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ABSTRACT 
Objective: The purpose of this study was to examine whether a common, non-invasive, 

muscular fitness field test was a better predictor of bone strength compared to body mass 

in healthy adults. .  

Methods: Hierarchical multiple regression analyses were used to determine the amount of variance 

that peak power explained for bone strength of the tibia compared to body mass. Peak power was 

estimated from maximal vertical jump height using the Sayer’s equation. Peripheral quantitative 

computed tomography scans were used to assess bone strength measures. Results: Peak power 

(ꞵ=0.541, p<0.001) contributed more to the unique variance in bone strength index for compression 

compared to body mass (ꞵ=-0.102, p=0.332). For polar strength strain index, the beta coefficient for 

body mass remained significant (ꞵ=0.257, p<0.006), however peak power’s contribution was similar 

(ꞵ=0.213, p= 0.051). Conclusion: Compared to body mass, peak power was a better predictor 

for trabecular bone strength but similar to body mass for cortical bone strength. These 

data provide additional support for the development of a vertical jump test as a simple, 

objective, valid and reliable measure to monitor bone strength among youth and adult 

populations. 

 
Introduction 

Osteoporosis and sarcopenia are musculoskeletal conditions which collectively increase 

the risk of bone fractures in aging adults 1–3. Osteoporosis has become a serious threat to 

global public health as an underlying cause of more than 8.9 million fractures annually, and 
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is accompanied by high morbidity and mortality rates 4–6. Evidence suggests that 

sarcopenia, the decrease in muscle mass and mechanical function, is associated with a 2-

fold increase in fall risk  and a 3.7-fold increase in mortality 7,8. An increasing number of at-

risk elderly is an anticipated concern when the world’s population aged 60 and over is 

expected to increase from 1 billion in 2017 to 2.1 billion by 2050. 9 

 

There is no known cure for osteoporosis, only preventative care designed to optimize and 

maintain muscle function and bone strength in order to reduce osteoporotic fracture risk. 

Physical activity is a significant component of osteoporosis prevention through 

mechanisms of bone-strength accrual as described by Frost’s mechanostat theory 10. 

Investigations of bilateral differences in bone strength among racket sport athletes 

reported higher bone strength in their racket arm 11,12. In the UK, positive associations 

between steps per day and bone strength in a 62-year old cohort (male and female) were 

reported; demonstrating the importance of habitual physical activity and associated 

loading effects on the skeleton 13. Longitudinal studies among children and adolescents, 

demonstrated positive associations between moderate to vigorous physical activity and 

bone strength 14. Bilateral differences were also observed among baseball players, where 

benefits to bone strength acquired during youth persisted throughout life, even after the 

athletes returned to habitual levels of loading 15.  However, there are currently no tools for 

monitoring bone health for prevention and screening purposes in healthy adults or youth.  
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The current clinical diagnostic tool for osteoporosis is dual x-ray absorptiometry (DXA) 

scanning, and it is primarily used on older women.   

 

Physical fitness field testing assesses skill-related components of physical activity and may 

also provide a means to assess bone strength. During physical activity, weight-bearing and 

muscular forces are the primary loads placed upon the skeletal system. The loading effect 

of weight-bearing forces on the skeletal system may be largely dependent upon body 

mass. However, in a sample of postmenopausal women with high BMI, evidence indicated 

an increase in bone strength was not proportionate with total fat or total body mass; the 

effect was proportional only to total lean mass 16. The same report separated the sample 

into sedentary and active groups; the exercising women had significantly higher strength of 

correlation between lean body mass and bone mineral density 16.  Lean mass and its force-

generating capacity are key to bone strength optimization. Muscle generated forces have a 

greater magnitude of loading on the skeletal system due to their mechanical disadvantage. 

Short moment arms require muscles to produce high forces to generate joint torque for 

movement, and multiple studies demonstrated strong correlations between muscular 

fitness and bone strength indices in many populations 17–20.   

 

Rantalainen reported that body mass was not an independent predictor of bone strength 

compared to a muscle fitness test, concentric net impulse measured via maximal vertical 
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jump testing on a force-plate, in athletic premenopausal women and osteoarthritic 

postmenopausal women 3. The purpose of the present study was to examine whether a 

common, non-invasive, muscular fitness field test was a better predictor of bone strength 

compared to body mass in healthy male and female adults.. We hypothesized that peak 

vertical jump power at take-off would be a significant and greater contributor of the 

explained variance for bone strength (BSIc and SSIp) compared to body mass.  

 

Materials and Methods 

Recruitment and Participant Characteristics:  

A convenience sample of 142 participants (79 F, 63 M)  (13.3% African American/Black, 

17.9% Latina/o, 28.6% White, 27.6% Asian/Pacific Islander, 1.0% American Indian or Alaskan 

Native and 11.7% Mixed Race or Unknown) was recruited for this observational, cross-

sectional study, from the faculty, staff, and students at a mid-sized regional university.  

Participants were recruited through flyers, emails to the university community, and word of 

mouth advertisement. Participants received no compensation for participation. A general 

health and demographic survey was completed by all participants prior to the start of data 

collection to determine age, sex, and ethnicity of the participants. Participants were 

excluded if they had a history of any diseases that might influence bone health (endocrine 

diseases, gastrointestinal disorders, and eating disorders), were under 18 years of age, 

smoked or were pregnant. All participants were informed of the risks and benefits of the 
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study and provided written informed consent.  The study was approved by the California 

State University, East Bay Institutional Review Board (IRB) (CSUEB-IRB-2016-223-F). The 

study was pre-registered at the Center for Open Science OSF  (https://osf.io/krpx4- DOI 

10.17605/OSF.IO/B5QZC). 

 

Anthropometric Measures: 

Body mass and body fat percentage were measured using the Bod Pod (BOD POD ® 

2007A; Cosmed USA Inc, Concord, CA). Participants were instructed to refrain from 

exercising and food or drink consumption 3 to 5 hours prior to testing to ensure accurate 

and repeatable measurements. Participants’ standing height was measured in meters 

using a stadiometer (Seca, Chino, CA) to the nearest 0.1 cm. 

 

Bone Strength Assessment by pQCT:  

Peripheral quantitative computed tomography (pQCT) (XCT 2000 Stratec Medizintechnik, 

Pforzheim, Germany) scans were used to assess bone strength measures of the dominant 

tibia. Tibial dominance was determined by asking participants, “Which hand do you write 

with?” with the assumption that dominance was ipsilateral. Two measurements of tibial 

length from the medial epicondyle to the medial malleolus were taken and averaged. For 

all participants, a 30 mm planar scout scan was performed to locate the distal end of the 

tibia representing the 0 position in order to determine the 4% and 50% sites of the tibial 
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length, after which the two sites were scanned. The voxel size was set to 0.5 mm, slice 

thickness was 2 mm and the scanning speed was 30 mm/s. Slice images were analyzed 

using the manufacturer’s software (version 6.20). Regions of Interest (ROI) were identified 

using auto find and minimize functions of the 2000L software package, manual corrections 

were made using a visual check as necessary. For the 4% tibial site, bone strength index in 

compression (BSIc) and other trabecular bone parameters were calculated using contour 

mode 3, peel mode 4, and a threshold of 169 mg/cm3. At the 50% tibial site, strength-strain 

index polar (SSIp) and polar moment of inertia (MoI), contour mode 1, peel mode 2, and a 

threshold of 480 mm/cm3 were used. The remaining cortical bone parameters were 

calculated using contour mode 1, peel mode 2, and a threshold of 710 mg/cm3.     

Bone strength is developed through a combination of the size and geometry (architecture) 

changes within a bone as well as bone’s material properties (bone mineral density). 

Trabecular bone outcome measures included measures of bone size, total bone mineral 

content (vBMC.tb (mg/mm)), and geometry measured by total area (ToA.tb (mm2)) as well 

as volumetric bone mineral density (vBMD.tb (mg/cm3)). For the 4% tibial site, BSIc is a 

combination of both density and architecture (formula below) 21. 

BSIc = ToD2 (mg/cm3 /1000) * ToA.tb (mm2) 12 

ToD: total density 

ToA.tb: total area 
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Cortical bone measures included bone mineral density (cBMD (mg/cm3)), a material 

property.  Bone size was measured using cortical area (CoA (mm2)) and bone architecture 

using total area (ToA (mm2)) and MOI.  A composite strength measurement, SSIp (mm3), 

combined the material property (cBMD) with the architecture measure, MoI  (formula 

below) 22.  

SSIp = (MoI/ D max) * (cBMD/ND) 22 

MoI: Polar Moment of Inertia 

D max = maximum distance of a voxel from the center of gravity 

cBMD = measured cortical density (mg/cm3) mineral per unit of cortical bone volume  

ND = normal physiological density (1200 mg/cm3) 

 

All scans were acquired and analyzed by 1 of 2 technicians holding Limited Permit X-Ray 

Technician certifications from the California Department of Public Health. The short-term in 

vivo precision (root-mean-square (RMS) -CV %) 23 in our laboratory for tibial scans has been 

estimated between 0.5704% and 0.8957%. All scans were checked for movement artifacts 

at the time of the initial scan by a technician. Manufacturer supplied hydroxyapatite 

phantoms for pQCT were scanned daily prior to data collection. 

 

Vertical Jump Test: 
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Maximal jump height was measured using a Vertec™ (JUMPUSA.com, Sunnyvale, CA). 

Participants completed a warm-up and two practice jumps prior to testing. The participant's 

standing reach was measured and three maximal countermovement vertical jumps (CMJ) were 

performed to displace the Vertec™ vanes with a 20-second rest between jumps. Maximal jump 

height was calculated as the difference between the jump height and the standing reach height. 

Peak vertical jump power at take-off was calculated from the maximal jump height using the 

Sayer’s equation below:  

Peak Vertical Jump Power (W) = [51.9 * CMJ height (cm)] + [48.9 * Body mass (kg)] - 

2007 24 

Reliability of the above vertical jump height protocol was determined using 10 participants 

(Age 24.6 yr (3.0 yr); 5 female) who performed 3 maximal countermovement vertical jumps 

during 2 sessions that were 7 days apart. Maximal vertical jump height was then averaged 

for the 3 trials for each session and a Pearson correlation was run to determine reliability. 

The correlation coefficient for the test-re-test of the vertical jump was r=0.99 95% CI (0.96-

0.99). 20 

 

Statistical Analysis:  
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A prior sample size estimation of 67 participants was calculated using GPower 3.1 software 

25 assuming a medium effect size (0.15) and a power of 0.8 at the standard 0.05 alpha error 

probability. Two datasets were combined for this analysis.  Methods were similar for both 

datasets, but one was collected on university athletes 26 and the other on the general 

healthy university population (not published). A one-way ANOVA indicated no effect of 

athlete status (F (1,142)=0.247, p=0.620, partial 𝜂2=0.002). Preliminary analyses were 

performed to ensure there was not a violation of the assumption of normality for the 

dependent variable, PP, including tests for skewness and kurtosis, Shapiro-Wilks test, and 

assessment of the Q-Q plots. Outliers were assessed using standardized variables and no 

data was excluded. The total number of participants used for each analysis are reported in 

the text and on the tables. Independent unpaired t-test was used to determine differences 

between genders. All statistical analyses were performed with SPSS 27.0 software (SPSS Inc, 

Chicago, Illinois) with an alpha level of 0.05. To test the hypothesis that peak power 

(calculated from the Sayer’s equation) would be a significant and greater contributor of the 

explained variance for bone strength (BSIc and SSIp) compared to body mass, a 

hierarchical multiple regression (HMR) analysis was used. HMR determined the amount of 

variance that peak power (predictor or independent variable) explained for bone strength 

parameters in both the cortical and trabecular regions of the tibia compared to a base 

model that included body mass. Two steps were used for these analyses of the dependent 
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variables (BSIc and SSIp). In the first step, predictor variables age, height, body mass, and 

sex were entered into the model, while peak power was entered in the second step.  

 

Results 

The use of the term “peak power” refers to peak vertical jump power at take-off calculated 

from the maximal jump height using the Sayer’s equation. Descriptive statistics display 

differences between male and female participants (Table 1). As expected, independent t-

test revealed means were significantly different (p<0.001) between males and females for 

all characteristics, except age (p = 0.0827).  Male participants were taller, heavier and had 

greater compressive (BSIc) and torsional (SSIp) bone strength (Table 1). The average body 

mass (kg) for the male group was 73.8 (10.7), whereas the females’ average was 64.1 (11.2) . 

The peak power (Watts) average for the male group was 4507.5 (980.3) and the female 

group had an average of 3219.4 (803.3) (Table 1).  
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Positive associations were found between bone strength, body mass and peak power in 

both the trabecular and cortical bone regions (Table 2). The correlation coefficient between 

body mass and compressive strength index (BSIc) was 0.435, and 0.658 between body 

mass and torsional strength index (SSIp). However, the correlation coefficient between BSIc 

and peak power was 48% greater than that between BSIc and body mass (Table 2).  An 8% 

stronger correlation was found between SSIp and peak power compared to SSIp and body 

mass (Table 2).  
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For  BSIc, model 1 explained 43.7% of the variance and the addition of peak power 

increased the explained variance to 50.9% (p < 0.001)  an increase in explanatory power of 

7.2% (Table 3). For SSIp, model 1 had an R2 of 0.599, and model 2 had a R2 value of 0.610, 

an increase in explained variance of 1.1% (p > 0.001) (Table 3). 
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The influence of body mass decreased from model 1 to model 2.  Based on the 

standardized beta coefficients, body mass explained 22.6% (p = 0.005) of the variance for 

the compressive strength index (BSIc) and 38.6% (p < 0.001) of the variance for the 

torsional strength index (SSIp) (Table 4).  Peak power (0.541, p<0.001) contributed more to 

the unique variance in BSIc compared to body mass (-0.102, p=0.332). However, for the 

torsional strength-strain index the beta coefficient for body mass remained significant 

(0.257, p<0.006) in model 2 similar to peak power (0.213, p= 0.051). Similar to body mass, 
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the standardized beta coefficients of gender, height and age also decreased between 

model 1 and model 2 for BSIc and age became non-significant for SSIp. 
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Discussion 

 

The hypothesis was partially supported based on the current data; body mass, a measure 

of weight bearing load magnitude on the skeletal system, was not an independent 

predictor of bone strength when a neuromuscular field test, lower limb peak power, was 

added to a model including sex, height and age. Peak power was linked to a significantly 

higher amount of variance in the model for trabecular bone strength and was similar to 

body mass for cortical bone strength. Rantalainen et al. also reported that body mass was 

not an independent predictor of bone strength for both trabecular bone (BSIc) and cortical 

bone (SSIp) when concentric next impulse from a neuromuscular test was included in the 

predictive regression model 3. While body mass was a significant predictor of both cortical 

and trabecular bone strength, the neuromuscular test which includes body mass, but 

requires neuromuscular coordination to complete the jump task, was a better predictor 

and supersedes other predictor variables in the model including sex, height and age. A 

neuromuscular task may provide an easy to use, cost effective and accessible test for bone 

health assessment and monitoring.  
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Bone strength adapts in response to loading by muscular and ground reaction forces; 

higher loading results in higher bone strength, specifically architectural adaptations 1. 

Although body mass affects the magnitude of loading imposed from ground reaction 

forces, muscle-generated loads on bone are known to exceed impact loading from ground 

reaction forces due to muscles’ mechanical disadvantage in the human body. Muscle cross-

sectional area (MCSA) is often used as a surrogate for actual muscle force acting on bone. 

Frank et al. 27 found MCSA to be a better predictor variable in models of both tibial BSIc and 

SSIp compared to body mass. MCSA also predicted bone strength similar to or better than 

muscle power in recent studies 17,28. However, MCSA does not account for other factors 

contributing to the magnitude of muscle force and joint torque production, such as fiber 

type, pennation angle, and moment arm length. In addition, MCSA measures are not easily 

obtained outside of a clinical or laboratory setting, and therefore create an additional 

barrier for monitoring bone health in the general population.  

 

The emergence of neuromuscular testing, such as muscle strength and power measures, 

as a predictor of radial and tibial bone strength demonstrates the potential for a simple 

screening tool for bone health throughout the lifespan 3,17,18,26,29,30. Neuromuscular power 

calculated from a vertical jump test, using the Sayer’s equation, demonstrated that it was a 

strong determinant of bone strength variables among youth and young adult populations 

17,18,30 and collegiate athletes 29. In a laboratory setting, peak power measurements from 



 

 

DOI: STORK.3389.XXXX  SportRxiv is free to access, but not to run. Please consider 
donating at https://storkinesiology.org/                  17 

 

knee extension using air-pressure resistance equipment 29 and vertical jump testing on a 

force plate 3 were found to be independent predictors of bone strength in women (young 

and post menopausal). The current findings support previous investigations supporting the 

effectiveness of neuromuscular power measures as a predictor variable for bone strength.  

 

Causation should not be inferred between peak power and bone strength due to the cross-

sectional design of the study. Although peak power measurements were a significant 

predictor of both cortical and trabecular bone strength in models with body mass, it may 

not be the best neuromuscular performance variable to use for bone-related prediction 

models. Rantalainen et. al. 3 measured both power and impulse measurements via force 

plate. The two measurements were significantly correlated to each other, however, impulse 

demonstrated 5 to 26% stronger correlations than power. Future research should 

investigate the differences between impulse and power equations on their predictive 

capacity for bone strength indices. A strength of this study was the large and ethnically-

diverse convenience sample. The use of the pQCT to assess bone strength indices for both 

trabecular and cortical regions of interest is another strength of the study. Unlike DXA, the 

pQCT quantifies both architectural and material properties of bone. The parameter, 

strength-strain index (SSIp), an output from a pQCT analysis, provides an approximation for 

bone strength in vivo 31 and was a good estimate of mechanical strength ex vivo 32.  
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In conclusion, peak power calculated from a vertical jump field test is a significant 

contributor to the explained variance for bone strength in both trabecular and cortical 

bone.Compared to body mass, peak power was a better predictor for trabecular bone 

strength and was similar for cortical bone strength. These data provide additional support 

for the development of a vertical jump test as a simple, objective, valid and reliable 

measure to monitor bone strength among youth and adult populations.  
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