer vision researchers (Ionescu et al., 
2014; Chen et al., 2017). The majority of these algorithms prime a neural network using 
manually labeled image databases (ie., Human3.6M, ENSAM) and then estimate human 
posture, including anatomical joint centers, when the user inputs the images or videos to 
the trained network (Nakano et al., 2020; Vafadar et al., 2021). Such software has previously 
been demonstrated as an effective approach for measuring joint angles in three 
dimensions during simulated occupational tasks (McKinnon et al., 2019).  

The purpose of this study was to compare and validate pitching kinematics (joint 
angle and summary metric) from a markerless motion capture solution with a gold 
standard, 3D optical marker-based solution. The markerless motion capture solution used 
here is pitchAI (3MotionAI Inc, Oakville, ON, Canada). pitchAI estimates 3D joint angles from 
sagittal plane video of a pitcher, and trains its machine learning models from gold standard 
marker-based data, to track positional data of anatomical landmarks during a baseball 
pitch. pitchAI calculates joint angles and angular velocities during a baseball pitch, 
identifying phases of the pitch in a standardized biomechanics report based on the pitching 
motion. We hypothesize joint angle measurements from pitchAI would be accurate and 
reliable compared to gold standard motion capture. More specifically, better agreement 
would be found for measurements such as elbow flexion, shoulder abduction, shoulder 
horizontal abduction, and knee flexion than for more complex coordinate system 
measurements such as pelvis rotation, trunk measurements, and shoulder external 
rotation. 

METHOD 
Participants and Ethical Approval  
38 healthy pitchers of high school, college, or professional level experience from Driveline 
Baseball participated in the study. Data collection occurred at a Driveline Baseball Arizona-
based motion capture facility. Approval for this study and data collection was provided by 
the Brock University Bioscience Research Ethics Board (REB #19-371). Prior to data 
collection, the study was verbally explained to all subjects, and an informed consent was 
explained and signed. Subject participation was part of their normal training environment 
during preparation for the 2020 summer season. Demographic information including 
height, weight, handedness, and level of experience was recorded. Players were included in 
this study if they were capable of pitching maximum effort for 1-3 pitches, pitched from an 
overhead armslot, and played competitive baseball. Players were excluded if they pitched 
“sidearm” or a ¾ armslot, or were incapable of throwing maximum effort for all captured 



4 
 

pitches due to pain or injury. Individual pitches were excluded if they were not able to be 
processed by pitchAI for reasons such as incomplete capture (recording started early or 
late).  
 
Experimental Set-up 
Pitchers were permitted to perform a self-directed warm up so they were ready to perform 
between 1-3 maximum effort throws. Pitch velocities were recorded using a Stalker Pro 2 
doppler radar gun (Applied Concepts/Stalker Radar, Richardson, TX, USA). Throws were 
made using a five-oz. (142 g) regulation baseball from a regulation size mound to a strike 
zone target (Oates Specialties, LLC, Huntsville, TX, USA) located above home plate, which 
was 60′ 6″ (18.4 m) away. Pitches were recorded concurrently using marker-based optical 
motion capture and video camera. Video was time-synced with the motion capture using 
the peak lead leg knee marker in the vertical direction. The coordinate system for both 
markered and markerless motion capture was aligned and a laboratory coordinate system 
was established based on International Society of Biomechanics standards: Y was vertical, X 
was perpendicular to Y (positive to home plate), and Z was orthogonal to Y and X (Wu et al., 
2002; Wu et al., 2005). 
 
Markered Motion Capture 
Pitchers were fitted with reflective markers in preparation for their throwing data collection. 
A total of 48 reflective markers were attached bilaterally on the third distal phalanx, lateral 
and medial malleolus, calcaneus, tibia, lateral and medial femoral epicondyle, femur, 
anterior and posterior iliac spine, iliac crest, acromial joint, inferior angle of the scapula, 
midpoint of the humerus, lateral and medial humeral epicondyle, midpoint of the ulna, 
radial styloid, ulnar styloid, distal end of index metacarpal, parietal bone, and frontal bone, 
as well as on the C7 and T10 vertebrae, the sternal end of the clavicle, and the xiphoid 
process (Brady et al., 2020). Markers were tracked at 240Hz using an 11 camera OptiTrack 
system (NaturalPoint Inc, OptiTrack, Corvallis, OR, USA). This system contained a mixture of 
7, Prime 13 and 4, Prime 13W cameras. Cameras were placed symmetrically around the 
capture volume on tripods, approximately 8–12 feet from the center of the pitching mound 
at varying heights. The tracked outputs recorded using the OptiTrack system were 
processed in Visual3D (C-Motion Inc., Germantown, MD, USA) using a fourth order zero-lag 
Butterworth digital low-pass filter with a cut-off frequency of 20Hz.  All joint centre data 
were exported for further kinematic analysis (Figure 1).  
 
Markerless Motion Capture  
Video was captured using an iPhone 11 (Apple Inc, Cupertino, CA, USA) at 240Hz, 1080p 
resolution, with the iPhone handheld by one of the investigators. Video was recorded in the 
native camera app from an open-side angle in landscape mode, with the pitcher held in 
frame throughout the entirety of the throwing motion. The video was uploaded to pitchAI’s 
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source code for offline processing. Pose estimation was performed via pitchAI, with step 1 
being a generation of a 2D, 19 joint center model. Position data were filtered using a fourth 
order zero-lag Butterworth digital low-pass filter with a cut-off frequency of 13.4 Hz (Werner 
et al., 1993), and gaps interpolated using an Akima spline fill. A neural network (38 input 
nodes; a single 100-node hidden layer - rectified linear unit activation; 159 output nodes - 
linear activation) was developed as a corrective measure for the markerless motion capture 
data based on the joint center position data from the marker-based solution. The pitchAI 
neural network transformed the 2D, 19 marker, 38 point output data into a 3D, 19 joint 
center, 53 marker, 159 xyz point output. Estimated marker locations included 19 joint 
centers: head, neck, and pelvis, plus bilateral shoulder, elbow, wrist, hip, knee, ankle, heel, 
and toe markers; in addition to 34 bony landmarks: C7, upper sternum, T8, and the xiphoid 
process as well as bilateral anterior and posterior iliac spine, lateral head, acromion, medial 
epicondyle, lateral epicondyle, ulnar styloid, radial styloid, hand, medial femoral condyle, 
lateral femoral condyle, lateral malleolus, medial malleolus, heel, and toe markers. Motion 
capture marker trajectories were used to construct forearm, upper arm, thigh, shank, foot, 
pelvis, thorax, and head segment local coordinate systems.  
 

 
Figure 1. Data collection and processing steps for preparing markered and markerless data 
for kinematic analysis. Irrespective of data source, joint angle calculations were performed 
using the same method.  
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Kinematic analysis 
Time-series joint angle data were calculated from both markered and markereless data 
collection methods, using established methods to approximate joint centers based on the 
location of the markers on bony landmarks mentioned above. The joint centers were 
approximated as follows, with the shoulder joint center offset from acromial joint marker 
(Veeger, 2000), elbow joint center between medial and lateral humeral epicondyle markers, 
wrist joint center between radial and ulnar styloid markers, hip joint based on pelvis 
markers, knee joint between medial and lateral femoral condyle markers, ankle joint 
between medial and lateral malleolus markers, toe joint center at the toe marker, and heel 
at the heel marker. Local coordinate systems were used to generate all segment and joint 
angles based on ISB standards for 3-axis Euler angle calculation.  
 
Data analysis  
Each pitch was time normalised from the start (peak vertical knee position) to the end of 
the pitch (ball release, plus an additional 10% of that time after ball release). Time series 
pitchAI measures were compared against the motion capture tracked measures using 
Pearson's R (R), R-Squared (r2), and root mean square error (RMSE) separately for each 
calculated joint angle. Angles included: 1) throwing arm elbow flexion (defined as the angle 
between vectors created from the shoulder to elbow, and elbow to wrist; 0° was full elbow 
extension), 2) throwing arm shoulder horizontal abduction (angle between vectors created 
from shoulder to shoulder, and shoulder to elbow; 0° was in the frontal plane), 3) throwing 
arm shoulder abduction (angle between vectors created from hip to shoulder, and 
shoulder to elbow; 0° was arm at the side of the torso), 4) throwing arm shoulder external 
rotation (the angle between planes created using the shoulder, elbow and wrist, relative to 
the plane of the torso using both shoulders, and hips; 0° was at 90° shoulder abduction, 
90° elbow flexion with the hand facing forward), 5) glove arm elbow flexion (resolved the 
same as the throwing arm), 6) glove arm shoulder horizontal abduction (resolved the same 
as the throwing arm), 7) glove arm shoulder abduction (resolved the same as the throwing 
arm), 8) glove arm shoulder external rotation (resolved the same as the throwing arm), 9) 
rear leg knee extension (angle between vectors created from hip to knee, and knee to 
ankle; 0° was full knee extension), 10) lead leg knee extension (resolved the same as the 
rear leg),  11) trunk forward tilt (angle between vector from center pelvis, to center upper 
torso, relative to vertical, resolved in the sagittal plane; 0° was vertical), 12) trunk lateral tilt 
(angle between vector from centre pelvis, to center upper torso, relative to vertical, resolved 
in frontal plane; 0° was vertical), 13) trunk twist (angle between vector from shoulder to 
shoulder, relative to the plane from the mound to home plate; 0° was shoulders in line with 
home plate), 14)  pelvic twist (angle between vector from hip to hip, relative to the plane 
from the mound to home plate; 0° was hips in line with home plate), and 15) hip-shoulder 
separation (the difference between the trunk and pelvis twist angles; 0° was when the 
vectors were aligned). Descriptive metrics included: 1) stride length (as a percentage of 
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height, measured from ankle joint center to ankle joint center), 2) arm speed (peak throwing 
arm wrist velocity in the direction of home plate), 3) ball visibility (the time that a ball would 
be visible to a batter between foot plant and ball release), and 4) ball path (the distance the 
ball travels from start of pitch to foot plant). RMSE of the two time series data were used as 
the indicator of the difference as described by Equation (1), where, n is the number of 
frames, y and yi are the positions estimated by the marker-based and markerless 
approaches, respectively.  
 

RMS Error = ට∑సభ (௬ොି௬)మ


         (1) 

 
The r, r2, and RMSE was also calculated for the kinematic variables at the time points of foot 
plant (FP), maximum external rotation (MER), and ball release (BR). FP was defined as the 
peak deceleration of the lead ankle in the y (vertical) direction. MER was defined as the peak 
throwing arm shoulder external rotation angle between foot plant and ball release. BR was 
defined as the first zero crossing after the peak acceleration of the wrist in the forward 
direction, plus an additional 0.035 seconds after this time. All statistical analyses, including 
r2, and RMSE, were performed in Microsoft Excel, version 16.52 (Microsoft, Redmond, WA, 
USA). 
 

Results 
Evaluation of the time series, average joint angles obtained by the two different 

motion capture methods are presented in Table 1. Figure 2 demonstrates example time 
series comparisons of shoulder external rotation and trunk rotation for both motion 
capture methods. The average discrete time-point joint angles are depicted in Figure 3 for 
FP, Figure 4 for MER and Figure 5 for BR. Descriptive metrics are depicted in Figure 6. 
 

Full time-series joint angles 

The pelvis and trunk had the best overall fit, with an average r2 of 0.98, and 3.1° of RMSE 
throughout the entire signal. The glove arm performed the worst, with an average r2 of 0.95 
and 7.3° of RMSE. Individually, the best performing metrics were the trunk and pelvis twist, 
with 3.2° and 2.9° error, respectively. The worst performing metric was the glove arm 
external rotation, with 10.5° of error. All values can be found in Table 1. 
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Table 1. Time series analysis for joint angles between the marker-based motion capture system (Optitrack), and video-based pitchAI. Statistics 
are correlation values, as well as RMS error, and % error. 

 

 Throwing Arm Glove Arm 

Lead 
Leg 

Trail 
Leg Pelvis and Trunk 

 

Elbow 
Flexion 

Shoulder 
Horizontal 
Abduction 

Shoulder 
Abduction 

Shoulder 
External 
Rotation 

Elbow 
Flexion 

Shoulder 
Horizontal 
Abduction 

Shoulder 
Abduction 

Shoulder 
External 
Rotation 

Knee 
Extension 

Knee 
Extension 

Forward 
Flexion 

Lateral 
Tilt 

Trunk 
Twist 

Pelvis 
Twist 

Hip-
Shoulder 

Separation 

r 0.98 0.98 1.00 0.98 0.98 0.98 0.99 0.94 0.99 0.98 0.99 0.98 1.00 1.00 0.99 

r2 0.96 0.96 0.99 0.96 0.95 0.96 0.99 0.89 0.99 0.96 0.98 0.96 1.00 1.00 0.98 

RMS error (°) 6.61 7.31 2.76 7.24 5.98 10.26 2.4 10.46 5.53 2.75 2.40 2.22 3.15 2.86 4.93 
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Figure 2. Representative data for two calculated metrics. Time series joint angles (degrees) 
for shoulder external rotation (top) and trunk rotation (bottom), reported by pitchAI (red), 
and marker-based motion capture (black). Shaded area represents standard deviation and 
the data is time normalized as a percentage of the total pitch. Dashed vertical lines indicate 
FP and BR. 
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Foot Plant (FP) 

At the instant of FP during the pitch, knee angle metrics were the most accurate, with an 
average RMSE of 7.1 ± 6.5° and an average r2 of 0.60 ± 0.40. Measures of the trunk and 
pelvis had an average RMSE of 8.4 ± 4.8°, with an average r2 of 0.60 ± 0.40. The throwing 
arm had an average RMSE of 13.0 ± 5.5°, with an average r2 of 0.58 ± 0.31. Finally, the glove 
arm had an average RMSE 17.5 ± 6.5°, an average r2 0.22 ± 0.38. Descriptive statistics and 
individual metric values can be seen in Figure 3. 
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Figure 3. A) Average (SD) joint angles reported by pitchAI and marker-based motion capture at FP. B) Correlation (r2) and RMS error (°) at FP.
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Maximum External Rotation (MER) 

At the instant of MER during the pitch, knee angle metrics had an average RMSE of 9.2 ± 
3.2°, with an average r2 of 0.89 ± 0.19. The trunk and pelvis had an average RMSE of 9.6 ± 
4.9°, an average r2 of 0.18 ± 0.22. The throwing arm had an average RMSE of 14.0 ± 2.7°, an 
average and an average r2 of 0.37 ± 0.10. The glove arm had an average RMSE of 14.5 ± 
2.1° and an average r2 of 0.24 ± 0.10. Descriptive statistics and individual metric values can 
be seen in Figure 4.  
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Figure 4. A) Average (SD) joint angles reported by pitchAI and marker-based motion capture at MER. B) Correlation (r2) and RMS error (°) at 
MER. 
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Ball Release (BR) 

At the instant of BR during the pitch, the knee angle metrics had an average RMSE of 11.1 ± 
3.3°, and an average r2 of 0.77 ± 0.21. The trunk and pelvis had an average RMSE of 9.9 ± 6.3°, 
and an average r2 of 0.22 ± 0.21.  The throwing arm had an average RMSE of 15.2 ± 4.0°, and an 
average r2 of 0.33 ± 0.16. The glove arm had an average RMSE of 17.2 ± 3.9°, with an average r2 
of 0.24 ± 0.22. Descriptive statistics and individual metric values can be seen in Figure 5. 
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Figure 5. A) Average (SD) joint angles reported by pitchAI and marker-based motion capture at BR. B) Correlation (r2) and RMS Error (°) at BR.



 

17 
 

Descriptive Metrics 

Stride length had an average RMSE of 3.9 ± 4.8%, an error of 24%, and an r2 of 0.31. Arm speed 
had an average RMSE of 2.6 ± 3.4 m/s, and an r2 of 0.25. The ball visible time metric had an 
RMSE of 20.7 ± 24.1 ms, and r2 of 0.10. The ball path metric had an RMSE of 19.8 ± 23.9%, and 
an r2 of 0.45. Descriptive statistics and metrics can be seen in Figure 6. 

 

 
 

Figure 6. A) Average (SD) descriptive metrics reported by pitchAI, and marker-based motion 
capture. B) Correlation (r2) and % error. % Error is calculated as the RMS error divided by the 
maximum - minimum value for that metric. 
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Discussion 
The purpose of this study was to compare joint angle measures and descriptive metrics 

from a computer vision-based pose estimation system (pitchAI), against a marker-based 
motion capture system across a range of joints during the baseball pitching motion. In this 
study, both motion capture coordinate data were processed using pitchAI, to allow for 
consistent comparison between sources. For both the full signal analysis, as well as the 
sequenced markers of FP, MER, and BR, consistent error patterns existed. r2 values for all joint 
angles except glove arm shoulder external rotation were greater than 95%, with throwing arm 
shoulder abduction angle, glove arm shoulder abduction angle, and lead knee extension angle 
calculated at 99%. Trunk twist angle and pelvis twist angle were 100%. Glove arm shoulder 
external rotation had an r2 of 89%, making it the weakest joint angle estimate of the entire 
regression model. These values demonstrate the strength of the model against gold standard 
motion capture data. The hypothesis of this work, that better agreement would be found for 
vector measurements compared to complex coordinate system measurements, was partially 
supported; with lower agreement for glove arm shoulder external rotation angle and higher 
agreement for vector measures, but strong agreement for throwing arm shoulder external 
rotation angle and perfect agreement found for complex measures of trunk twist angle and 
pelvis twist angle. Overall, the digital video-based measures created from pitchAI were a good 
fit with those obtained by gold standard motion capture. pitchAI can be recommended as a 
markerless alternative to classic marker-based motion capture for baseball pitch kinematic 
analysis, with cautious exception to glove arm shoulder external rotation.  

In a motion capture laboratory setting, multiple cameras enable the system to capture 
3D coordinates across time and space. The standard capture position for a pitchAI recording is 
a smartphone in landscape orientation, open-side (predominantly sagittal plane) view. As this is 
a 2D capture, when the pitcher begins to rotate the pelvis and torso, the glove arm is 
obstructed from camera view, which decreases the accuracy of joint center estimation. Pose 
estimation and joint center tracking will be compromised with occlusions or when segments 
are perpendicular to the capture, as the process would be sensitive to the calculation of image 
depth when transforming from 2D to 3D space (McKinnon et al., 2020). This was also seen with 
the throwing arm, as metrics of elbow flexion, shoulder external rotation, and shoulder 
abduction all had high correlation and low error, but shoulder horizontal abduction performed 
more poorly as it was the furthest from the plane of assessment. This is a major limitation in 
single camera, 2D-based transformation engines, such as the one used in this study. However, 
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when considering these limitations of 2D digital signal interpretation and the issues that arise 
with the glove arm in general, our reported r2 of 89% is quite good.  

When assessing RMSE of the time-point data across all measures, there was a trend of 
negative agreement as the throwing motion progressed from peak knee height in the windup, 
towards ball release (RMSE was 5.8 ± 2.8° at FP; 10.9 ± 4.1° at MER; and 12.3 ± 5.8° at BR). This 
increase in error can be partly explained through the increasing movement speed that occurs 
throughout the baseball throwing motion, as potential energy from the beginning of the 
windup is transferred into kinetic energy that eventually results in the throwing of the baseball 
(Seroyer et al., 2010). The traditional pitching motion starts slow and gets progressively faster, 
to ensure that maximum velocity is transferred to the ball. Greater whole-body movement and 
segmental rotations will result in less data between important phases of the pitch, highlighting 
the importance of a high sampling rate. This increase in error can also be partly attributed to 
movement consistency. As a pitcher progresses forward through the delivery, movement 
variability increases (Scarborough et al., 2020). Many pitchers assume more similar positions 
early in the throw during the early phases, but share less in common through foot plant and 
the deceleration phase (Scarborough et al., 2020).  

For the current study, video data were captured using a hand-held smartphone, to 
mimic the typical in field use. The videos were filmed in the native camera app with the subject 
constantly held in frame, and then processed through pitchAI’s source code offline. While the 
pitchAI application allows for pre-collected slow-motion video to be uploaded and analyzed, it 
is not the recommended capture method as it is prone to less in-app instruction and greater 
user error. However, the technology still enables a large “margin of error” within which 
captures are still possible. Future investigations should determine the effect of camera angle, 
frame rates, lighting, and pitcher as a percentage of the screen on pitchAI outputs. Nakano et 
al. (2020) noted that the positions of the landmarks that are tracked with markerless 
technologies did not correspond identically to the points estimated by a marker-based 
approach. Similar joint center estimates are used in pitchAI, and therefore to evaluate the 
accuracy of markerless motion capture, we compared the corresponding positions of the 
shoulder, elbow, wrist, hip, knee, and ankle joints.  

Despite pitchAI providing clear instructions for video film setup, there could be 
differences that can occur with regard to film angle. This could lead to parallax-induced 
challenges on system agreement that may produce slightly different results if filmed from a 
different angle (Tian et al., 2002). One such solution to this problem includes markerless 
motion capture setups that utilizes multiple camera video captures, such as Theia3D (Theia 
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Markerless Inc., Kingston, ON), which have previously been shown to be comparable to 
classical markered solutions (Kanko et al., 2021). Desmarais et al., (2021) reported that when 
looking at results of contemporary methods, there is an average gap of 10mm error between 
monocular and multi-view methods. The current process for estimating 3D joint locations from 
2D video is still relatively new (McKinnon et al., 2020). Future versions of computer vision-
based motion capture will need to consider non perpendicular views to parallel the accuracy 
and capacity of lab-based systems (McKinnon et al., 2020). It is expected that such 2D-to-3D 
estimates will undergo rapid enhancements in accuracy over the next decade, which suggests 
an optimistic outlook for the adaptation of automated, video-based biomechanical analysis 
(McKinnon et al., 2020). 

In addition, our relatively small sample size can explain some of the discrepancies 
noted between the markerless motion capture and the gold-standard. As the technology 
becomes more prominent and its user base continues to grow, far greater amounts of data will 
be available for interpretation and adjustment. A larger sample size would include various 
different throwing mechanics and deliveries, that may lend themselves to some of the 
differences seen in this study. The markered motion capture data consisted primarily of 
overhand or higher three-quarter armslots, with no sidearm or submarine deliveries included 
in analysis. As a larger and more robust dataset is used to generate a stronger neural network, 
we expect these values to continue to improve.   

Previous reports have described how kinematic changes occur as a result of fatigue 
(Grantham et al., 2014; Yang et al., 2014; Birfer et al., 2019), however they offer little insight into 
the progression of changes throughout a game or across a full season. pitchAI would enable 
pitching coaches and analysts to take intermittent video throughout pitching appearances to 
track and compare mechanics and metrics from inning to inning, or game to game. This would 
facilitate active in-season monitoring of player fatigue and performance, which could lend itself 
to strategic decision making when considering player health and team success.  

Perhaps most importantly to note, is that this type of markerless motion capture 
analysis proposes a more accurate and objective method of performing biomechanical 
analyses compared to subjective approaches administered by visual inspection. Nicholls et al., 
(2003) evaluated 17 metrics of the pitching delivery as being “proper or improper”, as 
evaluated by coaches in a video analysis. These results were compared to actual outputs from 
a 3D, marker-based motion capture assessment. In terms of agreement, only four of the 
variables were able to be analyzed properly by the subjective evaluation - elbow flexion at foot 
contact, sequence of hip-shoulder rotation from the arm cocking phase, and trunk flexion and 
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horizontal abduction at release. Birfer (2019) evaluated 16 different mechanical properties, 
and had coaches and scouts subjectively bin body positions into 3 to 5 angle ranges based on 
previously conducted research. In total, the subjective analysis returned the correct answer on 
body position 50% of the time - and in many cases, joint angle bins were up to 120 degrees 
broad. On the spectrum of accessibility and accuracy, this AI-aided video-based approach 
appears to provide greater accuracy than subjective analysis, while minimizing the amount of 
technical overhead associated with traditional biomechanical assessments. Multi-camera 
markered (Richards, 1999; Thewlis et al., 2013) and markerless (Tanaka et al., 2018; Nakano et 
al., 2020) approaches represent more accurate assessment methods than pitchAI, but when 
considering the scope of athletes who may be able to afford or access the service, this could 
be a viable compromise. Advances in computer-vision technology make this type of approach 
an exciting stop-gap between full lab analysis and show potential for identifying biomechanical 
issues that could be further analyzed when more technology is available to the pitcher.  

 

Conclusion 
The emergence of statistical data surrounding pitch characteristics and pitch velocity 

have provided deep insight to the baseball community in recent years. However, the 
biomechanical data behind baseball pitches has thus far remained restricted to a laboratory 
setting. The results from this study show that a video-based pose estimation approach (i.e. 
pitchAI) can perform as a low-cost alternative to a fully marker-based kinematic motion capture 
system, particularly for tracking of pelvis, trunk, and throwing arm metrics in baseball pitching.  
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